

Proiect InnoRESEARCH - POSDRU/159/1.5/S/132395

Burse doctorale și postdoctorale în sprijinul inovării și competitivității în cercetare

UNIVERSITATEA POLITEHNICA DIN BUCUREŞTI
Facultatea de Automatică și Calculatoare

Catedra de Calculatoare

Nr. Decizie Senat 243 din 12.05.2016

TEZĂ DE DOCTORAT

Simularea unificată a corpurilor rigide și flexibile

folosind dinamica bazată pe constrângeri

Unified Simulation of Rigid and Flexible

Bodies Using Constraint Based Dynamics

 Autor: ing. Mihai Frâncu

 Conducător de doctorat: prof. dr. ing. Florica Moldoveanu

COMISIA DE DOCTORAT

Preşedinte Prof. dr. ing. Adina FLOREA de la Universiteatea POLITEHNICA

București

Conducător de doctorat Prof. dr. ing. Florica MOLDOVEANU de la Universiteatea POLITEHNICA

București

Referent Prof. dr. ing. Vasile MANTA de la Universitatea Tehnică „Gheorghe

Asachi” din Iaṣi

Referent Prof. dr. ing. Dan NEGRUȚ de la University of Wisconsin-Madison,

SUA

Referent Prof. dr. ing. Ioan SLUȘANSCHI de la Universiteatea POLITEHNICA

București

Bucureşti 2016

Rezumat

Această teză prezintă un cadru unificat atât teoretic cât s, i practic de simu-

lare a corpurilor rigide s, i flexibile. El foloses,te teoria dinamicii bazată pe

constrângeri ı̂mpreună cu progrese mai recente ı̂n ecuat, ii diferent, iale alge-

brice s, i inegalităt, i variat, ionale diferent, iale. Un efort ı̂nsemnat este pus ı̂n

exprimarea tuturor modelelor de material ca o singură problemă neliniară

de minimizare constrânsă. Sunt derivate rezolvatoare noi, sunt folosite noi

metode de integrare precum Newmark s, i este propusă o nouă metodă de

amortizare.

Un alt pilon al cercetării noastre este dinamica bazată pe pozit, ii (PBD).

În această teză demonstrăm ca metoda este fizic corectă, este echivalentă cu

integrarea Euler implicită s, i poate fi reformulată ca o minimizare pornind de

la principiile variat, ionale ale mecanicii. Mai mult, când este folosită regu-

larizarea, constrângerile devin mai slabe s, i complet echivalente cu fort,e elas-

tice integrate implicit. Aceasta este s, i baza pentru noul nostru rezolvator de

element finit ce se bazează pe proiect, ia pozit, iilor s, i este corect din punct de

vedere fizic.

În cele din urmă, tratăm subiectul contactului cu frecare ı̂n contextul

dinamicii non-netede. Arătăm că tratatea contactului de către PBD este

de fapt o iterat, ie de punct fix a deja doveditei scheme de păs, ire ı̂n timp

la nivel de viteză. De asemenea, demonstrăm convergent,a acestei iterat, ii s, i

includem s, i un model mai riguros de frecare. Suntem primii care exprimă

PBD ca o problemă de minimizare neliniară s, i convexă cu constrângeri conice.

Această formulare include toate tipurile de constrângeri bilaterale s, i, mai ales,

contactul cu frecare.

i

Abstract

This thesis presents a unified framework at both theoretical and practical

level for simulating rigid and flexible bodies. It uses constrained dynamics

theory together with more recent advances in differential algebraic equa-

tions and differential variational inequalities. A particular effort is put into

expressing all the material models as a single nonlinear constrained mini-

mization problem. New solvers are derived, new integration methods like

Newmark are used and a new damping method is proposed.

Another pillar of our research is position based dynamics (PBD). In this

thesis we prove that the method is physically correct, it is equivalent to

implicit Euler integration and can be recast as a minimization starting from

the variational principles of mechanics. Moreover, when regularization is

employed the constraints become softer and fully equivalent to implicitly

integrated elastic forces. This is also the basis for our novel physically correct

finite element solver that relies on position projection.

Finally, we treat the subject of contact with friction in the context of non-

smooth dynamics. We show that PBD contact handling is in fact a nonlinear

fixed point iteration of the established velocity time stepping scheme. We

also prove convergence of this iteration and include a more rigorous friction

model. We are the first to express PBD as a convex nonlinear minimization

problem with conic constraints. This formulation encompasses all types of

bilateral constraints and, more importantly, nonsmooth frictional contact.

iii

Acknowledgments

I would like to thank my advisor for accepting me for this PhD and giving me

the opportunity and freedom to work on the topics I had in target. I am also

grateful to my girlfriend Cristina for standing by my side during this low-

budget academic break from the industry. Also many thanks to professors

Dan Negrut, and Mihai Anit,escu for their willingness to talk to me and help

me effectively. Much appreciation goes to Alin Dumitru and Liviu Dinu

from Static VFX for their help on rendering and their nice company. I also

had very productive chats with Hammad Mazhar, many of which produced

actual results, and I thank him for that. There are also other people that

have helped me in some way or another during this thesis, even if with just

a piece of advice or a nice conversation, and I hope I can mention them all:

Kenny Erleben, Victor Asavei, Anca Morar, Lucian Petrescu, Teodor Cioacă,

Horea Cărămizaru, Andrei Craifăleanu, Sergiu Crăit,oiu, Vasile Brovcenco,

Alessandro Tasora, Dario Mangoni.

The work has been partially funded by the Sectoral Operational Pro-

gramme Human Resources Development 2007-2013 of the Ministry of Euro-

pean Funds through the Financial Agreement POSDRU/159/1.5/S/132395.

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Context . 4

1.3 Goals . 5

1.4 Simulation criteria . 7

1.5 Thesis outline . 9

1.6 Publications in connection with this thesis 11

2 Related work 13

2.1 State of the art . 13

2.2 Nonsmooth dynamics . 18

3 Equations of motion 23

3.1 Newton equations of motion 23

3.2 Lagrange equations of motion 25

3.3 Rotation kinematics . 27

3.4 Newton-Euler equations for rigid bodies 30

3.5 Continuum mechanics . 31

4 Time discretization 35

4.1 Numerical integration . 35

4.2 Variational and symplectic integrators 38

4.3 Integration as minimization 39

vii

CONTENTS

5 Material models 43

5.1 Rigid bodies . 43

5.2 Elasticity . 47

5.3 Threads . 48

5.4 Cloth . 49

5.5 Virtual try on for clothes . 54

5.6 Deformable bodies . 56

5.7 Fluids . 57

5.8 Granular matter . 58

5.9 Collision detection . 59

6 Constrained dynamics 65

6.1 Constraints . 65

6.2 Differential algebraic equations 68

6.2.1 Mechanical engineering 69

6.2.2 Molecular dynamics . 70

6.2.3 Computer graphics . 72

6.3 Velocity time stepping . 73

6.4 Nonlinear minimization . 75

6.5 Variational minimization structure 78

6.6 Solvers . 80

6.6.1 Relaxation . 81

6.6.2 Krylov subspace methods 83

6.6.3 Accelerated Jacobi . 84

6.7 Applications . 89

6.8 Regularization . 90

6.9 Energy dissipation and damping 93

6.10 Stability . 95

6.11 Constraint based FEM . 96

6.12 Unilateral constraints . 100

7 Nonsmooth dynamics 103

7.1 Mathematical prelude . 104

viii

CONTENTS

7.2 Continuous setting . 106

7.3 Polyhedral friction cone . 109

7.4 Smooth friction cone . 111

7.5 Position projection . 113

7.6 Projected iterative solvers . 115

7.7 Rigid bodies . 116

7.8 Friction models . 118

8 Unified simulation framework 121

8.1 Nonlinear constrained dynamics 121

8.2 Implementation and results 122

8.3 Mixing PBD and VTS . 134

9 Conclusions and future work 137

9.1 Conclusions . 137

9.2 Contributions . 139

9.3 Future work . 140

ix

List of Figures

4.1 The energy evolution over 500 frames of a 15×15 piece of cloth

using NCG (green), PBD (purple) and CG (red) and exact

(blue) linearly implicit solvers. 42

5.1 Hierarchy of articulated rigid bodies with spherical joints. . . . 45

5.2 Boxes falling on ground solved with position projection. 47

5.3 Mass-spring approximation of a vibrating string. 49

5.4 Links structure of cloth relative to one particle (white one in

the center): stretch links (red), shear links (blue), bend links

(green). 50

5.5 100×100 piece of cloth hanging from corners and falling over

a sphere; simulated in real time at 60 Hz using the conjugate

residuals solver. 51

5.6 Simulation of (a) a cloth model consisting of 6910 vertices

and 13674 triangles using soft constraints and (b) a garment

exported from Marvelous Designer and rendered in OGRE. . . 52

5.7 Two snapshots of a side by side real-time simulation of two

40×40 cloth pieces with the same Young’s modulus E: regu-

larized FEM constraints (left) and soft links (right); superim-

posed in purple is the strain map. FEM offers more realistic

folds and the strain is better distributed throughout the cloth. 53

5.8 Flexible cow falling on ground. 57

5.9 Granular matter falling over or trough various meshes. 62

5.10 Simulation of 1000 particles falling on a 20×20 piece of cloth

fixed at its corners (using the Sequential Positions method). . 63

xi

LIST OF FIGURES

5.11 Handling of cloth-mesh collisions and self collision. 63

6.1 Plot of the residual using 3 different solvers. 76

6.2 Plot of β over 20 iterations of the CR solver: original formula

clamped below 1 (blue) and power function approximation (red). 87

6.3 Plot of the total stretching at equilibrium of a 50×50 piece

of cloth relative to the number of iterations for GS (red) and

optimized CR (blue). 88

7.1 Particle contact point with friction cone Υ given by θ = arctanµ

and its polar cone Υ◦ depicted below. 107

8.1 Rigid bunnies falling on a piece of cloth with two way coupling.123

8.2 Flexible dragon falling on stairs and hitting rigid boxes. 124

8.3 Evolution of cloth from initial state to steady state painted

as L1 norm of the constraint error for 30 iterations per frame

using GS (blue), MINRES (red) and CR (green). 125

8.4 Plot of the simulation cost per frame in milliseconds (vertical

axis) relative to the number of iterations (horizontal axis) for

GS (red) and CR (blue). 126

8.5 Cloth falling freely over a sphere with friction coefficient µ =

0.5: (a) using accurate friction inside the iterative solver the

cloth remains stable on the sphere and (b) using the traditional

PBD friction handling (velocity post-processing) method the

cloth falls very quickly off the sphere. 127

8.6 Sand piles formed by dropping 3000 particles using VTS with

different friction coefficients (15 iterations, Baumgarte stabi-

lization γ = 0.5). 127

8.7 Plot of constraint error (L1 norm) for PBD cloth simulation

with different solvers (frame number on the horizontal axis):

Gauss-Seidel (blue), SOR (green) with ω = 1.2, and improved

Jacobi (red) with ω = 0.5, a = 1 and b = 0.6. 128

xii

LIST OF FIGURES

8.8 Plot of unilateral constraint error (L1 norm) for 3000 particles

falling in a box (VTS, γ = 0.5): Gauss-Seidel (blue), improved

Jacobi with ω = 0.5, a = 1 and b = 0.6 (red), improved Jacobi

with a = 2 (green), and Sequential Positions using GS (purple).129

8.9 Plot of unilateral constraint error (L1 norm) for 3000 particles

in a box with varying masses and friction: GS (blue), improved

Jacobi (red) with ω = 0.4, a = 1, b = 0.6. 130

8.10 Plot of relative velocity along constraints relative to the num-

ber of iterations for 1000 particles falling in a box with contact

and friction: Gauss-Seidel (blue), improved Jacobi (red) with

ω = 0.5, a = 1 and b = 0.6, and Sequential Positions using GS

with kc = 1 and kv = 0.1 (green). 131

8.11 Total energy evolution in time for the simulation of a 10×10

rubber cloth (κ = 2 N/m, 25 iterations) using NCG implicit

integration (blue), regularized PBD (red) and regularized en-

ergy preserving projection (green). 132

8.12 Damping response for the simulation of a 40×40 piece of cloth

(κ = 2000 N/m, 25 iterations) using regularized PBD (blue),

aggressive damping (red) and slightly damped energy preserv-

ing projection (green). 133

8.13 Windows application written in MS Visual C++ using OpenGL.134

8.14 Hybrid method - VTS for contacts after PBD for links 136

xiii

List of Algorithms

1 NCG implicit solver . 41

2 Nonlinear Minimum Residual 85

3 Nonlinear Conjugate Residuals 86

4 Pseudo-code for computing the internal forces inside a tetra-

hedron. Here a block Gauss-Seidel approach is employed. . . . 97

5 Pseudo-code for computing the normal and friction forces be-

tween 2 rigid bodies in contact. Can be used with either a

Jacobi or a Gauss-Seidel approach (ω ≥ 1, β = 0). 117

6 Nonlinear projected gradient descent constraint solver using a

Jacobi approach. 122

xv

List of Tables

8.1 CPU time (for one simulation frame) comparison between

Gauss-Seidel and accelerated Jacobi nonlinear constrained dy-

namics solvers (dual core). 123

8.2 CPU time (for one simulation frame) comparison between

Gauss-Seidel and accelerated Jacobi nonlinear constrained dy-

namics solvers (quad core). 124

8.3 Frame time measurements made on a Intel Core i7 3770 CPU

(single-threaded) for the two presented scenarios: hanging

cloth (PBD) and falling particles (VTS). 129

xvii

Chapter 1

Introduction

This thesis describes and extends a number of methods for mechanical simu-

lation in the context of computer graphics. The theory behind these methods

belongs to a relatively narrow subfield of mechanics called constrained dy-

namics, i.e. dynamics with added constraints. In particular, we are focusing

mainly on position projection methods modeled as mathematical optimiza-

tion problems. We will introduce and further detail these notions gradually

in the following chapters.

Simulation has become an important part of computer graphics since the

90s. By simulation we mean a type of procedural animation where you set

the initial conditions and then the system evolves in a physical way without

any user control. Examples include the draping of cloth on an object or a

human avatar or rigid bodies colliding into each other. Continuous bodies like

elastic objects or fluids have become increasingly used in the past decades in

3D animation films and movie visual effects (VFX). Games have also started

to use more and more physics simulation since the 2000s. These trends have

driven the adoption of more powerful hardware and also parallelization of

algorithms.

One could argue that there is not much research left to do in this field

given that most type of scenarios have already been simulated (from realistic

clothes to enormous oceans). Also, that the branch of physics governing

all these phenomena, mechanics, has been understood for more than three

1

CHAPTER 1. INTRODUCTION

centuries. However, this is not entirely true. Even when simulation first

appeared in computer graphics most of the methods were taken from science

and engineering results that dated back to the 50s. But nowadays computer

scientists are producing new results and are cross-pollinating the other fields.

And even before that, in the second half of the 20th century, researchers

discovered with the advent of computers that there are still many things

that we do not understand about classical mechanics. The results over the

last decades in elasticity and the finite element method, contact dynamics,

numerical integration and even chaos theory prove that there is still a fertile

ground for research in mechanical simulation. And of course there is the goal

of faster algorithms.

Needless to say that we play only a humble role and our contribution only

tries to advance a small niche of simulation. We only deal with macroscopic

scale simulations and try to rely on constraints rather than forces. If this is

a sufficiently accurate view of the world remains to be seen and it is up for

debate. It is best to stress from the start that there is no such thing as a

perfect simulation and there are competing methods with different pros and

cons for all types of applications. We did our best to keep our simulations

robust and plausible while at the same time fast and simple to understand,

implement and maintain.

In this chapter we will give the motivation behind the thesis, the back-

ground and the context of our research and the goals we set at the beginning.

Finally we give a quick outline of the thesis and our contributions.

1.1 Motivation

The author’s background is in games and physics for 3D games. This is why

in this thesis a strong emphasis is laid upon real time application. Also, con-

strained dynamics is often the method of choice of most rigid body physics

engines. This is not always true for deformable bodies where different meth-

ods are used. This is what lead us to the idea of unification of methods so

that a single engine is used for all simulations and also coupling is achieved

between rigid and flexible materials.

2

1.1. MOTIVATION

One of our initial questions was why are springs utilized for simulating

threads and ropes and contact is often handled separately by constraints

and complementarity? Why not use constraints also for the rope segments?

Or if one uses rigid links, why would she uses penalty methods for contact?

And bottom line, why are cloth solvers created as separate products and use

almost fully different methods for simulation? This was happening back when

constrained dynamics and position based methods were gaining traction in

games and computer graphics, but not every one knew about them, how

to use them and how they relate to the more established spring-damper

methods. In fact this is still true nowadays, though many advances have

been made, but a lot of practitioners still consider position based methods

(and even velocity based ones) as non-physical.

Another question we asked ourselves was why contact handling techniques

based on constraints on nonsmooth dynamics have become so popular in

games and visual effects (see Havok, PhysX, ODE, Bullet) and they are still

viewed with reluctance by researchers doing elasticity based simulations in

both engineering and computer graphics? Is the method not mature enough?

Probably so, as these methods only started appearing the late 70s, were

developed in the 90s and were implemented after the year 2000. Also, we

do not deny the viability of hybrid methods where elasticity is simulated by

implicit integration and contacts are handled through constraints. The two

different solvers are coupled through co-simulation, a strategy that is often

used to accommodate different simulators developed independently under the

same roof of multi-physics.

Even today a lot of researchers and commercial products implement their

dynamics engines using penalty methods despite their drawbacks. Maybe

after all, penalty methods are not that bad and can be made robust as some

papers indicate. We did consider that we are biased in our approach given

the background described above. But one cannot stop and wonder: why is

there such a gap between penalty and Lagrange multiplier methods? What

if they are somehow the same? And we think we were able to prove this in

our thesis or at least bring more arguments to the hypothesis.

3

CHAPTER 1. INTRODUCTION

1.2 Context

This work was elaborated in the context of computer graphics with a focus

on virtual reality and interactivity. In contrast to engineering we perform no

validation, but rely only on visual inspection and plausibility. Still, we did

our utmost best to start from the same physical principles and obey the same

physical laws as the other older and accepted methods used in engineering

and scientific simulations.

Position based dynamics (PBD) became very popular in the last decade.

This was one of the few cases where new methods were developed in the games

and computer graphics and did not come from a more scientific origin. But

it also laocked rigor. We went on a quest of showing what PBD really is and

to prove that it is in fact physically correct (for whatever that means). We

found out that a lot of people, especially in the engineering community, like

to work and explain phenomena with forces, accelerations and constitutive

relations like Hooke’s law for springs. Everything else, like projection on the

constraint manifold, seems artificial, unphysical or cheated. Ideal constraints

like non-penetration, constant length or rigidity for that matter are artificial

mathematical constructs but they are not far from the truth. We continue

the approach in Claude Lacoursière’s thesis in that constraints are only as

perfect as diamond is, but also that a lot of forces of nature are so stiff that

they can be considered as rigid internal forces (action-reaction pairs). La-

coursiére uses this approach to justify the use of regularization for solving the

resulting problems. We are turning this argument on its head and argue that

regularization is essential for proving the physical roots of PBD. Moreover,

even if we do not care and accept ideal constraints as real, we can still show

that PBD is a sound method that can be derived from a discretization of the

variational principles of mechanics. We took this idea from the same thesis

and many other sources, but again used it for a different goal: prove that

most simulations can be reduced to a quadratic minimization problem with

nonlinear or conic constraints.

Deformable bodies are another thorny subject in computer graphics. A

lot of effort is put into methods that look plausible, they are very robust and

4

1.3. GOALS

employ a lot of tricks rather than trying to be accurate. This is strange be-

cause a lot of these methods come from engineering where they have already

been validated. So, on the other hand, the tendency nowadays is to go back

to these origins and squeeze more accuracy from them even in graphics along

with the progress of hardware. But hacks and tricks are still used and this

is why there is this distinction between physical and non-physical (or fake)

methods. For example PBD methods for soft bodies are considered in the

former category, but this is arguable because PBD itself is physical but the

constraints themselves can be non-physical. And the example that comes to

mind is the modeling of soft bodies as volumetric lattices of springs or links

between particles: this is not physically accurate for either the force or the

constraint approach. The most accepted method for simulating deformable

bodies over the past many decades and in scientific circles is the finite ele-

ment method (FEM) or finite element analysis (FEA). In order to show the

physicality of the position projection method we tried to build a proof in this

thesis that accurate FEM simulation is indeed possible using such methods.

Given all these we are ready to define the scope of our research. We are

focusing only on constraint based methods in order to improve them. We

are also comparing them to more traditional elasticity based approaches but

these are only touched marginally. For solving the numerical problem we

focus on mathematical optimization methods and in particular on iterative

solvers and gradient descent approaches. Going deeper, we concentrate only

on the dual formulation of the problem in terms of Lagrange multipliers

and matrix-free formulations for quick, parallel and low memory footprint

implementations.

1.3 Goals

As already hinted, our main goal was to simulate as many different phenom-

ena possible using the framework of constraints. This thesis was intended as

proof of concept and limited itself to coupling rigid and deformable bodies

inside the same solver. We hope that it can be extended to other contexts

like fluid simulation, grid based continuous materials and other more com-

5

CHAPTER 1. INTRODUCTION

plex methods used in engineering. Two-way coupling of rigid and deformable

bodies is not a new result and we do not claim it. Our contribution is that

we use only one numerical framework to model these physical phenomena.

Also it may seem that constraint based techniques for simulating rigid and

deformable bodies have been around for a while now. We do not deny that,

but stress the fact that they have never been unified under the same formu-

lation and proven to be physically correct. Also we developed new methods

for rigid bodies, cloth and FEM.

Another challenge we set ourselves was to make these methods suitable

for real-time and interactive applications. Our intuition was that if constraint

methods proved so successful in games and VFX then they are clearly the

way to go and should be extended. We have not yet found an answer to

whether these methods are significantly faster than spring-damper or penalty

methods. We do think they are more intuitive and easier to implement and

rid oneself of many intricacies like boundary conditions.

Not all the simulations presented in this thesis ran fully in real-time, but

as a rule we tried not to go below one frame per second and get as close as

possible to 60 Hz (which is the de facto simulation rate for smooth animation

in games1). This is why most of our integrators work with a time step of 16

ms. Our aim was robustness and stability at such large time steps. Then

optimizing the algorithms for speed would be just another step, which we

have taken in many cases.

The biggest condition for reaching interactive frame rates is that our al-

gorithms are parallel and scale well with the number of computing units.

A lot of the established methods in simulation are sequential and relied on

Moore’s law to get faster every year. Simulating a scene in real time also

depends on the number of objects or their complexity. This is why parallel

computing is the way of the future: add more processing power for more

bodies while keeping the simulation time constant. Old sequential program-

ming tricks are no longer sufficient to boost simulation speed. Many times

they are not even suitable for parallel implementation because of the causal

links between data or code. This is why we set ourselves the goal to develop

1Probably even faster rates will be needed for VR headsets.

6

1.4. SIMULATION CRITERIA

new and competitive solvers that work well on multi-core and many-core (i.e.

GPGPU) architectures directly from the mathematical level.

1.4 Simulation criteria

In order to decide which of the existing or possible methods are most suited

for simulating bodies in contact we need to clarify some criteria. Of course,

computation speed has always been a criterion and it usually induces a trade

off with accuracy. So there is no clear way of choosing the best method: we

always have to make compromises. So we end most of the times up doing a

multi-criterion analysis hoping to find a set of Pareto optimal methods.

Let us enumerate some of these criteria:

• stability : above all we want the simulation to not blow up, and then we

desire to obtain rest configurations that do not jitter. Unfortunately

this word has a wide encompassing meaning as it is connected to many

causes, e.g. dissipativity, integration methods, solver convergence etc.

• accuracy : this is usually sought in mechanical engineering and often dis-

carded in computer graphics. The truth lies in between, as there is no

such thing as total accuracy in numerical modeling, but better accuracy

many times means more correct simulation of natural phenomena -

which the eye can discern. The problem here again lies in the fact

that there are several different quantities that need to be accurate at

the same time, e.g. non-penetration constraint, friction, momentum

conservation etc.

• conservation laws : we refer here to those quantities that are invariants

of motion, sometimes called first integrals and arising from symme-

tries. The usual examples are energy, linear and angular momentum

and spatial symmetry of the motion. This of course becomes blurry

when dissipation comes into play - and it usually does due to numerical

schemes and is usually desired for stability reasons. One would expect

that a method that handles well the elastic case should do just as well

7

CHAPTER 1. INTRODUCTION

for the inelastic one. But much greater effort is needed to achieve this

kind of ”structure preserving” methods.

• performance: surely we would like to achieve the smallest computa-

tional cost without sacrificing too much of the above criteria. How

much is too much varies from field to field. But it is clear that long

simulation times usually translate in the end to money being spent and

one always prefers a smaller cost for the same outcome. Performance

becomes a hard constraint in the case of real time applications - this

is often mitigated by the number of objects in the scene. Typical in-

teractive rates are above 10 Hz (preferably 30 or 60 Hz), meaning that

the whole simulation frame should take place in milliseconds. And

given the power wall in front of Moore’s Law the only viable approach

nowadays is through parallel computing.

• robustness : this can be viewed as a subset of stability, but we wish to

give it a more precise and separate meaning, i.e. the ability to recover

from ill conditioned configurations in an elegant, silent and plausible

manner.

• veracity : this too can be synonymous to accuracy, but again we mean

something apart from that, namely physicality and plausibility. It is

said of many methods they are not physical, i.e. they are not rooted in

physical laws. This is often a subjective argument, it is often ambiguous

or false, and is usually due to lack of theoretical or experimental proof.

Numerical simulations are notoriously hard to show that they mimic

reality accurately or that they adhere to first principles rigorously. This

is why plausibility was coined: a simulated motion is valid if it looks

good at visual inspection. This criterion has been often overused in

computer graphics (the author included), but this does not mean that

it is a weak criterion. It still needs to be upheld and used as a fail safe

when physical laws are vague or paradoxical (e.g. impact, friction).

• collision detection: the quality of this process determines a lot of the

behavior of the numerical solver. This is why it is very important to

8

1.5. THESIS OUTLINE

determine from the start the collision requirements and issues for each

particular method, as they not only affect performance, but also all the

other criteria listed above.

1.5 Thesis outline

Chapters 3, 4 and 5 are meant as introductory material so that the reader is

familiarized with some of the theoretical notions and common practices used

in physical simulation before going into the heart of the matter. Chapters 6

and 7 are the crux of our research and represent a mixture between presenting

existing methods and our own contributions. The rest of the thesis presents

implementation details, results and conclusions with the focus on our unified

simulation framework. Contributions are highlighted in the sections where

they appear and also at the very end together with references to the articles

where they were published.

• Chapter 2 does a quick survey of the state of the art and also mentions

some historical details.

• Chapter 3 gives a brief overview of the equations of motion for par-

ticles, rigid bodies and continua. Some focus is put on Lagrangian

mechanics and the kinematics of rotation. The equations presented

here are the continuous forms which are later discretized.

• Chapter 4 treats the subject of numerical integration and gives short

descriptions of the types of integrators. We then focus on the implicit

Euler integrator and present its minimization form together with our

new Nonlinear Conjugate Gradient solver.

• Chapter 5 is intended to be an introduction to the practices of model-

ing different types of objects and materials, so that we can focus solely

on the mathematics and numerical methods in the following chapters.

Even though the stress is on mass-spring systems and finite elements,

we also give a survey of other existing modeling and simulation tech-

niques. Additionally, this being a chapter about spatial and geometric

9

CHAPTER 1. INTRODUCTION

discretization, we also include a section on collision detection tech-

niques. Spread around the chapter are pictures of some of our simula-

tions.

• Chapter 6 introduces the ideas of constrained dynamics with an em-

phasis on equality only and holonomic constraints, namely on differen-

tial algebraic equations. We chose this separation from contact prob-

lems because notions are easier to explain and the resulting problems

are usually convex and pose less challenges. This chapter also allows

us to treat the simulation of articulated and deformable objects with-

out worrying about contact (which we introduce only at the end). Our

contributions include a new parallel solver, proven equivalence between

elasticity and regularized position projection and an accurate position

based finite element solver.

• Chapter 7 gives a brief overview of nonsmooth dynamics, namely the

necessity of using impulses to handle impacts and friction. Then we

proceed to presenting our new nonlinear and fully implicit approach to

nonsmooth dynamics yielding a rigorous formal model of position pro-

jection with frictional contact. Our main contribution in this chapter

is a position-based rigid body simulator with mathematically correct

friction handling.

• Chapter 8 describes the actual theoretical foundations and practical

details to build our unified simulator. Basically it puts together ev-

erything from the previous chapters. We have included some visual

results, some measurements and some performance timings. We also

added some numerical experiments we performed during our research

to analyze some issues in isolation. We end with a discussion about our

experiences and failures in mixing velocity and position based methods.

• Chapter 9 gives the final conclusions and summarizes our work. We

enumerate once more our contributions and finally list quite a few issues

that are still outstanding and represent challenges for the future.

10

1.6. PUBLICATIONS IN CONNECTION WITH THIS THESIS

1.6 Publications in connection with this the-

sis

A good part of the research presented in this thesis was also published in the

following articles:

• Minimum residual methods for cloth simulation [FM14b]

• An Improved Jacobi Solver for Particle Simulation [FM14a]

• Cloth Simulation Using Soft Constraints [FM15a]

• Virtual Try On Systems for Clothes: Issues and Solutions [FM15b]

• Simulating Large Scale Coupled Granular Material Simulations using

Position Based Dynamics [MFN16]

11

Chapter 2

Related work

Now that we clearly defined the context of our thesis we can restrict ourselves

to reviewing only a subset of the existing dynamics simulation literature.

This chapter will only cover very high level aspects of the state of the art in

the topics connected to our research. More details will be given throughout

the thesis which can be considered at times as a state of the art review.

2.1 State of the art

Rigid bodies with contact can be simulated with constrained dynamics

and other methods, most importantly the penalty method [BZX14]. Other

approaches consider the rigid body as a collection of particles and contact

forces are computed using the discrete element method (DEM) or in other

ways [TSIHK06, Jak01]. The particles can move under rigid transformations

[Har07] or be constrained together to form a composite rigid object [Cou12,

MMCK14].

There has been a wealth of work published on the subject of rigid body

simulation with contact and friction - for a survey see [BETC14]. We note the

advances made in the 90s by Baraff, Stewart and Anit,escu (to name a few).

Given the drawbacks of penalty forces, Baraff introduced the acceleration

based linear complementarity problem (LCP) method (inspired by earlier

work from Lötstedt) [Bar94]. This method had its problems too (related

13

CHAPTER 2. RELATED WORK

to impacts and the Painlevé paradox) that were later solved by a velocity

based approach that allows discontinuities in the velocities, i.e. impulses.

This approach was developed in the 80s by Moreau [Mor88] under the name

nonsmooth dynamics and was later extended by others [Bro96, AB08, Stu09].

The new velocity time stepping (VTS) schemes [ST96, AP97, AH04a] became

very popular in computer graphics, games and real time simulators [TBV12,

Erl07, Cat05]. We take a similar approach in this thesis, but based on more

recent work geared towards convex optimization [TA11, MHNT15]. Other

methods that employ both optimization and a fixed point iteration can be

found in [AH04b, ACLM11] or the slightly different Staggered Projections

approach in [KSJP08].

The underlying mathematical problem has many names. In game physics

it is often referred to as LCP, but this name has become slightly obso-

lete as not every method is LCP based anymore. In fact, many formu-

lations use a type or another of nonlinear complementary problem (NCP)

[ST96, SHNE10a] or equivalently a variational inequality (VI) [CPS92]. The

continuous problem is actually called a differential complementarity problem

(DCP) or measure differential inclusion (MDI) or differential variational in-

equality (DVI) depending on the authors. The newer convexified approach

can be expressed (in the discrete case) as a quadratic program (QP) with

conic constraints or as a cone complementarity problem (CCP).

Granular matter has been an area of research in computational me-

chanics for decades. The method of choice is usually the discrete element

method (DEM) which treats the granules as elastic billiard balls and uses

Hertzian contact theory [GS02]. The DEM method was used in graphics

too [BYM05, ATO09, Har07]. Another approach was a continuum based

one, considering the granular matter a special kind of fluid [ZB05, NGL10].

This was followed by a Lagrangian version derived from the smooth particle

hydrodynamics (SPH) method for simulating fluids [AO11, IWT12].

An alternative to DEM is the nonsmooth dynamics approach where the

particles are considered fully rigid and this is the path we are following. In

fact the method was developed for the more general case of rigid bodies, but

that can be turned into an advantage given the granules can have any shape

14

2.1. STATE OF THE ART

other than spherical [BYM05]. A great deal of articles have been written

on the subject of multibody dynamics with contact and friction and also

explicitly on the subject of granular flow [TA10, RA05, LSB10].

Deformable bodies have been traditionally simulated using implicit in-

tegrators due to their unconditional stability properties. These have been

applied not only to mass-spring systems, but also to simulations using the

finite element method (FEM) [MSJT08]. Recently, the popular Backward

Euler integrator has been recast as an optimization problem [BML+14] help-

ing us to gain new insights on a problem that used be solved solely by the

Newton method. A new alternative that is totally different from implicit in-

tegration of elastic systems is exponential integration [MSW14] which relies

on evaluating trigonometric matrices (in terms of exponential functions).

Cloth is one example of a deformable body modeled as a mass-spring sys-

tem [Pro96]. The implicit integration of the equations of motion has become

pervasive for cloth since the seminal work of [BW98]. Its main attraction is

its unconditional stability for very stiff equations and large time steps. By

implicit integration we usually mean the implicit Euler method, but other

implicit integrators were also employed, like BDF-2 [CK02], Implicit Mid-

point [OAW06] or Newmark [SSB13]. These integration methods offer better

energy conservation and more responsive simulation, in contrast to implicit

Euler which artificially dampens out high frequency details in exchange for

stability. Other variations include approximations made to the force Ja-

cobian [HE01] or an implicit-explicit (IMEX) approach [EEH00, BMF03].

Most approaches however use only one Newton solver iteration. In games

position based dynamics (PBD) is usually preferred for simulating cloth

[Jak01, MHHR07, GHF+07]. The approach we took is in the same vein

as [BBD09] and [How11] but we do only one pass for both velocity and posi-

tion. Soft bodies can also be modeled by adding internal pressure to a closed

cloth mesh.

Constrained dynamics was not initially considered for simulating de-

formable bodies, but this changed with the advent of PBD and constraint reg-

ularization [SLM06]. PBD was originally introduced by Jakobsen for games

based on molecular dynamics methods and a nonlinear version of the Stewart-

15

CHAPTER 2. RELATED WORK

Trinkle solver for rigid bodies [Jak01]. Goldenthal later showed that position

projection is equivalent to the fully implicit integration of a constrained sys-

tem [Gol10].

Constraint based methods appeared originally in their acceleration based

formulation for rigid body dynamics with joints and contacts [Bar94, BCP96].

Later on, velocity or impulse based methods gained more popularity [AH04a,

Erl07]. Position based methods are actually a nonlinear version of velocity

based ones, in the sense that they can still be expressed as velocity filters,

but constraints are enforced at positional level [ST96]. Part of the inspira-

tion for PBD came from molecular dynamics where methods like SHAKE or

RATTLE are widely used [BKLS95]. A more detailed study for the appli-

cation to cloth simulation in computer graphics was done in [Gol10]. Here

the method of fast projection is developed based on an implicit treatment of

constraint directions [HCJ+05] and a better energy preserving integrator is

also derived. Position based methods rely on projection for solving differen-

tial algebraic equations (DAE), which is ultimately an optimization problem

[HLW06]. Another part of inspiration came from strain limiting techniques

used in elastic cloth simulation [Pro96, BFA02].

Constraint based methods are often criticized for the fact that they sim-

ulate only nearly inextensible materials and are prone to locking. In order

to address this English and Bridson [EB08] use fast projection in conjunc-

tion with a BDF-2 integrator on a conforming triangular mesh. They also

give a brief proof for fast projection being the limit of infinitely stiff elastic

forces. Other authors prefer to use quad-predominant meshes or diamond

subdivision [Gol10].

Constraint regularization was employed mainly in [Lac07] for making rigid

dynamics with contact and friction more tractable numerically. We take the

name soft constraints from [Cat10] where an older idea is used: regulariza-

tion under the mask of Constraint Force Mixing (CFM) [Smi06]. Recently

constraint regularization has been used for particle based fluid simulation

[MM13]. Another application was intended for the simulation of deformable

elastic models using a constraint based FEM formulation [SLM06]. Sim-

ilar position based approaches can be found in [BML+14] and [BKCW14].

16

2.1. STATE OF THE ART

The FEM constraint approach is similar in philosophy with continuum strain

limiting [TPS09, MCKM14].

The idea of a unified solver is not new and our simulator bears maybe

most similarity to Autodesk Maya’s Nucleus [Sta09]. Our results are also

along the line of more recent PBD work [MMCK14, BKCW14, DCB14] and

Projective Dynamics [BML+14]. In addition, a great job of emphasizing

the role of nonlinearity for achieving stability was done in [KTS+14] and

[TNGF15].

Variational integrators are a special class of integrators that can be de-

duced directly from the discretization of Hamilton’s principle and the Euler-

Lagrange equations of motion [SD06]. They are also symplectic integrators,

i.e. they preserve area in phase space, which also means they are closer to pre-

serving energy and momenta [HLW06]. Many of them are explicit methods

(e.g. Symplectic Euler, Verlet, Leapfrog) so care must be taken when choos-

ing the time step size. Variational implicit methods like Implicit Midpoint or

Newmark are more stable and can be converted to projection schemes. This

is why we used them as inspiration for our energy conservation strategy.

Iterative methods are currently the preferred way of solving constrained

mechanical systems for real-time. Using exact methods can become infea-

sible when adding contact and friction for more than a few hundred bodies

[BETC14]. The fastest and most robust iterative method used in the present

is Gauss-Seidel (GS) [Cat05, Erl07]. GS also knows improvements such as

line search with conjugate directions [SHNE10a] or subspace minimization

[SHNE10b]. Jacobi is another relaxation method, closely resembling GS, but

it converges slower and needs modifications to remain stable. Still it is pre-

ferred to GS for parallel implementations as it can process each constraint

independently from the others [TBV12].

The Conjugate Gradient (CG) method has a good reputation for solving

linear systems as it has better convergence than matrix splitting methods

like Jacobi or GS [Saa03]. Even though it was used for implicit integration

of mass-spring models [BW98] it has never gained traction in constrained

dynamics simulations. There have been attempts at using it [RA05], but

many argued against its applicability for different reasons [Erl07, Ton12,

17

CHAPTER 2. RELATED WORK

Mor05]. Our approach is based on a minimum residual variant of gradient

descent algorithms as it guarantees decreasing residual energy and is more

stable. After optimizing the conjugate residuals algorithm we arrived at a

version of Jacobi with improved convergence. A minimum residual method

(GPMINRES) was also used in [HATN12]. The line search Jacobi algorithm

offers similar improvements to ours [TBV12, CPS92], but our addition of a

momentum term bears more resemblance to Nesterov’s method [MHNT15].

2.2 Nonsmooth dynamics

We will now give some more attention to the topics of rigid bodies, contact,

friction and nonsmooth dynamics, as they represent a big part of the founda-

tion of this thesis. We will also give some historical details. Before starting

we would like to point the reader to two bird eye view works on these sub-

jects in the context of computer graphics: the first one is the SIGGRAPH

tutorial given by Baraff and Witkin [Bar97, Wit97] more than a decade ago

and focused more on acceleration based methods and the other one is a more

recent state of the art review [BETC14].

The formulation of contact dates back to Signorini in the context of elas-

ticity. The solution to the problem of contacting elastic bodies was given in

the early 60s and contact complementarity conditions were named Signorini-

Fichera (or Moreau-Signorini) [WL06]. The application of this conditions to

particles and rigid bodies was done in the 70s and 80s mainly by Moreau

and Monteiro-Marques [Mor88]. Note that in this thesis we are not tack-

ling the full formulation of elastic contact, but relying on approximations to

handle contacts for deformable bodies (just as we did for PDEs). The work

of Moreau was later continued by the likes of Jean, Jourdan, Alart, Curnier

and others.

In the early 90 Baraff took inspiration from earlier work on complemen-

tarity by Lötstedt and formulated one of the first working acceleration based

simulators with impacts and resting contact. He modeled frictional contact

as a linear complementarity problem (LCP) and used direct solvers like the

ones devised by Lemke or Dantzig [CPS92]. His seminal work happened orig-

18

2.2. NONSMOOTH DYNAMICS

inally in the context of robotics but it quickly migrated to computer graphics

[Bar94]. The problem with this approach was that it only dealt with resting

contact, the integrator had to be restarted after impacts and the LCP did

not always have a solution. Also, the exact LCP solvers did not scale well

over a few hundred objects (the algorithm complexity being exponential).

These problems were later solved by Stewart and Trinkle who based their

results on the nonsmooth dynamics developed earlier by Moreau and others.

The essence of nonsmooth dynamics is that it can handle discontinuities in

the velocities by using advanced mathematical topics like convex and non-

smooth analysis, Lebesgue integration, theory of distributions, vector mea-

sures and others. New special contact integrators were developed in this

context to handle paradoxes of Painlevé and Zeno and the non-existence of

force level solutions, e.g. Moreau’s sweeping process. These came later to

be called velocity time stepping (VTS) methods. Such a method was intro-

duced in the now classic paper of Stewart and Trinkle [ST96] by means of

semi-implicit integration and a polyhedral friction cone LCP approximation.

Although Stewart later gave extensive and intricate proofs to his method,

the underlying complex tools of nonsmooth dynamics are not that necessary

to understand and implement his numerical scheme.

One could argue that the original Stewart-Trinkle scheme was formulated

at position level. Even though initially the positional non-penetration con-

straint were linearized, a nonlinear fixed point iteration is presented in a later

section. This nonlinear solution is one of the first of its kind and it was later

referenced by Jakobsen as a setting stone for position based dynamics. The

positional formulation was later abandoned in favor of a velocity level com-

plementarity condition from Anit,escu and Potra [AP97]. More than that,

Stewart later gave a critique of the nonlinear approach saying that it results

in random coefficients of restitution [Ste00]. We understand this concern

but argue that it also plagues stabilized VTS methods as well as position

based ones. We accept this fact just as other authors do and consider the

exact coefficient of restitutions in nonsmooth dynamics as an ongoing topic

of research [SKV+12].

The Stewart-Trinkle and Anit,escu-Potra schemes marked a landmark in

19

CHAPTER 2. RELATED WORK

rigid body simulation and stood as inspiration for the physics engines of

the 2000s (e.g. ODE, Vortex, Havok, PhysX) that became very popular

in games. An important extension to these schemes was added later by

Anit,escu and Hart in terms of a stabilization term directly inside the LCP

formulation [AH04a] in contrast to post-stabilization in a separate LCP step

at the end [CP03]. They are not the only who have linearized the constraints

in a similar manner: Faure [Fau99], Sauer and Schömer [SS98] and others.

This type of stabilization became actually the de facto velocity time stepping

scheme for solving contact. Our contribution in this chapter is to show how a

nolinear fixed point iteration of this scheme is actually equivalent to position

projection and implicitly PBD.

From the late 90s on contributions in the field of complementarity based

contact and nonsmooth dynamics happened in two big directions: mechani-

cal engineering and computer graphics (including video games and interactive

applications). In this thesis we focus on the latter, but we do have to ac-

knowledge the influential work of mechanical engineers like Tasora, Glocker,

Pfeiffer, Klarbring and many others. Good overviews of nonsmooth contact

dynamics are given by Studer [Stu09] and Preclik [Pre08]. We also have

to mention the comprehensive books of Brogliato and Acary [AB08, Bro96].

Acceleration level formulation persisted though in engineering articles (and

not only [RKC02]) and scientists are still slow to adhere to the velocity time

stepping formulations for various reasons.

The original discrete formulation of frictional contact involves a nonlinear

smooth friction cone (i.e. ice cream cone) and there are numerical schemes

that can handle this directly [Jea99, JAJ98]. The LCP polyhedral friction

cone formulation on the other hand has a more solid mathematical founda-

tion. The downside of this formulation is that it makes friction anisotropic.

The less faces you use the more pronounced this is. And this is particularly

the case for real-time implementations. Also, the mixed LCP formulation

cannot be converted to a convex optimization. The transformation of the

velocity time stepping scheme to a quadratic program with conic constraints

can only be done via a convexification process [Ani06, ACLM11, DSF98].

We chose to use the approach of Anit,escu and Tasora [TA11] in order to

20

2.2. NONSMOOTH DYNAMICS

use isotropic friction in our simulations (despite its potential artifacts). The

nonconvexity of the original problem is exemplified by Anit,escu in [AH04b].

Kaufman argues that frictional contact can be modeled as two coupled opti-

mization problems (one for normal contact and one for maximum dissipation)

that are equivalent to one single nonconvex problem; his approach is to solve

these two optimizations in a staggered approach [KSJP08].

Lacoursière [Lac07] and Kaufman [KP12] also tried to derive nonsmooth

dynamics from the more general discrete mechanics, i.e. a direct discretiza-

tion of the variational principle of mechanics. They relied on earlier work

from Fetecău [FMOW03], Pandolfi [PKMO02] and Kane [KROM99]. These

are all extensions of the variational integration framework that we presented

in the previous chapters to dissipative forces and nonsmooth phenomena like

contact and friction. We are not dealing with all the complexities of these

methods in this thesis, but we use them as inspiration and argumentation

towards expressing our unified simulation framework as one big minimization

problem with constraints.

In this thesis we are following mostly the work of Anit,escu and his collab-

orators and also variants of it that made it into computer graphics and games.

There are not so many publications in this direction [Cat05, Erl07, TBV12]

but a lot of knowledge has coalesced by means of open source projects (e.g.

ODE, Bullet), presentations at GDC and elsewhere, books, magazine articles,

web sites and blog pages. Game physics is also subject to a lot of simplifi-

cations and optimizations so care must be taken when it comes to accuracy;

still, that does not mean that the underlying mathematics is not correct.

21

Chapter 3

Equations of motion

We start by setting up some mechanical notions, give some insights for ge-

ometrical and physical meanings of the concepts introduced and proceed to

presenting the equations of motion in the Newton and Lagrange formula-

tions. We introduce Hamilton’s principle and set it as a foundation of later

results in this thesis - mainly the idea of looking for an extremum. Rota-

tion kinematics and the Newton-Euler equations of the dynamics of the rigid

body are briefly presented and in the end we give a quick guide to continuum

mechanics.

3.1 Newton equations of motion

We are not going to introduce all the notation used in this thesis in this

section. We are focusing only on the idea of a point mass particle and build

from there, just as in Newtonian mechanics [GPS02].

Before mechanics came geometry as a physical science, so it is natural

to measure the movement of a particle as the variation of its position. Co-

ordinates came much later with Descartes but they became the standard

way to describe the position of a point mass: ~x ∈ R3. The shape drawn by

this point at different moments in time is called a trajectory and can always

be defined as a parametric curve: ~x(t), t ∈ R. Just like in differential ge-

ometry this curve is described at every point by its tangent vector - if you

23

CHAPTER 3. EQUATIONS OF MOTION

know this derivative function you can reconstruct the trajectory by means

of integration. This vector gives us two physical meanings: the direction of

the movement and its speed at every instant. We call it the velocity vector

~v ∈ R3. Vector spaces are the natural representation of such physical quan-

tities like position and velocity as the entities remain essentially the same

under rotation. The equation ~v = ~̇x is called the kinematics of the particle.

It looks innocuous and a mere substitution but it is an important one and

things can get more complicated when changing coordinates or moving to

rigid bodies with rotations.

The trouble is that we need two quantities to completely specify the state

of a particle at any instant. Aristotle thought that position is enough and

that interaction is given by velocities but he was proven wrong in the end

[Dug57]. Galileo discovered the law of inertia that states that a particle

with no external interactions moves with constant velocity, so it means that

velocity must change too during more complex motion. This is why we

need the pair of position and velocity to describe each motion state. Also,

trajectory is deterministic so any state at any moment could be the initial

one. Actually the differential problem of dynamics is often called an initial

value problem. This is where Newton comes in and introduces acceleration

as the derivative of velocity: ~a = ~̇v and assigns the force as the agent of

interaction, all under the umbrella of differential equations.

But before that, mass is another important concept: it measures inertia

and interaction between particles. Mass times velocity gives momentum1:

~p = m~v, or the quantity of motion - that gets conserved under no external

forces. Newton’s form of equations of motion give us a law of the variation of

momentum when external forces are present. If considering the mass constant

and using acceleration we get a second order ordinary differential equation

(ODE):

~̇p = m~̈x = ~f(~x,~v, t). (3.1)

It is very important to note that the force ~f can depend on the position

1This quantity was called by earlier scholars impetus [Dug57] and identified as the
property that stays with a projectile and continues its motion, acting as a cause or agent
of movement.

24

3.2. LAGRANGE EQUATIONS OF MOTION

and/or the velocity which vary in time or even explicitly on time; it can even

be constant. So the difficulty arises in the general case when we need to

integrate any nonlinear function - this is why we need the numerical inte-

grators introduced in the next chapter. It is easier to do this if converting

to a first order system of ODEs. Before doing that we would like to change

the notation so that it encompasses all bodies in the system, so we denote

by lower case bold letters all vectors in RdN , where N is the number bodies

and d is the space dimension, usually 3 but didactic cases also include 2 and

1. In the end the first order equations that we will employ throughout this

thesis are:
d

dt

(
x

Mv

)
=

(
v

f(x,v, t)

)
, (3.2)

with x(t0) = x0 and v(t0) = v0 as initial conditions. This equation can

be even further condensed to ż = ϕ(z, t) with z(t0) = z0 in order to better

see the connection with the theory of ODEs and their numerical integration

[Str07, PTVF07, HNW87].

3.2 Lagrange equations of motion

The equations in the previous section are expressed in Cartesian coordinates

that describe the Euclidean space. They are often called maximal coordinates,

as bodies are considered free and then the forces between them are calculated.

Often, such forces come in pairs and do no work, keeping the bodies in

equilibrium, and thus they are called internal forces. These forces basically

impose constraints on the system and remove some of the degrees of freedom,

e.g. a box cannot fall through the ground.

The alternative procedure of Lagrange implies identifying from the start

the degrees of freedom of the system and is often called a reduced coor-

dinates formulation. Although reduced coordinates formulations can be ob-

tained without knowledge of the Euler-Lagrange equations (e.g. for kinematic

chains in robotics [Fea14]), we will deal here with the general framework of

Lagrangian dynamics. This is built upon the notion of energy that originated

from Leibniz rather than Newton and axiomatic principles of mechanics due

25

CHAPTER 3. EQUATIONS OF MOTION

to Maupertuis, d’Alembert, Gauss, Hamilton and others [Lan70].

These reduced coordinates are also known as generalized coordinates q ∈
Rn, where n is the number of degrees of freedom. They coincide with the

aggregated coordinates x from the previous section when motion is uncon-

strained and Cartesian coordinates are used. Generalized velocities are sim-

ply denoted as q̇. From a geometric point of view generalized coordinates

form the configuration space and their corresponding derivatives lie in the

tangent spaces to this manifold. The other mechanical vector quantities like

momentum and force have their generalized counterparts too.

Kinetic energy of a particle is T = mv2/2 and we can also define a

potential energy V such that the force acting on the particle is a gradient of

this potential, i.e. ~f = −∇V . Such forces are called conservative as their

work does not depend on the path taken (and they also conserve total energy

E = T + V). Many of the forces in mechanics (in fact all of them at the

fundamental level) are conservative, so most of the theory is built upon this

assumption2. Still, in Lagrangian dynamics there are always ways of adding

back dissipative forces. But for now let us limit ourselves to introducing the

Lagrangian function as the difference between the kinetic and the potential

energy3: L = T − V .

For a system of particles (and even in general) the kinetic energy has the

form T = 1
2
vTMv, where M is the positive-definite mass matrix4, and the

potential energy is a function only on positions V (x). These are more or less

the same in generalized coordinates. Then the Euler-Lagrange equations of

motion are:
d

dt

(
∂L
∂q̇

)
=
∂L
∂q

. (3.3)

There are different ways of obtaining these equations [GPS02, Lan70] but

in essence they are not far from Newton’s equations: we have a force term

on the right hand side and the time derivative of the generalized momentum

on the left. The real power of these equations comes from the fact that they

2We refer here mainly to Hamiltonian dynamics.
3One can work his way backward starting from the properties of the Lagrangian in

order to build it [LL60].
4It is also diagonal for particles, and predominantly diagonal in the rest of the cases.

26

3.3. ROTATION KINEMATICS

are equivalent to a more general extremum principle known as Hamilton’s

principle5. This states that for a finite motion over an interval in time a

certain integral quantity has to be stationary (either maximal or minimal)

among all other virtual trajectories possible; this quantity is called action

and it is the integral of the Lagrangian. The principle is written as:

extremize S =

∫ t2

t1

L(q, q̇, t)dt. (3.4)

Another way to view this is similar to calculus where a functions reaches a

stationary point when the derivative is zero. As the action is a functional (i.e.

integral of a function) a different field of mathematics evolved called calculus

of variations [Lan70] that gives us a similar condition: δS = 0. This is read

”the variation of S is zero” and it means the value of S is stationary on a

trajectory q(t) given infinitesimal variations of the coordinates δq around it,

also known as virtual displacements. More details can be found in text books

[GPS02]. The importance of Hamilton’s principle and its associated notions

may appear hard to grasp and many times unnecessary in the context of

dynamics simulation. But we will show in the next chapters how it makes a

powerful link between the foundations of mechanics and numerical methods

employed, especially the ones based on optimization.

3.3 Rotation kinematics

In order to be able to present the equations of motion corresponding to rigid

bodies we need to study in more depth rotations or orientations. The words

have basically the same mathematically meaning, although they may refer

to different things, i.e. a transformation or a property of the reference frame.

This is because rotations can be seen as either a change of the position of

a point in space or as a conversion of coordinates to a rotated frame of

reference.

Surprisingly, rotations bring most of the complexity to the dynamics of

5Also popular as the principle of minimum action (which is only partially true).

27

CHAPTER 3. EQUATIONS OF MOTION

rigid bodies and give birth to intricate mathematical constructs. There is

a broad literature on the representation of rotation (also called attitude in

some fields like aeronautics) [GPS02, Fin09, Mar03]. The most common

representation comes from linear algebra and is a 3 by 3 orthonormal matrix:

R ∈ R3×3,RTR = 13. Maybe the most important property of this matrix is

that it has only one real eigenvalue and its corresponding eigenvector is the

axis of rotation. This is basically Euler’s theorem of rotation which states

that any rotation can be represented as an angle and an axis of rotation.

Also, the determinant of R must be 1, otherwise we obtain what are called

improper rotations, i.e. transformations that also include reflections (that

change the handedness of the system). A useful note is that the columns of

R represent the axes (unit vectors or versors) of the reference frame; they

can also be called direction cosines. Rotating a point or transforming it to a

different frame of coordinates is done by multiplying a vector by the rotation

matrix: ~x′ = R~x. This is the same as doing a dot product with every column

vector6.

The kinematic equation in the rotation matrix representation is:

Ṙ = ~ω×R, (3.5)

where ~ω is the angular velocity (giving the instantaneous axis of rotation and

angular speed) and the × symbol means the skew-symmetric matrix associ-

ated with a vector [Bar97]. The product is basically the cross product of ~ω

with every column of R. Generally, the angular velocity cross product has

the meaning of a rotational time derivative. We will not deal with details

of deriving the concept of angular velocity here, as they are found in many

textbooks [GPS02, Fin09]. We want to note though that it is strongly con-

nected to the concept of infinitesimal rotation which is in turn an element of

a Lie algebra and the finite rotations are elements of a Lie group called the

special orthogonal group, i.e. R ∈ SO(3). These are subtle observations that

may not be needed in practice, but knowing them helps when working with

rotations.

6We assume basic vector operations like dot and cross product are familiar.

28

3.3. ROTATION KINEMATICS

Euler also showed that 3 is the minimum number of parameters that

describe a rotation - the Euler angles. These are the rotational degrees of

freedom. Surely 9 parameters in a rotation matrix are a large number of

parameters and they are redundant ones - the orthonormality constraints

must be maintained. Ideally, one would use only the 3 unconstrained Euler

angles in equations (kinematic and dynamics) and this is often the case in

mechanics courses. The downside of Euler angles is that they manifest sin-

gularities and gimbal lock [Han06]. There are also 12 different conventions

of Euler angles depending on the order of the rotations around which axes.

There exist other 3 valued vector representations of rotation: e.g. the Gibbs

or Rodrigues vector [Mar03].

Sets of 4 valued parameters have been devised to counter these singular-

ities7. Examples include Cayley-Klein parameters [GPS02] and quaternions:

ξ ∈ H. The latter are more relevant to us as they are used widely in dy-

namics simulation and we will be using them too throughout the thesis. The

constraint associated with the quaternions is that they remain of unit length:

‖ξ‖ = 1 (i.e. on the surface of the unit hypersphere S3). This may prove

daunting for designing a quaternion integrator (see Section 5.1) and so in the

future working directly with infinitesimal rotations may prove a better alter-

native. However, we will be dealing with this quaternion kinematic equation

mostly:

ξ̇ = 1
2
~ω ◦ ξ, (3.6)

where ◦ denotes quaternion multiplication (for details about quaternion alge-

bra see [Sho85]). A problem that arises is in defining the generalized positions

and velocities. Clearly there are 3 degrees of freedom, so the velocity has 3

components too, i.e. the angular velocity, but we now have 4 parameters for

generalized rotational position. The solution is to expand from (3.6) a lin-

ear application between generalized velocities and positions called kinematic

mapping and use it in all calculations: ξ̇ = 1
2
Gω where G ∈ R3×4,GTG = 1

[BETC14].

If a point is expressed in local coordinates ~r0 then its world position will

7To my humble understanding they can prevent singularities but not gimbal lock.

29

CHAPTER 3. EQUATIONS OF MOTION

be ~r = R~r0 or ~r = ξ ◦ ~r0 ◦ ξ∗, where * denotes quaternion conjugation. The

linear velocity of this point in world space is:

~̇r = ~ω × ~r. (3.7)

If the point belongs to a body that has both a translational and rotational

movement, the world position is then ~r = ~xCM + R~r0 and its world velocity

is:

~̇r = ~vCM + ~ω × ~r, (3.8)

where by CM we denote the center of mass.

3.4 Newton-Euler equations for rigid bodies

In order to be able to write the rigid body equations of motion we need

to introduce a few more physical quantities. The most important one is

the angular momentum, which as the name states is the analog of linear

momentum: ~L =
∑
~ri × mi~vi. Using equation (3.7) we can expand it to

~L =
∑
mi~ri×(~ωi×~ri) which in turn can be reformulated as a linear mapping

applied to the angular velocity: ~L = I~ω, with

I =
∑

mi(r
2
i 1− ~ri~rTi). (3.9)

The symmetric matrix I is called the inertia tensor and it is the analog of

mass for rotations. You can find more details about the inertia tensor, its

properties and transformation under rotation, as well as ways to compute it

for different shapes in Section 5.1 and the references [GPS02, Bar97].

The Newton-Euler equations in aggregated Cartesian coordinates are:

M̃v̇ = f(x,v), (3.10)

Iω̇ = τ − ω × Iω, (3.11)

where M̃ = diag(mi), τ is the external torque and the relationship between

linear and angular velocities (and corresponding generalized positions) is

30

3.5. CONTINUUM MECHANICS

given by the kinematic equations. The last term in (3.11) is the Coriolis

term and it is often left out in game physics engines; this is because it is a

nonlinear term (quadratic in velocities) and can become stiff and cause en-

ergy gain under explicit integration [Cou14]. We have not investigated this

issue in this thesis but it has to be kept in mind as it affects the conservation

of angular momentum.

3.5 Continuum mechanics

Continuum mechanics is a too broad field to be summarized here, but we will

do our best. The most important quantity to measure deformation is strain

which is analogous to relative spring elongation. In order to be able to define

strain we need to introduce the deformation field and its gradient. Thus for

every point in the original undeformed object ~r there corresponds a displaced

point ~x = φ(~r) = ~r+~u(~r), where u is the displacement. The gradient F = ∇φ
indicates the amount of deformation and also of accumulated elastic energy

[SB12]. Given that F is a linear mapping that approximates the deformation

locally it is natural to define strain as the deviation of the matrix from a

pure rotation [MSJT08], i.e. shearing and scaling. We measure this by seeing

how far off is F from being orthonormal and we obtain the Green-Lagrange

nonlinear strain:

εG = 1
2
(FTF− 1). (3.12)

To be more precise, strain is a rank 2 tensor (basically a 3 by 3 matrix)

which is also symmetric by equation (3.12). Nonlinearity is often discarded

by using the linearized Cauchy strain:

εC = 1
2
(F + FT)− 1, (3.13)

but this only works for small deformations.

Now that we know about strain, we can move on to the stress tensor

which is the analog of force. Together with strain they form an analog of

Hooke’s law:

σ = Cε, (3.14)

31

CHAPTER 3. EQUATIONS OF MOTION

where C is rank 4 symmetric tensor defining material properties. Due to sym-

metry both the strain and the stress can be turned into column vectors using

Voigt notation [MSJT08] and C becomes a 6 by 6 matrix: σ̃ = Cε̃. Also

given material isotropy the number of parameters describing elastic proper-

ties is two: the Young’s modulus E and the Poisson ratio ν (or alternatively

the Lamé coefficients). The stiffness matrix is then:

C =
E

(1 + ν)(1− 2ν)

1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν

,

(3.15)

where ν is between 0 and 0.5 and E has the dimension of pressure.

The equation (3.14) only holds for linear elasticity using Cauchy strain.

This is too limiting for computer graphics where we need to view large de-

formations. This is why we use the St. Vennant-Kirchoff model and the

Green-Lagrange strain. In this case the stress tensor (also called the first

Piola-Kirchoff tensor) becomes: σ = FCε. But the two formulations can be

unified by using a energy density formulation of the constitutive model:

Ψ(F(~x)) = εTCε. (3.16)

The total energy is the integral of Ψ over the whole volume domain and the

stress is σ = ∂Ψ
∂ε

. There are also other models for elastic continua like the

co-rotational model or the neo-Hookean one [SB12].

The equation of motion for continuous media is:

ρ
∂2~x

∂t2
= ∇ · σ + ~fext, (3.17)

where ρ is the material density, ∇· is the generalized divergence operator

and ~fext is the external force. Note that the position term is actually a

vector field, i.e. a function of both space and time ~x(~r, t), and this makes the

32

3.5. CONTINUUM MECHANICS

whole equation a partial differential equation (PDE). For more details you

can consult one of the textbooks [BW97, Bat06, ZTZT77].

33

Chapter 4

Time discretization

Time discretization means basically numerical integrators for ODEs. They

are the heart of a simulator as they are the only way of advancing trajectories

in time (by a given time step). Even without constraints they form an entire

field of study and lie at the foundation of many complex simulators used

in physics, chemistry and engineering. Integrators for PDEs are a whole

different subject and have many extra subtleties especially in the context of

finite differences (e.g. fluid simulations) and finite elements. We do not treat

them explicitly in this thesis as we rely on the fact that the finite element

method is basically a conversion to ODE [SSB13] and so we can use familiar

integrators.

In this chapter we briefly introduce some notions about numerical inte-

gration and introduce the implicit Euler integrator which is the workhorse

of this thesis. We mention the basic ideas of variational and symplectic inte-

grators and then introduce the minimization form of implicit Euler. In the

end we show how this minimization can be solved in a novel way using the

nonlinear conjugate gradient algorithm.

4.1 Numerical integration

There is an extensive literature on numerical integration of ODEs [HNW87,

PTVF07]. They usually apply to first order equations but as we have seen in

35

CHAPTER 4. TIME DISCRETIZATION

the previous chapter we can convert the second order equations of motion to

first order. Still, there are methods (like Verlet [Ver67]) that apply directly

to the second order equations.

We are usually interested in two properties of the integrators: accuracy

and stability. Accuracy is generally denoted by the order of the integrator,

meaning the power of the time step to which the error is proportional. In

this thesis we do not use order higher than two. Stability is a more delicate

issue and refers to keeping the error bounded over a long integration time.

There are two big classes of integrators: explicit and implicit, and only the

latter can guarantee unconditional stability.

In general a first order ODE has the form:

ẋ = f(x, t), x(t0) = x0. (4.1)

The numerical integration of this equation uses a time step h and has the

general form:

xl+1 = Λ(xl, f, h), (4.2)

where the super-script denotes the current simulation frame, i.e. l corre-

sponds to time tl = t0 + lh and usually t0 = 0. We only work with fixed time

step in this thesis, although there are many methods that can use variable

time step size and are even adaptive in order to further reduce the integration

error.

The difference between one-stage and multi-stage methods as well as ex-

plicit and implicit lies in the points where the derivative f is evaluated. One

stage explicit methods only need f(xl) while multi-stage methods require

more points (e.g. RK4 uses 4 points). Implicit methods evaluate f in xl+1 or

intermediary points between xl+1 and xl. The challenge of implicit integra-

tion is that equation (4.2) becomes implicit (the unknown appears on both

sides) and is most of the time nonlinear. Thus, implicit integration usually

involves solving a nonlinear equation with numerical schemes like Newton’s

method.

Stability is hard to describe in brief and so we refer the reader to a cou-

ple of references [Str07, WH91]. The main idea is that the variables of the

36

4.1. NUMERICAL INTEGRATION

system should remain bounded for all the period of integration; this should

be also true for the total energy in dynamics. This can only be achieved in

certain narrow domains of stability for explicit integrators, while implicit in-

tegrators are unconditionally stable for any time step size [Hau05]. Explicit

integrators gain energy and explode numerically and implicit integrators ar-

tificially dissipate energy. Currently there is ongoing research on developing

integrators that conserve as much as possible the energy and other quantities

despite the integration error (see Section 4.2).

Let us illustrate the some of these concepts with the very simple and

popular explicit Euler method:

xl+1 = xl + hf(xl). (4.3)

The local truncation error is given by the residue term in the Taylor series

approximation, i.e. the difference between the real solution and the computed

one. It is easy to see here that it is O(h2). The global error is the accumulated

local error over the number of steps and can be shown to be O(h). This is

what we usually call the integration error and it also gives the order of the

integrator (the higher the better). Explicit Euler is a first order integrator

so it has the worst possible error. There exist similarly complex integrators

of order two (e.g. Verlet, Leapfrog), but in general higher order integrators

are increasingly expensive. Among the traditional explicit integrators we

mention the Runge-Kutta family, e.g. RK2 or trapezoid, RK4 and so on.

The stability bound of explicit Euler is given by h < 1/ρ(G) where G

is the iteration or growth matrix, i.e. xl+1 = Gxl. The spectral radius

ρ(G) is usually in close connection to the highest frequency of the system.

Thus, if the highest mode of oscillation exceeds the by a constant factor the

”sampling” frequency of the time step, then the system will start gaining

energy for that mode and amplify its oscillations. Implicit Euler uses f(xl+1)

instead and this implies that energy will always decrease down to zero no

matter what time step is used. As a note, the amount of dissipation for im-

plicit Euler is proportional to the time step size. The unconditional stability

property of implicit Euler makes it a very popular integrator in computer

37

CHAPTER 4. TIME DISCRETIZATION

graphics [BW98, MSJT08]. It allows for quite large time steps compared to

explicit integrators and it is efficient despite its bigger cost. Also, the artificial

damping property is seen by many as a helpful feature as most phenomena

in nature have some form of dissipation. This is especially convenient in

computer graphics where experimental validation is not required.

As we will see, implicit Euler (or Backward Euler) is the integrator of

choice in our thesis too. You may be surprised by the very low order of

the integrator, but in computer graphics it is quite common to trade accu-

racy for speed whilst the simulation remains robust. Also, nonsmooth time

stepping integrators cannot exceed first order accuracy [KP12]. Still, one

can use if desired more complex implicit integrators: BDF-2 [CK02, EB08]

(and other multi-step backward difference methods), Newmark [KMOW99,

SSB13], Crank-Nicolson/Implicit Midpoint [Str07, Lac07], HHT (Hilber -

Hughes - Taylor) or generalized α.

The equations of motion (3.2) can be discretized using the Backward

Euler integrator in the following way (among others):

M∆v = hf(x0 + ∆x), (4.4)

∆x = h∆v, (4.5)

where ∆v = vl+1 − vl and x0 is an initial point such that xl+1 = x0 + ∆x.

4.2 Variational and symplectic integrators

The subject of variational or geometric or symplectic integration is cur-

rently under development by mathematicians. The three words have al-

most similar meaning and originate from properties of analytical mechanics:

the variational principles of mechanics [Lan70], the geometric view on me-

chanics [HLW06] and the symplectic property of Hamiltonian phase space

[Arn13, LR04]. In a nutshell, variational integration starts from the very

basic principles of mechanics and develops a subset of integrators that fit

with the nature of dynamical systems. The main goal is to conserve energy

and momentum as much as possible irrespective of the integrator order. And

38

4.3. INTEGRATION AS MINIMIZATION

this is achieved best by so-called symplectic integrators that preserve struc-

ture over the phase space flow. Simple examples include (Størmer-)Verlet,

Symplectic Euler, Leapfrog [HLW03] and others. There are also integrators

that can achieve full energy conservation like Implicit Midpoint but still this

is very hard to achieve in practice and may require a variable time step

[Str07, Lac07].

For a detailed treatment see the subject of discrete mechanics developed

among others by Marsden and his collaborators [MW01], the monograph of

Hairer and Wanner [HLW06] or the thesis of Lacoursière [Lac07]. We are

not giving too much detail here as variational integrators are not our main

work horse. We use them though for two goals. The first one is to show

that implicit Euler can be replaced by the similar Newmark scheme (which

is variational [KMOW99]), thus reducing the amount of artificial dissipation.

The second goal is to show the variational origins of the minimization struc-

ture of integrators and constraint solvers. Hamilton’s principle thus gives us

the base idea for extremizing a certain quantity (i.e. the Lagrangian) and

discrete mechanics makes the connection to the time step slice where we need

to minimize the sum of kinetic energy and potential energy.

4.3 Integration as minimization

Relatively recently the Implicit Euler integrator was recast as a minimization

problem [LBOK13, BML+14, MTGG11]:

minimize 1
2
(vl+1)TMvl+1 + V (xl+1). (4.6)

It can also be expressed in terms of positions or displacements (as it is done

in the references) if making use of equation (4.5). We will do this and go

in more detail about using this integrator when switching to constrained

systems (Section 6.5). However, at this point we can introduce our first

contribution, which is to apply a nonlinear minimization algorithm directly

on (4.6) instead of solving the nonlinear optimality conditions with New-

ton’s method [PTVF07] or in a linearly implicit fashion as it was customary

39

CHAPTER 4. TIME DISCRETIZATION

[BW98]. We used a Nonlinear Conjugate Gradient (NCG) algorithm [She94]

and found that we could ignore the second derivative of the potential in a

stable and accurate manner.

We now present a derivation of the algorithm that can also be found in

Section 3 of [FM15a]. Not all the concepts for understanding it have been

introduced but nevertheless the reader can come back later to it. For more

details about modeling cloth to which this solver is applied to see Section

5.4. Also, most of the theory here is more related to the implicit integration

of stiff elastic systems that is found in a big part of the simulation literature

[BW98, Hau05], but not so much in constrained dynamics (the focus of this

thesis). We will draw more parallels between the two approaches in the

following chapters (see Section 6.8 for example).

Let us introduce first the linear elastic force f = −κc(x)∇c(x) = −∇V ,

where c(x) is the elongation in the springs (or constraint function) and κ

is the stiffness value. If we consider the initial candidate state consisting of

ṽ = v(n) + hfext and x̃ = x(n) + hṽ we can rewrite (4.4) using a first order

Taylor expansion around x̃:

Mδv = h (f(x̃) + Kδx) , (4.7)

where K = ∇xf = −∂2V
∂x2 is the tangential stiffness matrix and δx = hδv.

Most authors choose to solve the implicit integration problem using only one

Newton step, meaning we only need to solve one single linear system: Sδv =

t. This works well in practice, but only if K contains second derivatives

of the constraint function. This is because these terms contain information

about the change of the constraint direction, so without them we need an

iterative algorithm that keeps updating the constraint gradient. By dropping

the second derivative term from K (see [BW98]) we get:

K = −κJTJ, (4.8)

where J is the Jacobian of the constraint function. This is equivalent to

linearizing the elastic force as in [EB08]. Using this formula at every Newton

40

4.3. INTEGRATION AS MINIMIZATION

iteration we get the series of linear systems we need to solve:

(M + h2κJTk Jk)δvk+1 = hf(xk), (4.9)

where JTk = ∇c(xk) and xk+1 = xk + hδvk+1.

NCG is a natural solution for solving the above problem, given its linear

version is very popular for solving the one Newton step approach. The only

change we need to make to linear CG is to replace the system matrix at every

step with Si = M + h2κJTi Ji (the Hessian of the objective function) and the

residual with ri = hf(xi). We use a Fletcher-Reeves formula and perform

the inner line search in only one iteration - see Algorithm 1.

Algorithm 1 NCG implicit solver

Unconstrained step to x̃, ṽ
Compute Jacobian J and forces f
Compute residual r = d = hf and its square δ = r2

for iter = 1:maxIter do
Compute q = Sd = (M + h2kJTJ)d
Compute impulse p = αd, where α = δ/qTd
Integrate: v← v + p, x← x + hp
Recompute Jacobian J and forces f
Compute residual r = hf and its square δ′ = r2

Compute β = δ′/δ and then δ′ ← δ
Compute new search direction d = r + βd

end for

Note that the NCG method is not necessarily faster than traditional CG

linear implicit solvers (we found that it takes roughly 40% more time without

optimizations). We can also add back the second derivative term if we want.

Also, visually there is no big difference between the two methods. Even in

terms of energy behavior NCG is very similar to both PBD and implicit

methods (Figure 4.1). The only advantages you would get with the NCG

method are smaller spring elongations and more stability for large time steps.

But the main reason for devising the scheme is the similarity to PBD which

we exploit later in the thesis.

41

CHAPTER 4. TIME DISCRETIZATION

-50

-40

-30

-20

-10

0

10

20

1 101 201 301 401 501

En
e

rg
y

Frame number

Exact

CG

NCG

PBD

Figure 4.1: The energy evolution over 500 frames of a 15×15 piece of cloth
using NCG (green), PBD (purple) and CG (red) and exact (blue) linearly
implicit solvers.

42

Chapter 5

Material models

This chapter is in fact about space discretization. If this concept does not

apply so much to particles and rigid bodies, this is not the case for deformable

bodies where the choice of discretization makes a world of difference between

different methods and simulation results. Even for rigid bodies we need to

represent the surface geometry for collision detection, and this is often done

with meshes, even if many times they can be approximated by analytical

surfaces. The chapter presents itself more as a survey of previous work and

no essentially new things are introduced, but it is needed as a prerequisite

for understanding the next chapters and the overall results of this thesis. We

also insert where relevant snapshots of some of our own simulations.

5.1 Rigid bodies

Rigid bodies are large solid objects (much larger than a particle) that have

shape and a distribution of mass. As already described in Chapter 3 a rigid

body has 6 degrees of freedom: 3 for translation and 3 for rotation. In

practice we can use somewhere between 6 and 12 parameters to describe the

generalized position of a rigid body. This is still a small footprint compared to

a deformable body where many points can move relatively (and not in a rigid

transformation) and this is why rigid bodies are so attractive in interactive

or large-scale simulations.

43

CHAPTER 5. MATERIAL MODELS

The Newton-Euler equations of motion for rigid bodies were presented in

Section 3.4 and we are using a quaternion representation of rotations. We

now have to provide an integrator for the quaternions and we present two

options (both implicit in the velocities):

ξl+1 = ξl + h
2
(ξl ◦ ~ωl+1), (5.1)

followed by a renormalization of the quaternion, or

ξl+1 = ξl ◦ e(0,
h
2
~ωl+1), (5.2)

as described in Section 2.1 of [TA11].

We have introduced the inertia tensor in Section 3.4 without much de-

tail. In the case of continuous materials (e.g. rigid bodies) the sum in the

definition of the inertia tensor (3.9) becomes an integral [Bar97]. Usually the

inertia matrix of rigid bodies used in numerical implementations are com-

puted from analytical formulas of geometric primitives and compositions of

several such matrices (through the relation between moments of inertia about

parallel axes) [GPS02]. The resulting matrix is stored in the local body frame

as Ib and then transformed to world space using the formula I = RIbR
T (the

same is true for the inverse matrix). Another option is to diagonalize the

matrix and obtain the principal inertia directions from the eigenvectors and

use these as the initial local frame.

The resulting mass matrix for a rigid body has the form:

Mj =

[
mj1 0

0 I

]
. (5.3)

The total mass matrix of a rigid body system is a block diagonal matrix

M = diag(Mj). But it can also be made out of mass matrices of both rigid

bodies and particles (or FEM nodes). In practice we use the inverse of the

mass and of the inertia tensor instead. This is because an immovable object

has infinite mass and inertia moments; thus it easier to store zero instead and

makes the calculations simpler. Also, storing the inertia tensor as a diagonal

44

5.1. RIGID BODIES

matrix makes computing its inverse easier.

Even if we do not introduce yet formally the concept of constraint, it

is natural to understand what it means and how it describes interactions

between rigid bodies. Most often bodies are articulated using joints: trans-

lational or rotational joints, which remove a certain number of degrees of

freedom. Most popular joints are [Smi06, Mir96]:

• prismatic or slider - allows only one dimensional translation;

• spherical or ball-and-socket - allows rotation, but not translation;

• revolute or hinge - has only one rotational degree a freedom (around a

given axis);

• universal or Cardan - two rotational degrees of freedom left.

The rotational joints can also have angle limits. For an example of simulation

of bodies articulated using ball-and-socket joints see Figure 5.1.

Figure 5.1: Hierarchy of articulated rigid bodies with spherical joints.

45

CHAPTER 5. MATERIAL MODELS

Another type of interaction between rigid bodies is contact, also known as

collision or impact. We will give a different meaning to each of these words.

By contact we will mean a type of constraint that prevents bodies from inter-

penetrating (especially when they are resting on top of each other). Contact

is mostly persistent, manifesting friction in the tangential plane (stick), but

it can also break (slip). Collision is a word that we will reserve mostly for

the phase of collision detection, as it has caught on in time and it refers to

testing for intersection between objects and obtaining contact information.

Impact refers almost exclusively to high speed collisions that usually result

in the objects moving apart immediately after (i.e. elastic or partly elastic

impacts). Fully inelastic impacts are better handled by contact constraint

approaches as penetration causes unforeseen problems. Impacts are generally

governed by impact laws which are expressed in terms of velocities. There

are two famous impact laws: Newton - where the outbound normal velocity

is a fraction of the inbound one and Poisson - which splits the impact in

two phases (compression and expansion) and there is a ratio between the

two corresponding impulses. Simultaneous impacts of more than two bodies

are more difficult to analyze and the aforementioned impact laws can lead

to energy increase. This is why new impact laws have been derived and also

there is ongoing work on better accommodating reflections into the constraint

framework [Ste00, SKV+12].

The problem of contact is more general than the context of rigid bodies

as it also encompasses the rest of bodies presented in this chapter. This is

why we dedicate the entire Chapter 7 to it. We just want to briefly mention

now that there are two main approaches when dealing with contact in com-

putational mechanics: the penalty approach and the Lagrange multipliers

approach. Both approaches can be found in relatively old works, although

we are not sure when they first appeared. We can say at least that the

penalty approach started with the work of Hertz (1882). It is unclear though

when Lagrange multipliers were first used for unilateral constraints. Even

the names suggest that from the start professionals realized that these were

just two ways of solving a constrained optimization or variational problem

[WL06]. We are going to use this argument to show that the methods are not

46

5.2. ELASTICITY

so different from each other, even if they have grown quite separate over the

decades. Another tricky issue is that of Coulomb friction which exhibits a

lot of problems: e.g. stick-slip transitions, normal-tangential force coupling.

This becomes especially apparent in constraint formulations is spite of the

simple friction laws. Again, all of these will be handled in a nonsmooth dy-

namics setting in Chapter 7. As a preview, see in Figure 5.2 a simulation of

rigid boxes piling up using our new position based solver.

Figure 5.2: Boxes falling on ground solved with position projection.

5.2 Elasticity

In this section we address elastic materials. Bodies made of such materials

are called (at least in our context) deformable, flexible or soft bodies. There

are many ways to model deformable bodies and they all involve some kind

of approximate spatial discretization. Just like in the case of integration in

time, the accuracy depends on the size of the discretization resolution.

One of the most popular methods of discretization used in computer

graphics consists of particle systems interconnected by linear springs or other

forces. This approach is at the heart of our cloth simulations as they have

47

CHAPTER 5. MATERIAL MODELS

been widely used in the past and have proven very effective. Unfortunately

they are not the most accurate or physically correct. But they are quite

close and look very plausible. In the next three sections we will present

mass-spring approaches for threads, cloth and volumetric soft bodies.

The other two popular approaches to modeling elastic bodies are finite

differences and finite element. There exist others too, like finite volume,

boundary element, mesh-free methods but they were not studied here.

5.3 Threads

Threads are most often modeled as a chain of particles connected through

springs. These springs can be either integrated implicitly or treated as hard

links in a constraint approach. More complex models involve articulated

bodies [Had06], Cosserat theory [Pai02], supper-helices [BAC+06] and nons-

mooth dynamics [BDCDA11]. In addition, threads need modeling of torsion

[KPGF07, Had06, CC13].

The mass-springs model derivation for threads is actually the same road

that was taken to derive the string vibration equation but in reverse. We

show now how starting from the wave equation can explain the choice of the

particle mass and of the spring stiffness:

∂2u

∂t2
= c2∂u

∂x
, (5.4)

where u is the transversal displacement (longitudinal waves are similar) and

c is the wave propagation speed. One can inspect any derivation of this

equation (for example the Wikipedia page) and notice that it starts from a

chain of N particles of mass m and springs of constant k (see Figure 5.3). The

total mass then corresponds to M = Nm and the total stiffness to K = k/N

so that in the end we get c2 = KL2/M = E/ρ, where L = N∆x is the string

length, E is Young’s modulus and ρ is density. It follows that the particle

mass and the spring constant need to be tuned according to the number of

particles in order to get the same behavior of the discretization. This mass-

spring view can also be seen as a finite difference approach to solving the PDE

48

5.4. CLOTH

m m m mk k

N
Figure 5.3: Mass-spring approximation of a vibrating string.

in (5.4) [Str07]. Although in two or three dimensions springs no longer suffice

and need to be replaced by stress-strain relations, this is a good analogy to

keep in mind for the remaining of the thesis, especially when working with

deformable bodies modeled as mass-spring systems.

In computer graphics applications of threads involve mainly simulation of

hair [HH12, KTS+14]. Other applications include surgical threads (involving

suturing and knots) or even plain ropes in VFX or games [Kny10].

5.4 Cloth

Cloth is a generic name we give in computer graphics to thin surfaces or shells

or membranes with applications mainly in garment simulation. There is a

whole branch of study in mechanical engineering about this type of objects

[Bat06], but we are not entering this kind of detail. We focus mainly on the

mass-spring approximation and at the end offer an accurate alternative using

FEM.

As you can see in Figure 5.4 there are mainly 3 types of springs or links

inside cloth. The stretch links are structural as they hold the fabric together

and also determine its extension and compression properties, i.e. its tensile

strength. Many authors prefer to model these springs as bi-phasic (different

stiffness over a certain deformation), make them behave differently at com-

pression (e.g. very low or no compression resistance) or use nonlinear forces

[BHW94]. Shear links have the role of preventing skewing in the plane of the

cloth; they are only an approximation of shear stresses that arise in contin-

uous materials. Bending links join more distant neighbors and, as the name

49

CHAPTER 5. MATERIAL MODELS

Figure 5.4: Links structure of cloth relative to one particle (white one in the
center): stretch links (red), shear links (blue), bend links (green).

says, they prevent bending of the cloth (out of plane deformation). Bending

links can be replaced by other type of deformation functions (e.g. dihedral

angle [BW98, MHHR07], curvature [KNE10]) or potentials [BWH+06].

Cloth materials are usually very resistant to stretching and slightly less

to shearing. The most freedom a fabric has is for out-of-plane movement, i.e.

bending. Thus an accurate bending model is important for replicating real

cloth. Other phenomena like anisotropy, hysteresis, plasticity, damping and

viscosity are also important for cloth modeling [VMT00], but each introduces

further complexity and performance issues. Also, depending on the model

chosen, it is not trivial to set the parameters of cloth so that they match

a real material (e.g. silk, denim, linen, cotton, polyester): some have to be

chosen from measured parameters, some by hand and some from pre-stored

presets that can be modified.

There are two ways of building a cloth simulation mesh. The first one is to

start from a rectangular grid of points and set the existing edges as structural

springs. Next the shear links are chosen as the diagonals of the quads and

the bending links connect particles over two edges (skipping the particle

50

5.4. CLOTH

Figure 5.5: 100×100 piece of cloth hanging from corners and falling over a
sphere; simulated in real time at 60 Hz using the conjugate residuals solver.

in the middle). The result is similar to Figure 5.4 for each particle; see our

simulation of such a piece of cloth in action in Figure 5.5. The second method

is to start from a given triangle mesh. However, this mesh should be manifold,

non-degenerate and somewhat homogeneous (i.e. equally sized triangles).

This time there is no difference between stretching and shearing springs,

only bending ones can be constructed by connecting second order neighbors

(over two edges). Using rigid links with triangle meshes usually leads to

locking artifacts (the removal of too many degrees of freedom) which can

be alleviated in two ways: by softening the constraints [MHHR07, FM15a],

by using a continuous approach [BW98, MCKM14] or through conforming

meshes [EB08]. You can see a couple of our simulations using triangular

meshes and soft constraints in Figure 5.6.

Even though cloth was simulated in the past using finite differences, the

most popular way of modeling cloth accurately nowadays is the finite ele-

ment method [VMTF09, TWS07]. The continuum formulation in [BW98]

is actually a particular case of the finite element method. The three con-

straints correspond to the strain components εuu, εvv and εuv that make up

the planar symmetric Green-Lagrange strain tensor:

ε(x) = 1
2
(∇w∇wT − 1), (5.5)

where w : R2 → R3 is a mapping from an undeformed mesh parametrization

(u, v coordinates) to deformed vertex positions (corresponding in 3D to the

deformation function φ in Section 3.5). Then the actual components of the

51

CHAPTER 5. MATERIAL MODELS

(a) (b)

Figure 5.6: Simulation of (a) a cloth model consisting of 6910 vertices and
13674 triangles using soft constraints and (b) a garment exported from Mar-
velous Designer and rendered in OGRE.

2×2 strain matrix are:

εuu = 1
2
(wT

uwu − 1), (5.6)

εvv = 1
2
(wT

v wv − 1), (5.7)

εuv = εvu = wT
uwv, (5.8)

where by the subscript of w we signify partial derivation with respect to to

u and v. By considering strain constant over a triangle (linear FEM) we can

derive simple formulas for wu and wv like in [BW98] or [VMTF09].

The integral of the strain energy over a triangle is (see Section 3.5):

Vfem = a
2
ε̂(x)TC2Dε̂(x), (5.9)

where a is the area of the triangle, ε̂ = (εuu, εvv, εuv) and C2D is a matrix that

depends on the Young modulus E and the Poisson ratio ν (or equivalently on

52

5.4. CLOTH

Figure 5.7: Two snapshots of a side by side real-time simulation of two 40×40
cloth pieces with the same Young’s modulus E: regularized FEM constraints
(left) and soft links (right); superimposed in purple is the strain map. FEM
offers more realistic folds and the strain is better distributed throughout the
cloth.

the Lamé coefficients) like the one given in [VMTF09] or [TWS07]. Note that

the former reference expresses isotropic elasticity while the latter expresses

orthotropic elasticity, i.e. different stiffness along warp and weft directions.

We used the above formulation to implement a constraint based FEM

solver for cloth using the regularization framework that we will introduce in

Section 6.11. You can find more details in [FM15a] and an illustration of our

method in Figure 5.7.

In practice one has to make a trade-off between accuracy and speed,

depending on the computing power available. Another factor that impacts

both performance and realism is tessellation: coarser simulation meshes run

faster but produce less folding and wrinkles. Such high frequency details can

be added after the simulation in a plausible fashion [KGBS11]. There also

exist adaptive tessellation techniques [NSO12] that refine the simulation mesh

depending on the current level of detail, visible parts etc. Other methods

involve ”cheating”: the simulation is pre-computed in all sorts of possible

ways that the avatar could move and the new poses and animations are

interpolated [KKN+13].

53

CHAPTER 5. MATERIAL MODELS

5.5 Virtual try on for clothes

In [FM15b] we also studied the various aspects of creating a virtual fitting

room for clothes. The technologies needed for a virtual try on (VTO) system

overlap a lot those required by CAD software for designing apparel [LZY10].

Some of the companies that have developed such CAD systems include Opti-

tex, Lectra (Modaris), Toray-Acs, Gerber (AccuMark), Investronics, Assyst-

Bullmer, DressingSim. Another example is the software Marvelous Designer

from CLO Virtual Fashion, which is used both in the textile industry and in

entertainment.

The most well-known and documented experiments with VTO are those

of MiraLab in Switzerland [MTKV+11, MT10]. They identify three most

important modules of such a system: a body sizing module, a motion re-

targeting module and a cloth simulation module. The garments are always

considered available in their studies from sewing together 2D patterns around

a body, just like in CAD systems.

At the moment there are no working virtual try on systems available

on the market but there has been ongoing work for more than a decade by

companies and academia. For example, HumanSolutions participated in such

a project with several German universities [DTE+04]. Other startups in the

field include PhiSix, TriMirror, Fitiquette, 3D-a-porter and possibly others.

From our standpoint there are a few key challenges that are very similar

but not always to those outlined by the references from MiraLab:

• avatar creation - can be done through parametric interpolation via a

UI, but scanning and photos could still be alternative sources;

• avatar animation - can be created by hand, from motion capture and

there is also the option of real-time skeletal data from a Kinect like

device (”virtual mirror”);

• garment acquisition - we cannot always rely on patterns so we need to

be able to reconstruct the model from existing physical clothes;

• cloth simulation - this is the main performance bottleneck (especially

54

5.5. VIRTUAL TRY ON FOR CLOTHES

on the collision detection side); ideally it has to be both realistic and

run in real time (a middle ground has to be reached);

• rendering - this is preferably done in web browsers (WebGL) and on

mobile (OpenGL ES); using an existing engine is recommended;

• cloud processing - this is a possible solution for offloading some of the

simulation computation; challenges include geometry or video stream-

ing and interaction lag.

There exist four major ways of 3D reconstructing the body: from laser

scans, from structured light, from depth cameras and from photos. The

most accurate body reconstruction involves laser scanning and many times

it is not fully automated, requiring some human input [LZY10]. Another

alternative is the TC2 body scanner using structured light (i.e. bands or

other patterns of light that get deformed when projected on surfaces). Depth

cameras have been used in the recent years for scanning and reconstructing

objects. Commercial software for Kinect based reconstruction also exists, e.g.

Skanect (Occipital) or MyBodee (Styku). Bodymetrics offers a reconstruction

booth for in-shop use. Reconstruction from images is also possible, e.g. from

4 orthogonal directions photos. This is similar to the general purpose method

provided by Autodesk 123D Catch. Other similar stereo computer vision

based reconstruction software packages include Agisoft PhotoScan, Pix4D or

VisualSFM.

For reconstructing clothes again laser scanning is the best choice, but

depth cameras can be used too. Recently methods using photogrammetry

and light fields have given good results; structure from motion (videogram-

metry) is also possible. One preferred method for reconstructing deformable

surfaces from multi-view photography is the one in [BBH08]. Capturing mov-

ing cloth techniques are described in [BPS+08] and [WCF07]. The former

needs no markers, uses 16 viewpoints, but needs to fill holes. The latter needs

a color pattern on the cloth and uses multiple synchronized video cameras

too.

The type of the material is also important for the look of the simulation.

One needs to make the difference between linen, fleece, satin, knit, silk, denim

55

CHAPTER 5. MATERIAL MODELS

etc. The material parameters can be obtained through direct mechanical

testing of the fabric, e.g. the Kawabata Evaluation System (KES) [MT10].

A more advanced method that uses both mechanical testing and 3D cloth

surface reconstruction was developed recently [MBT+12]. Others have tried

to deduce these parameters from video sequences (see [BTH+03] or more

recently [KNM10]).

5.6 Deformable bodies

In computer graphics there are many ways in which deformable bodies can be

”tricked”. We leave aside animation techniques and focus only on dynamics

simulation, but even then one can use mass-springs lattices, cloth balloons,

shape matching, example based deformation and the list can continue. In

engineering on the other hand, where accuracy is important, the state of the

art method is FEM. This is why we are also focusing in this thesis on this

method only. Our goal is to show that we can use it inside our constraint

framework and we can make it as accurate as needed. FEM is actually

already used quite a lot in VFX in products like the DMM plugin (especially

for fracture [PO09]) or Houdini.

We are not giving the details of the method in this chapter but rather

focus on the geometric side of the modeling. For FEM we need volumetric

meshes (that unlike surface meshes have point inside too) and for this thesis

we used tetrahedral meshes (also called tet-meshes). One could also use other

types of elements like boxes (hexahedral meshes) [SSB13] or more exotic

shapes. In order to obtain such a mesh one usually generates it from a

closed surface mesh [BP97]. For this you need to use an utility like TetGen

or NetGen and make sure first that your mesh is manifold, non-degenerate,

uniform, has no holes. Also you have to pay attention to the tessellation

level, i.e. the number of resulting tetrahedra, as they are computationally

costly. In our experiments we have only used on the order of hundreds of

elements (see Figure 5.8).

56

5.7. FLUIDS

Figure 5.8: Flexible cow falling on ground.

5.7 Fluids

Fluids make up a special category of study in simulation. In engineering

the field is called computational fluid dynamics (CFD) and it usually entails

very complex and accurate methods. In computer graphics fluid simulation is

also very popular and is used for a lot of special effects (VFX) and computer

generated imagery (CGI). We are not dealing with fluid simulation in this

thesis but we foresee ways of incorporating it in the future. This is why we

give a short overview of the existing methods and point to those that are

most suitable for integration with a constraint based system.

All fluid dynamics is governed by the Navier-Stokes equations:

D~v

Dt
=
∂~v

∂t
+∇ · ~v =

∇p
ρ

+ η∇2~v. (5.10)

Together with the incompressibility condition they form the Euler equations:

∇ · ~v = 0. (5.11)

We will not get into the details of this PDE as we are not using it in the rest

57

CHAPTER 5. MATERIAL MODELS

of the thesis. Still, we added it to show how similar it is to the continuous

media equation (3.17). This is also the reason why many flexible materials

are simulated using a very viscous fluid approach.

There are two main views in fluid simulation: Eulerian and Lagrangian.

The Eulerian or grid-based view is the oldest and most widespread; it is based

on the notion of field, where every quantity (scalar or vector) is a function of

both space and time. Many now famous methods of fluid simulation are based

on grid quantization of this fields and finite difference approximations The

Lagrangian view on the other side tracks the particles of matter as they move

and thus velocity is no longer a field and mass is automatically conserved.

The most popular Lagrangian method is smoothed particle hydrodynamics

(SPH). There exist also hybrid methods like semi-Lagrangian advection or

the PIC/FLIP method [Bri15].

The standard SPH method has been extended in the recent years to

an implicit version with better incompressibility. Two of these methods,

constraint fluids [BLS12] and position based fluids are strongly connected to

the formalism of constrained dynamics. This is because the incompressibility

equation can be treated as a constraint for every cell with pressure being

the associated Lagrange multiplier. We think that the PBF simulations in

[MMCK14] are the best examples of how fluids can be coupled in the same

solver with other position-based methods including the ones presented in

this thesis. More recently grid based simulations were also formulated as an

optimization problem (with pressure as the Lagrange multiplier) [Bri14].

5.8 Granular matter

Granular matter is a material with very curious properties as it sometimes

behaves like a solid and other times like a fluid [JNB96]. For example, due

to static friction piles of grains maintain their shape, but if the angle of

repose is reached avalanches can be triggered. For similar reasons sand in an

hourglass flows at a steady rate as the pressure does not increase indefinitely

with height as in the case of hidrostatic pressure.

Granular flows are particularly suited for simulation with small rigid bod-

58

5.9. COLLISION DETECTION

ies or particles in contact with friction. The size of particle granules can reach

millimeters which is much larger than the atomic scales, so molecular dy-

namics simulations are infeasible here. Contact can be handled in two ways:

the discrete element method (DEM) [BYM05], which is basically Hertzian

contact theory, and complementarity approaches (including nonsmooth dy-

namics). Fluid dynamics approaches to sand simulation include grid based

methods and SPH [ATO09]. The former can be extended to handle even

more complex materials like snow [SSC+13].

You can see some simulations we did of granular matters using particles

and position based dynamics in Figure 5.9. Also, you can find some of our

first results in coupling rigid and deformable bodies (i.e. particles vs cloth)

in Figure 5.10.

5.9 Collision detection

Collision detection is the process that identifies if geometrical objects overlap.

It is a whole topic of research on its own. We have not focused on bringing

contributions to it but did find ourselves choosing between different available

methods as they affect the resulting simulation greatly. In what follows we

give a short overview of collision detection techniques in order to introduce

the reader to the terminology that will be used throughout the thesis. A

good reference on collision detection is the book by Ericson [Eri04].

There are two important types of collision detection: discrete and contin-

uous (CCD). The former is usually implied and it is most used as it is easier

to implement. Even without the added complexity of CCD, the discrete case

has many problems of its own, especially in terms of accelerating it. Discrete

means that the penetration tests are done at instants of time and continuous

implies that the time of impact is identified precisely in between two mo-

ments in time. CCD was developed mainly to prevent bullet through paper

(or tunneling) artifacts when collisions are missed due to high speeds. Event

based simulation systems may bear similarity with CCD, but in this case the

simulation is not necessarily rolled back and we are only interested to catch

the intersection before or when it happens. This is why CCD is mainly used

59

CHAPTER 5. MATERIAL MODELS

for self-intersection tests for cloth where it is very hard to tell locally which

side is the correct one and there is no notion of body interior. Usually CCD

techniques rely on linear sweeping of particles and shapes [Sta09, BFA02]

which involve high degree polynomial equations and a lot more computa-

tional complexity. Rigid body CCD is even more complex because of the

screw motion. We will talk again about CCD in Chapter 8.

Collision detection has three stages: broadphase, midphase and narrow-

phase. Broadphase is the stage when only potential collision candidates are

identified based on simple bounding volume tests. These volumes are usually

axis aligned bounding boxes (AABB) and one of the most popular methods

used for broadphase is sweep and prune (SAP) [Erl05]. Midphase is op-

tional and it usually means testing two large composite objects against one

another. They usually imply using bounding volume hierarchies (BVH) for

each body and doing tree traversals in order to do the overlap tests. Fi-

nally, narrowphase means doing the exact test between two relatively simple

objects. Such objects usually are primitives like boxes, spheres, cylinders,

capsules, triangles or convex polyhedra.

Collision detection for deformable bodies is more delicate than for rigid

bodies for many reasons [TKH+05]: we cannot approximate the body with

primitives, the BVH needs to be reconstructed for midphase, most models

are modeled as triangle meshes and we need to account for self collisions

too (see Figure 5.11). Collisions between triangular meshes is a hard aspect

for any type of simulation as this popular piecewise linear discretization of

geometry implies a lot of approximations and potential erroneous results.

In practice a lot of spurious contact normals appear and also the resulting

contact manifolds need to be filtered and reduced. Our view is that at the

moment triangle vs triangle mesh collisions are sort of a black art rather

than an established technology. Also, there is the unaddressed issue of the

correctness of the contact points and normals and how they affect the sim-

ulation. Another unanswered question is how to handle contact patches in

contrast to isolate contact point in constraint based nonsmooth dynamics.

Or what about the volume of intersection which can be handled by penalty

methods? Unfortunately these topics are not addressed in this thesis but

60

5.9. COLLISION DETECTION

only mentioned as practical and future challenges. We end this section by

mentioning an alternative technique that we have never used: signed distance

fields (SDF), which might solve some of the above problems but we fear it

may suffer from different problems, like high memory usage.

61

CHAPTER 5. MATERIAL MODELS

(a) Bunny (b) City

(c) Hopper (d) Hourglass

Figure 5.9: Granular matter falling over or trough various meshes.

62

5.9. COLLISION DETECTION

Figure 5.10: Simulation of 1000 particles falling on a 20×20 piece of cloth
fixed at its corners (using the Sequential Positions method).

Figure 5.11: Handling of cloth-mesh collisions and self collision.

63

Chapter 6

Constrained dynamics

We are now starting to get at the heart of the thesis. Constraints are the

stiffness limit of strong elastic forces. The method of choice for solving con-

straints is that of Lagrange multipliers even though it is only one side of

the coin, penalty forces being the other one. We will give an extensive cov-

erage of constraint based dynamics used in practice in order to familiarize

ourselves with concepts that are often left out of textbooks (e.g. differential

algebraic equations or inequality constraints). Note that our description of

these mathematical tools is not thorough and many details are left out in

favor of a more unifying view of current techniques.

In the end we focus mostly on solvers that are more in vein to nonsmooth

or impulse based dynamics. We also go a step further by working directly at

position level where we present our contributions. Note that results in this

chapter are presented mainly for particle systems with bilateral constraints,

although they can be extended to rigid bodies and frictionless contact too.

6.1 Constraints

We left the description of constraints for this chapter although we could have

done it when describing the Lagrangian formalism (Section 3.2). Constraints

usually appear in the context of analytical mechanics rather than the New-

tonian one, where everything is solved by determining forces. And this is

65

CHAPTER 6. CONSTRAINED DYNAMICS

rather surprising given that the whole point of generalized coordinates is

to translate constraints into a coordinate transformation so that these con-

straints disappear in the end. But many times this is hard to do or even

impossible1 and constraints need to be explicitly added. This is a procedure

that increases the number of variables rather than reducing it (redundant

coordinates), by adding the so called Lagrange multipliers. It is very effec-

tive and in practice the number of unknowns can be often reduced to the

number of constraints2. This formalism is especially helpful when working

with inequality constraints. In fact our ultimate goal is to work in Cartesian

coordinates and have a way of automatically computing all reaction forces in

the given constraints. And this is where the Lagrangian formalism comes to

help even if at first glance this was not its initial purpose.

Constraints have different classifications. Unilateral constraints involve

inequality as they usually mean that a body should stay on one side of a

surface at any time, i.e. contact constraint. Bilateral constraints are more

popular in physics and they were given more space in the literature as they are

easier to deal with than inequalities (see for example the section on Fourier’s

inequality in [Lan70]). Bilateral constraints have two distinctions: sclero-

nomic vs. rheonomic and holonomic vs. nonholonomic. Scleronomic means

the constraint does not depend on time explicitly while rheonomic signifies

the opposite. Holonomic constraints depend only on generalized positions

while nonholonomic ones involve velocities or, equivalently, position differ-

entials. The simplest example of a nonholonomic constraint is a disk rolling

on a plane [GPS02]. In this thesis however we focus mainly on holonomic

and scleronomic constraints, although exceptions may appear when talking

about more elaborate constraints like friction or motors. In this chapter we

talk mostly about bilateral constraints and leave unilateral constraints for

the end and friction for the next chapter.

1As is the case of nonholonomic constraints.
2Technically we are splitting the problem in two as the integrator still works with the

unconstrained degrees of freedom. Also the number of constraints can many times exceed
that of degrees of freedom if they are not independent, so this may look as disadvantageous
compared to reduced coordinates formulations or penalty approaches. We thinks it is not,
but this is an ongoing debate.

66

6.1. CONSTRAINTS

Generally, each constraint is a scalar function and all constraints can be

aggregated into a single vector constraint function: c : Rn → Rm, where m

is the total number of constraints in the system.

As hinted above, key in the understanding of constraints is the principle

of virtual work from Lagrangian mechanics. In the case of equilibrium, the

virtual displacements δq must be compatible with the constraints, i.e. 0 =

δc(q) = ∇c(q)T δq, meaning that they always lie in the tangential plane

of the constraint manifold3. The principle of virtual work is extended from

statics to dynamics by the principle of d’Alembert [Lan70]. For internal

constraint forces the principle of virtual work states the following:

fTc δq = 0. (6.1)

It follows from (6.1) that the constraint forces are perpendicular to the tan-

gential virtual displacements and are parallel to the normal of the constraint

surface, i.e. the constraint gradient ∇c(q), and so we obtain the form of the

constraint forces:

fc = ∇c(q)λ, (6.2)

where λ ∈ Rm is the vector of Lagrange multipliers.

The augmented potential energy is: V̄ = V − λTc(q) [Lan70]. This can

be seen as coming from (6.2) or, alternatively, from a Lagrange multiplier

approach to Hamilton’s (or Gauss’) principle with constraints added.

Another important concept is the Jacobian of the constraint function:

J =
∂c

∂q
= ∇cT . (6.3)

Its physical meaning is usually the direction of the constraint force, while

the corresponding Lagrange multiplier is the force magnitude. It is also the

transpose of the gradient matrix which is basically a collection of column

vectors representing normal vectors to each individual constraint manifold.

This is why it defines the tangent space at every point and thus the whole

3In Cartesian coordinates this is nothing more than Newton’s third law: internal forces
act in pairs that sum up to zero (as the manifold is just Rn).

67

CHAPTER 6. CONSTRAINED DYNAMICS

tangent bundle of the constraint manifold. Therefore it comes to no surprise

that we will be encountering J a lot in our equations.

6.2 Differential algebraic equations

The essence of this chapter is that we need to solve the equations of motion

with constraints. Think of a particle falling freely in a parabola trajec-

tory and then being constrained on an inclined plane or a bobsleigh track4.

The trajectories are clearly different and thus the solutions to the differential

equation under the same initial conditions must also be different. Such equa-

tion is some times denoted simply as a differential equation on a manifold

[HLW06, LR04] and other times as a differential algebraic equation (DAE)

[BCP96, Lac07].

The most general form of a index 3 DAE encountered in dynamics is:

Mẍ = fext + JTλ, (6.4)

c(x) = 0, (6.5)

where fext is the external force.

An important property of the DAE is its index - a measure of singular-

ity or perturbation: add one to the number of times it takes to derive the

constraint function so that the unknown has the same derivative order as

in the ODE [BCP96, HLR89]. This is in fact how DAEs of index 3 that

occur in multibody dynamics are generally solved, i.e. by differentiating the

constraint function twice. But other methods can use the first derivative or

the original constraint function itself. These correspond (in the order they

were mentioned) to working at acceleration, velocity or position level. Some

methods even combine these levels, mainly due to the fact that, even if the

initial conditions are compatible with the constraints, numerical methods ac-

cumulate drift in the constraint error at all levels. This phenomenon gave

rise to the concept of constraint stabilization.

4It turns out from the solution of the brachistochron problem (that fueled the devel-
opment of the variational principles of mechanics) that the fastest track is a cycloid.

68

6.2. DIFFERENTIAL ALGEBRAIC EQUATIONS

In what follows we will talk about the subtleties of solving constrained

systems in the context of different fields where often methods were developed

in parallel giving rise to many distinct solvers.

6.2.1 Mechanical engineering

Differential algebraic equations have been developed in the context of mech-

anisms where many rigid parts are joined by various joints in a complex

manner. Popular solvers include DASSL [BCP96], RADAU5 [HLR89] or

generalized coordinate partitioning [HY90] and orthogonalization methods

[MBPV11]. Index reduction is a penalty approach which converts the DAE

into an ODE [Bau72]. This is basically a spring-damper regularization and it

is used in modern DAE solvers as a correction technique (now called Baum-

garte stabilization) [ACPR95].

Note that this is not the only possible approach to articulated systems;

the others include reduced coordinate approaches in robotics (e.g. spatial dy-

namics [Mir96, Fea14, Sha09]), Kane’s method, Udwadia-Kalaba equations,

symbolic and recursive approaches and sometimes even writing and solving

the equations directly on paper or using software like Mathematica or Maple.

As already stated, acceleration based methods are obtained from differ-

entiating the constraint twice:

c̈(x) = J̇v + Jv̇ = 0. (6.6)

In the case of one constraint the first term of (6.6) can be expressed as a

quadratic form of the velocity: vTHv, where H is the Hessian matrix of the

constraint [LR04]. In the general case H becomes a rank 3 tensor so it is

easier to work with the matrix J̇ = ∇ċ [Wit97].

We can manipulate equation (6.4) to obtain the term Jv̇ = JM−1(fext +

JTλ) and substitute it in (6.6) to obtain a linear system:

Aλ = −JM−1fext − J̇v, (6.7)

where A = JM−1JT . Solving this system gives us an expression for the

69

CHAPTER 6. CONSTRAINED DYNAMICS

Lagrange multipliers at any moment in time, given that we can compute the

rest of the terms. This is important as the method is not dependent on the

discretization chosen to solve the ODE in (6.4). One can choose the RK4

integrator for example (very popular in the 90s) and the constraint forces

needed at each instant of time are computed using (6.7).

The main drawback is that given initial conditions that are not satisfying

the constraint or numerical drift in the positions and velocities the method

will not correct these errors. In order to address this problem we use Baum-

garte stabilization:

c̈(x) + αċ(x) + βc(x) = 0, (6.8)

where α and β are tweakable parameters. For more information about choos-

ing the parameters and their problems see [ACPR95]. For example one can

choose α = 2γ and β = γ2 where only γ has to be tweaked. Given the issues

with Baumgarte stabilization several other post-stabilization and projection

methods have been developed [CP03, AH04a, HLW06]. Still the acceleration

based method was very popular in the 90s and together with a linear com-

plementarity problem (LCP) formulation of contact and friction it was the

main tool for rigid body simulation [Bar94].

6.2.2 Molecular dynamics

In computational molecular dynamics (MD) often very strong bonds are re-

placed by constraints. This is done in order to reduce the stiffness of the

problem and speed up the computation. The algorithm SHAKE dates back

to the 70s and it is based on a Verlet integrator and nonlinear equation

solving [RCB77]. It was later extended to Velocity Verlet and phase space

projection (i.e. the first derivative of constraint is also enforced): RATTLE

[And83]. A lot of other variants exist, especially with the property of being

symplectic [BKLS95, LR04]. These are all related in a way to the method of

projection for solving DAEs [HLW06]:

minimize ‖δx‖2
M subject to c(xl+1) = 0, (6.9)

70

6.2. DIFFERENTIAL ALGEBRAIC EQUATIONS

where δx = xl+1−x̃ is the difference between the new unknown position x and

an initial candidate position x̃ obtained through unconstrained integration.

The M-energy (or M-metric L2 squared norm) ‖x‖2
M is simply the quadratic

form xTMx.

The SHAKE algorithm can be summarized as:

xl+1 = 2xl − xl−1 + h2M−1(fext + JTλ), (6.10)

0 = c(xl+1). (6.11)

This method works only at position level, but requires the storage of the

previous position and a fixed time step. Here the candidate position is x̃ =

2xl − xl−1 + h2M−1fext. Velocity can be approximated by a backward differ-

ence vl+1 = (xl+1−xl)/h or by a centered difference vl+1 = (xl+1−xl−1)/2h.

For solving the nonlinear system any method can be used, but the name

SHAKE often implies the Gauss-Seidel procedure presented in the original

paper [RCB77].

The RATTLE scheme makes sure that both positions and velocities are

projected on the phase space constraint manifold (making it more expensive):

vl+1/2 = vl + h
2
M−1(fext + JTλ), (6.12)

xl+1 = xl + hM−1vl+1/2, (6.13)

0 = c(xl+1), (6.14)

vl+1 = vl+1/2 + h
2
M−1(fext + JTµ), (6.15)

0 = Jvl+1. (6.16)

Here µ is a second set of Lagrange multipliers ensuring that the velocity

level constraint (6.16) holds. Both SHAKE and RATTLE use the latest

position candidate available (through unconstrained integration) to estimate

the Jacobian before solving the constraint equation.

71

CHAPTER 6. CONSTRAINED DYNAMICS

6.2.3 Computer graphics

In computer graphics constraints were introduced by Baraff and Witkin

[Bar94, Wit97]. They are also responsible for a big part of the physical

simulations at Pixar. Baraff’s pioneering work on rigid body simulation with

contact and friction [Bar97] lay at the foundation of physics engines. However

his acceleration based method did not turn out to be the method of choice

and it was superseded by the work of Stewart and Anitescu (more on this

in the next chapter). Building from Stewart’s method and using influences

from molecular dynamics and DAE theory, Jakobsen introduced the first po-

sition based method in games [Jak01]. One could argue that strain limiting

[Pro96, BFA02] dates back even earlier but we stress the fact that it was

used only as a correction for explicit springs5. Later Müller et al. [MHHR07]

further developed the method, switched to a Symplectic Euler integrator and

gave it its now popular name: position based dynamics (PBD). Goldenthal

made it more academic and presented it in a different form (decoupled from

the Gauss-Seidel solver) called fast projection [GHF+07, Gol10]. Although

not clear from his description, Stam seems to have used a similar approach in

implementing the Nucleus physics engine in Autodesk Maya [Sta09, HS07].

Goldenthal gives a very comprehensive view on position based methods

and explains why they need to be fully implicit (i.e. also in terms of con-

straint directions) in order to be stable and always have solution. This gives

rise to a very large Newton system with n + m unknowns [Gol10]. This

was not the case for SHAKE as the constraint directions were considered

constant. This approximation usually breaks down for structures that can

have transverse oscillations like threads or membranes [TNGF15]. Golden-

thal then introduces a faster iterative method in order to compensate for

the complexity of the Newton system. This is nothing else than a sequential

quadratic programming (SQP) [WN99] approach to solving the projection

problem in (6.9). Under closer scrutiny the PBD method does the same

thing but it only runs one Gauss-Seidel iteration to solve each sequential

5At most it can be considered as a hybrid approach, but this was not clear at that time
and also we are concentrating in this thesis on pure constraint based methods.

72

6.3. VELOCITY TIME STEPPING

linear system. The resulting solver is usually called nonlinear Gauss-Seidel

(NGS) and its key difference to SHAKE is that it also updates the constraint

directions6.

In essence PBD is very intuitive: you first integrate the positions using

external forces only (with Verlet or Symplectic Euler) and then correct each

constraint in an iterative fashion by applying displacements. Note that you

can either update velocities at the very end or during the solver by applying

impulses (i.e. displacements divided by h). This seems deceptively simple

but it hides a lot of its origin and derivation details that we outlined partly

above. We tried to understand as much as possible where PBD really comes

from and what it really is and came up with two equivalent answers:

• a position-based (index 3) DAE solver using projection or

• a nonlinear velocity time stepping (index 2) DAE solver with stabiliza-

tion (more on this fixed point approach in the next chapter).

Given that PBD is intrinsically connected to the Gauss-Seidel relaxation

scheme, we decided to denote together all position based methods as position

projection methods or nonlinear constrained dynamics methods.

6.3 Velocity time stepping

Before going further and presenting our novel view on position based meth-

ods, we would like to introduce the velocity based method for comparison.

This method is used mainly for contact and friction, but it can also handle

bilateral constraints [TA11, Erl07]. It is obtained by discretizing the equa-

tions of motion (6.4) using a semi-implicit (or symplectic) Euler integrator7

as in [ST96]. The velocity based method bears a lot of similarity to the

impulse based method [Mir96, GBF03] and therefore Catto called his Gauss-

Seidel solver Sequential Impulses [Cat05]. It is also strongly related to the

acceleration formulation with the difference that the problem is solved after

6We have not found until this point any algorithm in MD that is similar to PBD.
7Explicit integrators cannot work as the constraint forces are not known, and implicit

integrators actually give us position based methods.

73

CHAPTER 6. CONSTRAINED DYNAMICS

the time discretization is performed resulting in an index 2 DAE in positions

and velocities.

We will call these methods generically as velocity time stepping (VTS)

methods because they are different from event-based simulators where the

time step is divided in order to identify discontinuous events (VTS steps over

them). Here is the most common formulation:

vl+1 = vl + hM−1(fext + JTλ), (6.17)

xl+1 = xl + hvl+1, (6.18)

0 = Jvl+1 + γ
h
c(xl), (6.19)

where γ is a Baumgarte-like stabilization parameter between 0 and 1 [TA11,

Cat05]. Note that the Jacobian is computed at the beginning of the time

step: J = ∇c(ql) and this is an important distinction from PBD and MD

methods. The original formulation [ST96] had a different linearization of the

constraints than the one in (6.19) and was later replaced by pure velocity

constraints in [AP97]. The form in (6.19) was only introduced in [AH04a] as

a form of constraint stabilization using one single LCP solve. The velocity

time stepping scheme (VTS) can also be expressed in KKT matrix form8:(
M −hJT

J 0

)(
vl+1

λ

)
=

(
Mvl + hfext

−γ
h
c(xl)

)
. (6.20)

After taking the Schur complement (i.e. substituting Jvl+1) we obtain the

following linear system:

hAλ+ Jṽ + γ
h
c(xl) = 0, (6.21)

where A = JM−1JT and ṽ = vl + hM−1fext.

8Term originating from the Karush-Kuhn-Tucker optimality conditions [WN99].

74

6.4. NONLINEAR MINIMIZATION

6.4 Nonlinear minimization

The fact that PBD uses projection was stressed from the very start by Jakob-

sen and he also makes reference to interior point methods. Although the

nonlinear Gauss-Seidel solver is not an interior point method, this view did

open to us a range of other possibilities for solving the position projection

problem. NGS can be viewed as either an SQP approach or as a nonlinear

gradient descent minimization method. In the former approach one can use

any other solver of choice for the linear systems. Goldenthal for example

used the PARDISO exact sparse solver [GHF+07].

We experimented with iterative solvers from the Conjugate Gradient

(CG) family [PTVF07, She94]. Most of them worked given enough itera-

tions, but there were stability issues when not using the Minimum Residual

(MINRES) type of algorithms. We found out that the problem was not re-

lated to the system matrix but rather to the way the residual evolved along

the iterations9. It turned out CG has a very erratic evolution of the resid-

ual as it focused on minimizing the error, whereas MINRES methods have a

monotonic decrease in the residual as the aim is to minimize it at every step

(see Figure 6.1). Our method of choice was in the end Conjugate Residuals

(CR) [Saa03].

Our main contribution was eventually a direct tackle of the nonlinear

minimization problem in (6.9) [FM14b, FM14a]. In order to be able to use

a nonlinear gradient descent approach we had to convert the problem to its

dual [WN99] which in the case of bilateral constraints is also unconstrained.

This conversion is common practice in the constraint dynamics literature

[MHNT15] as it is much easier to work with the dual variables, i.e. the

Lagrange multipliers. There is still the possibility to solve the primal problem

(6.9) using a different type of algorithm (like the interior point method) or

to solve the saddle point problem in (6.20) or (6.25) but so far we have not

seen any such competitive methods for interactive physics.

The implicit Euler integrator has also been shown to have such a mini-

9This makes sense because the residual equates constraint error in our case and this
means extra potential energy added to the system resulting in additional kinetic energy
in the next frames (e.g. the cloth coming alive from equilibrium).

75

CHAPTER 6. CONSTRAINED DYNAMICS

0

5

10

15

20

25

30

35

40

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

C
o

n
st

ra
in

t
e

rr
o

r
(r

e
si

d
u

al
)

Frame number

CG

MR

GS

Figure 6.1: Plot of the residual using 3 different solvers.

mization structure in Section 4.3. The formulation in (4.6) with constraints

added gives us an objective function close to the one used in projection:

minimize 1
2h2

∆xTM∆x + V (xl+1) subject to c(xl+1) = 0, (6.22)

where ∆x = xl+1 − xl − hvl. This is essentially the same formulation as

in Projective Dynamics (PD) [BML+14]. It can be made the same as in

(6.9) and in [Gol10] if we replace ∆x by δx and eliminate the need for the

external forces potential term. PD is different in that it incorporates the

unconstrained integration inside the minimization and uses a different solving

approach. But the main takeaway here is that projection is simply just the

implicit Euler integration of constraint forces.

The question arises whether the minimization in (6.9) is related in any

way to the variational principles of mechanics, which involve the stationary

76

6.4. NONLINEAR MINIMIZATION

point of the action functional. And the answer turns out to be positive for

certain choices of integrators. It is remarkable to see how a general extremum

problem can be turned into a minimization at every discretized time step (see

Section 6.5 and [KYT+06b]).

The dual problem is obtained by computing the Lagrangian function

L(δx,λ) of (6.9) and then minimizing it over both δx and λ [BV04]. As

an intermediate step we obtain the following equivalent form to (6.9):

minimize L(δx,λ) = 1
2h2
δxTMδx− λTc(xl+1). (6.23)

Stating position projection as a dual nonlinear optimization problem is

a premiere to our knowledge and we think it is a very general and versatile

form:

minimize h2

2
λTAλ+ λTc(ql+1), (6.24)

where A = JM−1JT (as for the other methods). Note that the constraint

Jacobian is considered here at the end of the time step in an implicit manner:

J = ∇c(ql+1).

SQP applied to the primal problem (6.9) gives us the following KKT

system at each iteration (or the full Newton method):[
M− h2Hkλk −h2JTk

Jk 0

](
δxk+1

δλk+1

)
=

(
Mδxk − h2JTkλk

−c(xk)

)
. (6.25)

Usually we omit the second derivative term [Gol10] and obtain a matrix very

similar to the one in (6.20) (see a discussion on this omission later in Section

6.10). Then we can take a Schur complement and express the problem only

in terms of the dual variables:

0 = c(xk) + h2JkM
−1JTk δλk+1 = Akδλk+1 + bk,

xk+1 = xk + δxk+1,
(6.26)

where δxk+1 = h2M−1JTk δλk+1 as obtained from (6.25).

77

CHAPTER 6. CONSTRAINED DYNAMICS

This is also equivalent to the following QP at every iteration:

minimize h2

2
δλTAkδλ+ δλTbk. (6.27)

Velocity based methods can be reduced to a similar minimization form as

in (6.9) [TA11] and the resulting dual problem is actually a quadratic program

(QP) and thus easier to solve. We argue that in fact it is just a linearization

of PBD and that both methods are based on projection. We will give a more

complete argument in Section 7.5 after adding contact and friction, but it

should not be to hard to see even at this point after comparing the primal

formulation in [Ani06] with (6.9) or the dual one in [MHNT15] with (6.24).

Or just notice the similarity between equations (6.21) and (6.26).

6.5 Variational minimization structure

Actually we will try to make the case in what follows that most DAE solvers

can be recast as minimization problems. The reasoning is as following:

1. all dynamics is based on Hamilton’s principle of stationary action;

2. the index 3 DAE equations of motion are the same as extremizing the

Lagrangian with constraints (variational optimality conditions);

3. through the tools of discrete mechanics Hamilton’s principle can be

turned into a minimization at every time step [KYT+06a];

4. the optimization form of implicit symplectic integrators (e.g. Newmark

[WKMO99]) with constraints is equivalent to projection10;

5. the Newmark integrator has the same optimization formulation as im-

plicit Euler for β = 1;

6. implicit Euler integration with position constraints at the end of the

time step is in fact PBD or fast projection;

10With an extra explicit potential term in the objective; the case of mixing implicit
integration of stiff external forces with constrained dynamics is not considered here.

78

6.5. VARIATIONAL MINIMIZATION STRUCTURE

7. velocity time stepping is a linearized version of position projection and

so in turn also a minimization problem.

To summarize, projection is a discretized way of expressing Hamilton’s prin-

ciple and expresses as a constrained minimization prolem both position and

velocity based methods for solving DAEs. Acceleration based methods can

also be expressed as a minimization through Gauss’ principle and can be

regarded as enforcing the second layer of hidden constraint besides velocities

in the index 3 DAE. In a nutshell, all the methods can be expressed as a

minimization which in turn can be recast to a projection on the constraint

manifold or its tangent bundles.

We will follow the derivation in [KMOW99] to show how the Newmark

integrator can be recast as a minimization problem. We chose this integration

scheme because it is proven to be variational and symplectic (under certain

circumstances and a proper choice of parameters) and it is quite general.

Also for non-zero β it is implicit and this is required for projection to work11.

In general, not all integrators (be they variational) can be reformulated as a

minimization problem unless they satisfy a variational integrability property

[KYT+06b, Lew03]. We will not delve into the details here as they are quite

cumbersome, but fortunately most of the integrators satisfy this condition.

If we consider external forces as explicit and non-dissipative and also add

constraints we get the following Newmark discretization:

vl+1 = vl + h[(1− γ)al + γal+1], (6.28)

xl+1 = xl + hvl + h2

2
[(1− 2β)al + 2βal+1], (6.29)

Mal+1 = −∇V (xl) +∇c(xl+1)λ. (6.30)

This can be rewritten as:

1
h2

M(xl+1 − x̃) = −β∇V (xl) + β∇c(xl+1)λ, (6.31)

11It also works for semi-implicit Euler and Verlet but we tackle the fully implicit case.

79

CHAPTER 6. CONSTRAINED DYNAMICS

where x̃ = xl + hvl + h2

2
(1 − 2β)al. It becomes clear now how this can be

recast as the minimization problem:

min. 1
2h2

(xl+1 − x̃)TM(xl+1 − x̃) + βV (xl)− βλTc(xl+1). (6.32)

For β = 1 this becomes the same objective as for projection (see equation

(6.23)) and so we can view (6.32) as a generalization of projection. One

can use the velocity update equation (6.28) to implement a Newmark based

position projection scheme. In conclusion we have shown that the method

of constraint projection as a minimization process is in fact deeply rooted in

the discretization of the variational principle of stationary action (steps 3 to

6 above).

6.6 Solvers

In this section we take a closer look at iterative solvers both for linear systems

and nonlinear optimization problems. In our experience they are easier to

understand in the former case and then can be extended to optimization -

the very idea of gradient descent and linear CG comes from minimizing a

convex quadratic objective. In fact most nonlinear equations can be better

handled numerically in their equivalent optimization form as there exist more

algorithms and they are better conditioned. The only requirement is that

the problem is convex [BV04] and this is true in most cases presented in this

chapter (frictional contact is an exception presented in the next chapter).

The two important classes of methods analyzed are relaxation solvers and

Krylov subspace methods, better known as the conjugate gradient family of

algorithms. At a closer scrutiny the two are quite similar as they both are

line searches:

λk+1 = λk + αdk, (6.33)

and at the same time gradient descent methods as the direction d is usually

the gradient or something related [RA05]. Gauss-Seidel, SOR and Jacobi

are shown in [BETC14] to be coordinate descent methods [LY84]. Steep-

est Descent (SD) [She94], MINRES and Nesterov’s method [MHNT15] are

80

6.6. SOLVERS

all gradient search methods and they differ in the way the step size α is

computed. The ideas of conjugacy and Krylov subspace are used to choose

better search directions and improve convergence. These conjugate gradients

or residuals methods are also usually accompanied by pre-conditioning but

we did not spend time on this avenue for this thesis [She94, Saa03]. Similar

descriptions of iterative solvers to the one in this section can also be found

in two of our published articles [FM14b, FM14a].

6.6.1 Relaxation

Relaxation solvers are simple iterative methods for solving large sparse lin-

ear systems. They are also called stationary as the recursion formula does

not change or splitting methods as they rely on splitting the system ma-

trix in 2 or 3 components. They are also called preconditioners when used

to improve the convergence of Krylov methods or smoothers in the context

of multigrid [Str07]. They include the Jacobi, Gauss-Seidel and Successive

Over-Relaxation (SOR) methods.

Our aim is to solve the linear system:

Aλ+ b = 0. (6.34)

The Jacobi method is based on the splitting: A = D + E, where D is a the

diagonal of A. We obtain thus the following recurrence:

λk+1 = D−1(−Eλk − b), (6.35)

where the superscript k indicates here the iteration number.

We introduce now the very important notion of the residual:

rk = −(Aλk + b). (6.36)

It is defined at each iteration and it signifies the error in solving the system

(6.34) in contrast to the actual solution error. In the optimization view

(see (6.38) below or [BETC14]) the residual corresponds to the gradient of

81

CHAPTER 6. CONSTRAINED DYNAMICS

the objective function f and this formula holds also for the nonlinear case:

r = −∇f [She94]. In the context of constrained dynamics the residual has an

even more precise meaning: the constraint error, i.e. the relative velocity plus

stabilization for VTS [TBV12] or the positional constraint error for position

projection [FM14b].

Using the residual we can rewrite (6.35) as:

λk+1 = λk − ωD−1rk. (6.37)

Here we introduced the (under-)relaxation factor ω < 1 in order to guarantee

the convergence of the method. The convergence rate depends on the spectral

radius of the growth matrix −D−1E and usually we need to scale it down

as its modulus is greater than one [She94]. Bridson proposes a method of

computing ω as the inverse of the number of constraints incident to each

particle [BFA02].

The Gauss-Seidel method is similar and uses a different splitting: A =

D + L + U. The recurrence formula is easier to see as a per component

update:

λk+1
i =

ω

Aii

(
−bi −

j<i∑
j=1

Aijλ
k+1
j −

m∑
j=i+1

Aijλ
k
j

)
,

where ω is an over-relaxation term this time, slightly greater than one, used

in SOR. The main advantage of Gauss-Seidel is that it uses the most recent

information (propagation is faster) and has a better convergence rate than

Jacobi; SOR converges even faster [Saa03].

All relaxation methods basically perform a local solve of each equation,

i.e. solve for each unknown at a time by using current estimates of the other

unknowns. This is why they are often called local solvers. Like any iterative

method relaxation needs to start from an initial guess of the solution and

here one possible optimization is warm starting [Cat05]. We have not focused

much on warm starting as we wanted to compare unaltered implementations

of the solvers and also we had issues with bilateral constraints where con-

straint forces can change quite a lot from frame to frame. Still, if suitable

to use, we consider this optimization technique indispensable in real world

82

6.6. SOLVERS

implementations.

Given that the convergence rate depends ultimately on the largest eigen-

value of the system matrix, this means they reduce the error only slightly

for eigenvectors corresponding to the largest eigenvalues. This usually corre-

sponds to high frequency components of the mesh used to spatially discretize

the problem, e.g. A can correspond to the discrete Laplacian on a grid or

mesh. Thus relaxation methods are only efficient on low frequencies (low-

pass filter) and this is why they are called smoothers [Str07]. This problem

can be alleviated by running relaxation on coarser grids and this is the strat-

egy of multigrid solvers - an implementation in the context of PBD can be

found in [Mül08] and one for VTS in [OR07]. We have not studied multigrid

methods during our doctoral research but we believe they are a good path to

pursue in the future, especially by mixing Krylov methods with relaxation.

6.6.2 Krylov subspace methods

These methods include the well known Conjugate Gradient (CG) algorithm

and its variants. We will only describe it here shortly, while a comprehensive

introduction can be found in [She94]. This family of methods tries to solve

the linear system in (6.34) by casting it to a quadratic minimization problem:

min. f(λ) = 1
2
λTAλ+ bTλ. (6.38)

This only works if the matrix A is symmetric and positive-definite (the ob-

jective function is convex). The simplest approach is to start from an initial

guess and descend down the negative gradient of the function f , which is pre-

cisely the residual vector r defined in the previous section. This method is

called Steepest Descent (SD) but it does not have very good convergence, so

CG appeared as an improvement based on conjugacy (i.e. A-orthogonality).

You can find more details about the theory behind it, the algorithm itself,

why it’s called a Krylov subspace method, preconditioning and other variants

for more general matrices in [She94] and (a more advanced text) [Saa03].

We will now mention briefly the minimum residual methods that were

initially developed for indefinite symmetric matrices. These methods try to

83

CHAPTER 6. CONSTRAINED DYNAMICS

minimize the quadratic norm of the residual ‖r‖2 instead of the function f

[PTVF07]. The methods described above can be easily converted to their

minimum residual variant by replacing all dot products of the form a ·b with

aTAb (the A matrix dot product).

The minimum residual counterpart of CG is the Conjugate Residuals

(CR) algorithm. This was further generalized by Saad into the GMRES

method [Saa03]. This is of importance because we found that the CR algo-

rithm is more stable than CG when applied to constraint projection and for

small number of iterations [FM14b], although there were reports of success-

fully using CG too [HCJ+05]. Another application of this type of methods

was in the context of contact mechanics where a projected optimization vari-

ant GPMINRES was used to solve a cone complementarity problem (CCP)

[HATN12].

6.6.3 Accelerated Jacobi

We now turn our attention to the nonlinear optimization formulation in (6.24)

for position projection in order to present our contributions. Extending re-

laxation to the nonlinear case is done by updating the system matrix at every

iteration - remember NGS [OR70]. We have already described nonlinear CG

[She94] in Chapter 3.

For applying MINRES to the nonlinear case there are two equivalent

ways of viewing the process: either as a one step MINRES-Newton scheme

for solving (6.26) or as a gradient descent method for minimizing (6.24). If

we take the residual to be r = −∇c(x) at the beginning of each iteration and

use the fact that A = JM−1JT we get a new method for solving position

based constraints, which is presented in Algorithm 2.

This solver has slightly better convergence than Jacobi while at the same

time being more stable (without any modifications as needed for Jacobi).

The algorithm computes constraint errors and then tries to use them to

move the particles along the constraint direction in the hope of minimizing

the resulting error. The trick is not to use the whole error amount, but

a fraction α of it (Jacobi does the same thing but uses the inverses of the

84

6.6. SOLVERS

Algorithm 2 Nonlinear Minimum Residual

x = x̃
for iter = 1 to numIters do

r = −c(x)
J = ∇c(x)T

y = JT r
p = Ar = JM−1y

α = rTp
pTp

x = x + αM−1JT r
end for

diagonal elements of A). In our case this fraction needs to be less than the

reciprocal of the spectral radius of A and also to vary smoothly.

Another way of seeing this procedure is that at every iteration a low

stiffness elastic force is being explicitly integrated for every constraint. The

stiffness of the spring is κ = α/h2 while the resulting stiffness is proportional

to the square of the number of iterations. By analyzing the stability of the

integration growth matrix one can see why α < 1/ρ(A) (the norm of the

eigenvalues has to be less than one). In this way we can robustly treat

stiff systems whose natural period is less than the time step h by iteratively

applying a ”safe stiffness” elastic force.

As an optimization, if one can estimate ρ(A) in advance, we can set α to

its reciprocal and we cut down on a lot of calculations. This is actually very

similar to a modified version of Jacobi where the displacements are scaled

down by ω ≤ 2/ρ(A) [TBV12]. An easy way to compute the spectral radius

of a matrix is through the power method: an iterative method very similar

to SD or MINRES that outputs the eigenvector corresponding to the largest

eigenvalue in absolute value. Once we have a good approximation of this

eigenvector we can easily calculate the spectral radius and also update it

very quickly every frame to account for the changes in A. This optimization

works well in practice and is very stable but has slightly poorer convergence.

The CR method (Algorithm 3) is very similar to MINRES but this time

the search directions d are chosen in a special way. In CG they are conjugate

or A-orthogonal, i.e. dTAd = 0. In CR we want the residuals to be conju-

85

CHAPTER 6. CONSTRAINED DYNAMICS

Algorithm 3 Nonlinear Conjugate Residuals

x = x̃
for iter = 1 to numIters do

r = −c(x)
J = ∇c(x)
y = JT r
δnew = yTM−1y
if iter == 0 then

β = 0
else

β = δnew

δold
end if
d = r + βd
δold = δnew
y = JTd
p = JM−1y

α = rTp
pTp

x = x + αM−1JTd
end for

gate, which in turn makes the search directions to be A2-orthogonal [Saa03].

This speeds up convergence while at the same time keeping the simulation

stable even for small number of iterations.

The algorithm does have problems dealing with large time steps. In order

to stabilize the simulation we resorted to clamping down β below 1 and α

below a maximum value, e.g. 1/ρ(A) or even larger. Still we found the

algorithm to have stability issues around equilibrium as it does not dissipate

all the energy, but the oscillations have very small amplitude and are hard

to detect.

We found experimentally that β grows very rapidly from 0 to 1 and then

stays almost constant. Also clamping it below 1 improved stability (see

Figure 6.2). This is not surprising given that the residual should always

decrease at every iteration. Given that the choice of β is not unique [HZ06],

86

6.6. SOLVERS

we chose to approximate the calculation of β with:

βk = min

(
a

(
k

kmax

)b
, 1

)
, (6.39)

where a ≥ 1 and b < 1 and kmax is the maximum number of iterations. We

obtained very good results and an even more stable simulation. In order

to increase convergence one can make β grow steeper by lowering b and

increasing a, but this may introduce jitter. We found a = 1 and b = 0.6

to be good values. Both CR and the power function optimized version have

very good convergence, similar to Gauss-Seidel or even better in many cases

(see Figure 6.3).

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19

B
et

a

Iteration number

Figure 6.2: Plot of β over 20 iterations of the CR solver: original formula
clamped below 1 (blue) and power function approximation (red).

If we set α fixed in the CR method just like we did for MINRES we can

87

CHAPTER 6. CONSTRAINED DYNAMICS

0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12 14 16 18

C
lo

th
 t

o
ta

l v
e

rt
ic

al
 s

tr
et

ch
in

g

Number of iterations used

CR

GS

Figure 6.3: Plot of the total stretching at equilibrium of a 50×50 piece of
cloth relative to the number of iterations for GS (red) and optimized CR
(blue).

make the following simplification by using the descent direction from the

previous iteration:

δλk+1 = −αdk = −α(rk + βkdk−1) = −αrk − βkδλk. (6.40)

This way we don’t need to store the descent direction any more and we get

a simpler version of CR. We still have to provide a value for α and we could

use α0 = 1/ρ(A), but we can make things even simpler by using the step

sizes from (6.35) and obtain a version of Jacobi with increased convergence:

λk+1 = λk −
ω

Aii
rk − βkδλk, (6.41)

where ω ≤ 1. We tested this improvement on GS too, but we had to lower

88

6.7. APPLICATIONS

the value of ω a lot in order to stabilize the simulation. Also our focus is on

the Jacobi method as it is easier to parallelize.

After looking more closely at the accelerated projected gradient descent

(APGD) or Nesterov’s method in [MHNT15] we came to the conclusion that

it can be reduced to the same form as in (6.41). They both have the same

momentum term added at the end with the difference that both α and β are

computed differently. We decided to use the same step size as in Jacobi and

adapt the following formulas from [MHNT15]:

θk+1 = 1
2
(−θ2

k + θk

√
θ2
k + 4), θ0 = 1 (6.42)

βk+1 =
θk(1− θk)
θ2
k + θk+1

. (6.43)

We called the resulting scheme ”accelerated Jacobi”. It worked very well in

practice despite not having a rigorous mathematical derivation. We used it

mainly for our parallel implementations, but one can still use CR or APGD

instead if a more established method is desired.

6.7 Applications

As described in the previous chapter there are many applications of con-

strained dynamics. These involve mainly particle systems where very stiff

springs are replaced by rigid links, but also more complex constraints like

joints for rigid bodies, dihedral angle for cloth bending, contact and friction,

volume and area constraints and even strain and finite elements.

The simplest didactic examples are a 1D spring or pendulum. The latter

can be extended to a double pendulum and further to a kinematic chain.

The beauty of constrained based dynamics is that it also allows for loops

in the chain. In practice, these connected particle system are used for the

simulation of threads, hair, cloth and soft bodies.

Although there have been reports of cloth simulation using VTS [Lac07,

HCJ+05] most of the constrained based simulation of cloth in the past decade

was done using PBD or some kind of position projection [MHHR07, GHF+07,

89

CHAPTER 6. CONSTRAINED DYNAMICS

BBD09, EB08]. This is because PBD is much more stable than VTS, being

fully nonlinear and implicit. Soft bodies were also simulated with PBD using

a variety of techniques [BMOT13]. FEM was also touched upon using VTS

[SLM06] and PBD [BKCW14, BML+14] (strain papers too). Therefore posi-

tion projection methods have proven to be a very versatile tool in simulation

and that is also the reason we set out to improve it both in theory and in

practice. Besides developing a new parallel iterative solver that you read

about in Section 6.6.3 we also derived and implemented the first accurate

position-based FEM solver using constrains (see Section 6.11).

6.8 Regularization

In this section we present one of our most important theoretical contribu-

tions: that constrained based dynamics using nonlinear and implicit position

projection with regularization is equivalent to the implicit Euler integration

of elastic forces.

Regularization is a technique used to make optimization problems more

tractable numerically [PPR11]: it makes the diagonal of the system matrix

in (6.20) non-zero and ensures existence of solutions. This was used for

solving rigid body constraints and even Lagrangian fluids [MMCK14]. It is

a widely used technique in many fields for solving ill-posed problems, least

squares problems (e.g. Tikhonov regularization), bi-criterion optimizations

and saddle point problems [BV04, Str07].

A similar regularization used in rigid body engines also known as con-

straint force mixing [Smi06] or soft constraints [Cat10] was also compared to

implicitly integrating stiff springs. This approach can be shown to be physi-

cal [Lac07] and can be generalized to continuous elastic materials as was done

in [SLM06]. Even if not trying to simulate real elasticity, regularization can

be a great tool for controlling how the positions and velocities are projected

on the constraint manifold (as sometimes a too aggressive position correction

can generate too high velocities and violent phenomena).

Regularization can be expressed as adding a small feedback term to the

90

6.8. REGULARIZATION

constraint equation:

c̃(x) = c(x) + ελ = 0. (6.44)

This gives us λ = −ε−1c(x) that we can substitute in (6.2) and obtain a

force f = −ε−1c(x)∇c(x). If we denote by κ = 1/ε then we can see that

this is equivalent to having a potential energy of the form κ
2
‖c(x)‖2 which is

precisely the elastic spring energy with the stiffness κ [Lac07].

In [FM15a] we showed that implicit Euler integration of elastic media

is equivalent to regularized projection. For this we used the minimization

formulation in (4.6). The potential term of the constraints Vc can be either

a quadratic elastic energy or the Lagrange multiplier potential energy of the

constraints introduced in Section 6.1 (provided the constraints are regular-

ized). So the difference between implicit integration and constraint projection

is the same as choosing between penalty and Lagrange multiplier methods in

numerical optimization. We rewrite equation (4.6) to better stress our result:

minimize 1
2h2

∆xTM∆x + Vc(x) + Vext(x
l), (6.45)

where Vc can be either κ
2
‖c(x)‖2 or −λT c̃(x). This means that there is no

difference between the two methods and they are equivalent. The only re-

quirement is that the constraints are regularized as in (6.44). So in order to

achieve the same results using constrained dynamics as with implicit inte-

gration we need three ingredients: nonlinearity, implicit constraint directions

and regularization.

We are clearly not the first to add compliance to constraints in order to

soften them. Also, the analogy to implicit integration of springs was done

before, but from a VTS perspective that may not have been correct12. The

regularization technique in 6.44 was indeed shown to be the most physical

12This analogy identifies two parameters for regularization and stabilization from stiff-
ness and damping coefficients. But the regularization term represents compliance on its
own, so damping should come from somewhere else. We argue that the sources include
the dissipativity of the integration scheme, the inelasticity of contacts and an explicit
damping model, but not Baumgarte stabilization. This is why we turn our attention to a
full implicit constraint solver for making the analogy. We also restrict ourselves to adding
compliance only and leave damping for later.

91

CHAPTER 6. CONSTRAINED DYNAMICS

one. The idea that constraints are the limit of infinitely stiff forces was

also touched by other authors [AP02, Erl05, EB08]. Arnold gives the same

argument in the context of Lagrangian mechanics on manifolds [Arn13] and

Lacoursière cites the theorem of Rubin and Ungar [Lac07].

But we have not found any clear explanation to why PBD simulations of

cloth look so similar to the ones done by linearly implicit integration. This

is why we think we are the first to take the argumentation to the end and

prove that the penalty method is just another way of solving the constrained

dynamics problem in (6.9). And given that stiffness is a physical parameter it

makes more sense to regularize constraints, rather than holding on to the ideal

case. Moreover, in the case of numerical implementations we will never be

able to satisfy the constraints exactly or we do not afford the computational

expense. The difference from zero in (6.44) is the ελ feedback term which

gives us precisely the amount of compliance added to the system. This is the

explanation to why fewer iterations of NGS make the cloth springier.

Regularization amounts to replacing the lower right block of the KKT

matrix in (6.20) or (6.25) with the compliance matrix C−1 which can be

defined as ε1 like above or as the inverse of a more general stiffness matrix

C. Note that the matrix C is predominantly diagonal and not the same as

the tangential stiffness matrix K = ∇f = −∇2Vc (Section 4.3). They are

usually related through K = JTCJ and the elastic potential is given by:

Vc(x) = 1
2
c(x)TCc(x). (6.46)

Using regularization by C the linear system in (6.26) transforms to:

(h2Ak + C−1)δλk+1 + bk = 0. (6.47)

The advantage of this formulation is that, while equivalent to implicit

integration, it is better numerically conditioned: as the stiffness increases,

the compliance term vanishes and the system matrix tends to a constant

(at least at frame or iteration level) [SLM06]. This is not the case for the

modified mass matrix in (4.9) which will grow to infinity.

92

6.9. ENERGY DISSIPATION AND DAMPING

Looking more closely at the equation (6.47) we notice that it is not that

different from (6.26). We can regard the change to the diagonal of the system

matrix as a scaling through a relaxation factor as in [Jak01]. As noted in

[MHHR07] this factor is highly nonlinear and we are now able to express this

exact nonlinear relationship to the linear spring stiffness value:

ωj = (1 + (h2κjAjj)
−1)−1 < 1, (6.48)

where κj is the stiffness of spring j. On the other hand, if we use ω > 1 we

obtain SOR which may converge faster and produce better inextensibility,

i.e. stiffer cloth for less iterations.

Another result we obtained from this equivalence is an explanation to

why CG works so well in implicit integration but not so much for constraints

where CR behaves better [FM15a]. We base our result on the fact that

implicit methods work in velocity (or displacement) space and projection

methods work in constraint space. These are nothing else than primal and

dual variables of the same regularized optimization problem (6.45). The

transformation from velocity space to constraint space at every point is given

by the matrix T = 1
hκ

A−1J and the reciprocal by Q = hκM−1JT . Thus, in

order to run CG in constraint space we need to convert the residual in that

space. In the end we obtained a new update formula for β which resembles

the one in CR (see Section 7 in [FM15a]). But more investigation should be

done here in order to identify the best Krylov method suited for constrained

dynamics.

6.9 Energy dissipation and damping

We have already mentioned that for preserving energy during the simulation

it is best to use symplectic integrators (Section 4.2). For DAEs an option is

to use symmetric projection [HLW06], i.e. a method that can be reversed in

time. Goldenthal proposes an alternative symmetric Velocity Verlet scheme

[Gol10]. Another option is to use Implicit Midpoint that promises full energy

conservation, but in practice it can become unstable. This is why in [FM15a]

93

CHAPTER 6. CONSTRAINED DYNAMICS

we propose a projection scheme based on the Newmark integrator that can

be tuned (see also Section 6.5). A similar projection method was developed

in [EB08] where they use the BDF-2 scheme as it dissipates less energy than

Backward Euler.

Another of our contributions is to add damping in a physical and credible

manner to the position projection formulation. In general we can do this by

using a Rayleigh dissipation function [Lac07]:

ϕ(v) = 1
2
ċ(q)Rċ(q), (6.49)

where ċ(q) = DTv and R is a positive definite matrix (usually diagonal).

This usually means adding a viscous drag force term, generated by the dissi-

pative potential: fd = −∇vϕ = −ηDċ(q), where η is a damping coefficient.

Very important to note is that these forces act only along the constraint

directions and so the damping does not look unnatural.

Using the dissipation potential in (6.49) yields a new regularization for-

mula: c(q)+C−1Rċ(q)+C−1λ = 0, which in turns gives a new KKT matrix

and a new Schur complement: A = h(h1 + C−1R)DTM−1D + C−1. We ex-

emplify our result in the case where the stiffness matrix is of the form C = κ1

and for a particular form of Rayleigh damping, i.e. R = η1 = ρC, where

ρ = η/κ. In the end the terms A and b in (6.27) get replaced by:

A = h(h+ ρ)DTM−1D + C−1, (6.50)

b = c(x) + ρJv. (6.51)

Note that damping can also be applied in the case of infinite stiffness κ→∞
(i.e. C−1 = 0) given that the ratio ρ remains finite. More recently we came

upon a similar result in [TANN13] that also adds support for plasticity.

94

6.10. STABILITY

6.10 Stability

Regularization is equivalent to the following implicit integration scheme at

velocity level:

(M + h2κJTJ)vl+1 = Mvl − hκJTc(xl), (6.52)

where the last term represents the elastic force and K̃ = κJTJ is an approxi-

mate stiffness matrix (the same formulation is used in Section 5 of [AH04a]).

But the actual stiffness matrix is [BW98]:

K = −κ(JTJ +∇2c(x)c(x)) = −K̃− κHc. (6.53)

As in [TNGF15] we can denote the second term as the geometric stiffness

matrix: K̄ = Hλ. Given that this part of the stiffness matrix is not implic-

itly taken into account, it is easy to see now why the regularized velocity

time stepping scheme might manifest instabilities above certain frequencies

(eigenvalues of K̄). This is mainly due to the linearization error - basically

the second order term in the Taylor series expansion of the constraint is miss-

ing: 1
2
vTHv. For the infinite stiffness case we can still have residual error

in the solver that can manifest itself as compliance or possibly unstable lin-

earization error. Usually the former is more common for contacts, while the

latter can manifest more for bilateral constraints and transverse oscillations

modes in threads or cloth.

The solution in [TNGF15] is to add the geometric stiffness term to the

mass matrix, but this will make the resulting matrix hard to invert. This

is why we chose to continue using a matrix free formulation at the price of

running a nonlinear projection solver that deals with the linearization error

and also with stability. The case for running more nonlinear iterations for

stability is also made in [KTS+14]. We argue that the computational price

is only marginally bigger (around 10%) and in return we get better stability.

95

CHAPTER 6. CONSTRAINED DYNAMICS

6.11 Constraint based FEM

The current approach for mixing constraints and stiff elastic forces is to use

linear implicit integration and the KKT matrix form of linearized velocity

time stepping:(
M− h2K −hJT

J 0

)(
vl+1

λ

)
=

(
Mvl + hfext

−γ
h
c(xl)

)
, (6.54)

where K is the tangential stiffness matrix introduced in Section 4.3. The

whole system is then solved using a linear system solver or a mixed LCP solver

when unilateral constraints are also present. We take a different approach

proposed in [SLM06] based on the regularization concepts described above.

For velocity-based DAE solving this can be summarized as:(
M −hJT

J C−1

)(
vl+1

λ

)
=

(
Mvl + hfext

−γ
h
c(xl)

)
, (6.55)

that we extended to position based dynamics in Section 6.8.

For the particular case of the geometrically linear finite element method

(FEM) we use the element energy in order to identify the constraint function:

Ve = W ε̃TCε̃, where W is the element volume, ε̃ is the element constant

strain in Voigt notation and C is a stress-strain relation matrix depending

on elastic material properties, i.e. Young’s modulus and Poisson ratio (or

Lamé coefficients alternatively). For more details see equation (3.16) and

the whole Section 3.5. The constraint function is then found by comparing

Ve to (6.46):

c(x) =
√
W (x)ε̃(x). (6.56)

For the strain function we can use any material model we want; just like

in [SLM06] we use the nonlinear Green-Lagrange strain, as it preserves the

volume under large deformations (in contrast to Cauchy strain). You can

find the Jacobian for the constraint in (6.56) further below. We emphasize

the fact that even though the the finite elements are linear, we are using a

nonlinear St. Vennant-Kirchoff elasticity model.

96

6.11. CONSTRAINT BASED FEM

The advantage of the formulation in (6.55) over (6.54) is that we can

invert both M and C quite easily, so we can take the Schur complement. In

the case of FEM we can use this together with an iterative solver to obtain

a matrix-free formulation (in the sense that we don’t build the whole system

matrix JM−1JT + h−2C−1). If using a Gauss-Seidel or Jacobi approach the

whole constraint based FEM method boils down to solving the following 6

by 6 system several times per element:

(Ae + 1
h2

C−1
e)λe + be = 0. (6.57)

In Algorithm 4 you can find a pseudo-code implementation of the inner

loop of a constraint based Gauss-Seidel FEM solver. It can be easily turned

into a position based method by updating the positions at every iteration and

hence updating the deformation gradient, the strain, the constraint Jacobian

and the system matrix. The output of the procedure consists of the 4 forces

that will be applied to the tetrahedron vertices. Note that we solve for all

the 6 Lagrange multipliers in a block matrix fashion using a direct solver.

Algorithm 4 Pseudo-code for computing the internal forces inside a tetrahe-
dron. Here a block Gauss-Seidel approach is employed.

Input: tetrahedron (x0,x1,x2,x3)
Compute shape matrix Ds = [x1 − x0|x2 − x0|x3 − x0]
Compute deformation gradient F = DsD

−1
m

Compute Green strain ε from the matrix 1
2
(FTF− 13)

Compute strain Jacobian J
Compute local system matrix A = h2JMJT + C−1

Solve Aλ+ ε = 0
Output: internal forces f = JTλ = (f0, f1, f2, f3)

The constraint function in (6.56) depends on x which is made up of the

four tetrahedron vertices: x0,x1,x2,x3. There are 6 constraints correspond-

ing to the 6 unique values making up the symmetric strain tensor. Let Λ be

a helper matrix of the same dimension as the Jacobian (6x12). It too can be

97

CHAPTER 6. CONSTRAINED DYNAMICS

split in two 3×12 matrices Λn and Λs. The normal one is:

Λn =
[
Λ0
n Λ1

n Λ2
n Λ3

n

]
, (6.58)

where Λi
n = diag(yi), y1 to y3 are the rows of a matrix X and y0 = −y1 −

y2 − y3 [MSJT08]. The matrix X is the inverse of the initial shape matrix

Ds. We are assuming linear finite elements, i.e. tetrahedra of constant strain.

For shear we define a similar helper matrix:

Λs = 1
2

[
Λ0
s Λ1

s Λ2
s Λ3

s

]
, (6.59)

where

Λi
s =

 0 yiz yiy

yiz 0 yix

yiy yix 0

 . (6.60)

The normal and shear Jacobians of c are then:

Jα =
√
WΛαF

T +
1

2
√

(W)
εα∇W, (6.61)

where α ∈ {n, s}, F = DmX is the deformation gradient, εn = (ε11 , ε22 , ε33)

and εs = (ε23 , ε13 , ε12). For Cauchy strain these Jacobians simplify to:

Jα =
√
WΛα +

1

2
√

(W)
εα∇W, (6.62)

The gradient of the volume is then a 12 component row vector consisting of

the following partial derivatives:

∇W =

(
∂W

∂x0

∂W

∂x1

∂W

∂x2

∂W

∂x3

)
, (6.63)

98

6.11. CONSTRAINT BASED FEM

where

∂W

∂x1

=
1

6
(x2 − x0)× (x3 − x0), (6.64)

∂W

∂x2

=
1

6
(x3 − x0)× (x1 − x0), (6.65)

∂W

∂x3

=
1

6
(x1 − x0)× (x2 − x0), (6.66)

∂W

∂x0

= −∂W
∂x1

− ∂W

∂x2

− ∂W

∂x3

. (6.67)

We have now all the information needed to build the Jacobian JT = (JTn JTs).

The same formulation can be found in Hammad Mazhar’s thesis where

it was implemented in a VTS context and also validated [Maz16]. Our main

contribution is that we extended the method in [SLM06] to the position pro-

jection case by plugging in regularized constraints into the general projection

formulation in (6.9). Also by our equivalence result in Section 6.8 we are able

to prove that there is no difference between traditional FEM using implicit

integration and our proposed method based on constraints and position pro-

jection. Again, any VTS variant of this FEM solver is just a semi-implicit

linearized version of the nonlinear constraint case.

Damping can be added through the method described in Section 6.9, but

other methods can be used too. For example air drag can be formulated

directly in the integrator as described in [Jak01]. We used the framework

described in this chapter and the FEM solver in particular in [FM15a] to sim-

ulate cloth accurately. We think our method is a constraint based contender

to implicit integration methods like the one in [VMTF09].

We can apply the block local solve formula (6.57) to the 2D continuum

mechanics formulation given in Section 5.4. We choose to apply this block

approach only for the stretch components together, as the shear stress com-

ponent is related only through a diagonal term to strain, and thus decoupled

from the normal directions. The resulting 2×2 local linear system for the

two stretching constraints is:

(h2A + C̃−1
2D)δλ+ ε̂(x) = 0,

99

CHAPTER 6. CONSTRAINED DYNAMICS

where in the case of isotropic materials

C̃−1
2D =

1

E
√
a

(
1 ν

−ν 1

)
.

We also implemented volumetric deformable bodies using this theory (for

a showcase see Chapters 5 and 8). We argue that our method is physically

correct and more accurate than strain limiting techniques [MCKM14] or the

continuum PBD method in [BKCW14]. Also, as already stated, we are not

far from the Projective Dynamics approach [BML+14] as the problem for-

mulation is the same. We chose to use regularization in order to be able to

extract a Schur complement and make our solver matrix-free by applying an

iterative method like relaxation or one of the other gradient descent methods

described in Section 6.6.

6.12 Unilateral constraints

We used the SQP method throughout this chapter to justify linearized mod-

els for a reason, even if it was not always necessary. In the context of bi-

lateral constraints SQP is equivalent to Newton’s method, as the problem

can be transformed to an unconstrained one. But SQP becomes relevant

when adding inequality constraints and at every iteration we can consider

projection as a QP with both equality and inequality constraints:

minimize 1
2h2
δxTMδx

subject to Ψ(xk+1) = 0,

Φ(xk+1) ≥ 0,

(6.68)

where the constraint function c was split into a bilateral part Ψ and a unilat-

eral one Φ. The most relevant example of a unilateral constraint is contact.

When writing the KKT optimality conditions for (6.68) we obtain the com-

plementarity slackness conditions for the inequality constraints [WN99]:

Φ(xk+1) ≥ 0,λU ≥ 0,λTUΦ(xk+1) = 0, (6.69)

100

6.12. UNILATERAL CONSTRAINTS

where λU are the Lagrange multipliers corresponding to unilateral constraints.

Two vectors x and y are said to be complementary x ⊥ y if they are neither

positive nor zero both at the same time for each component. Thus (6.69) can

be written alternatively in a shorter form as:

0 ≤ Φ(xk+1) ⊥ λU ≥ 0. (6.70)

This relation is nothing else but the Signorini contact condition [WL06]. This

condition states that when the distance between bodies is strictly positive

the reaction force is zero, whereas when the distance is zero (the bodies are

touching) the force is strictly positive, meaning there cannot be attractive

forces, but only repulsive ones. In the latter case the constraints are called

active and they correspond to the active set of constraints [WN99]: Φi(x) =

0, i ∈ GA. Note that the complementarity that is included in this condition

is already implied in the QP formulation (6.68) where only the inequalities

on Φ are present.

Note that most of the topics covered in this chapter also apply to unilat-

eral constraints, like minimization structure, regularization, damping, sta-

bility etc. The only difference is that they now have to be expressed in

constrained optimization form or as a complementarity problem. They are

more complex than a DAE as not all rows have an equal sign, but also in-

equality and perpendicularity symbols. Potentially these formulations can be

converted to equations and solved with Newton’s method [Jea99, BETC14].

However, we chose to use specialized iterative solvers for the inequality prob-

lem that are similar to the ones presented in Section 6.6 and that rely on

projection operators, e.g. projected Gauss-Seidel (not to be confused with

projection on the constraint manifold).

101

Chapter 7

Nonsmooth dynamics

This chapter is about contact and friction essentially. The name nonsmooth

dynamics is given by the fact that both impacts and friction cause disconti-

nuities in the velocity. This does not play well with the classical theory of

integration of differential equations. Integrators need to be restarted every

time there is an abrupt change in velocity or position and the new values are

used as new initial conditions. Event based simulators actually do this by

bisecting for the exact time of discontinuity, applying a different algorithm

to handle it (e.g. impact law) and then restarting the integrator. But this

approach can lead to paradoxes: for example a ball falling on a table with

inelastic collision restitution. The time between two successive impacts will

become infinitely small (a form of Zeno’s paradox) and the number of impacts

infinitely high to be handled by a computer.

We are not taking the event based approach here, but a time stepping

one: discontinuities are stepped over. Nonsmooth dynamics was developed

in the 80s by Moreau, Monteiro-Marques and others precisely to handle the

paradoxes of Zeno and Painlevé. Acceleration based methods can handle

inequality constraints, contact and friction and they were among the first to

exploit the complementarity problem. Switching to using impulses (integrals

of force over short times) as the main variables is what lead to the develop-

ment of velocity time stepping schemes which are implemented in the physics

engines of today (see Section 2.2 for a more detailed history).

103

CHAPTER 7. NONSMOOTH DYNAMICS

However, the field is under development and a lot of results are missing.

For example the numerical methods for solving frictional contact cannot be

proven under all circumstances to converge towards the physical solution

of the problem. We also have to keep in mind that a lot of idealization

is going on here, but even a simple friction model like Coulomb’s can pose

serious challenges. And this is the context where we are making our own

contribution, namely that position based methods can also treat contact and

friction in the framework of nonsmooth dynamics.

7.1 Mathematical prelude

We will introduce now a few notions of convex and nonsmooth analysis that

may help you understand the following sections. Unfortunately the field

is quite broad to be covered here and also quite complex and still under

development. We will give only a few notions that are actually used in this

thesis and refer the reader to the many references mentioned above for a

more detailed view.

Let us start with the problem formulation by taking the DAE in (6.4)-

(6.5) and replacing the bilateral constraint with a unilateral one Φ as de-

scribed in Section 6.12:

M
dv

dt
= fext + JTλ, (7.1)

0 ≤ Ψ(q) ⊥ λ ≥ 0. (7.2)

This set of equations is called a differential complementarity problem (DCP)

[ST96] as it combines a differential equation with a complementarity con-

dition. Note that in this chapter we will use the symbol q for generalized

positions to emphasize the fact that we are now including rotational degrees

of freedom too as needed for rigid bodies (see Section 5.1). Also for the

velocity derivative we did not use the dot symbol in order to stress the fact

that the velocity is no longer considered a smooth function but a function of

bounded variation and that dv is actually a differential measure [Mor88].

The fact that the derivative is not uniquely determined at sharp corners

104

7.1. MATHEMATICAL PRELUDE

results in a reformulation of Newton’s second law as a set inclusion rather

than an inequality. This means that that the acceleration has no longer a

clear meaning and the variation of the momentum is caused by set valued

forces. Also, abrupt changes in the velocity are caused by impulses, which

can be seen as integrals of strong forces over short times, i.e. distributions or

generalized functions, e.g. the Dirac δ function. This is technically called a

measure differential inclusion (MDI). In the case of constraints the reaction

forces are also potentially not unique (again at sharp corners of the constraint

manifold) and so, in order to express them, we need concepts like the indi-

cator function, subdifferential, the subdifferential of the indicator function

for the permissible set, normal cone and others. We are not introducing all

these concepts here formally and refer the reader to the bibliography. Most

of the times we can continue using equality formulations as you will notice

throughout this chapter and in many of the references.

The nonlinear complementarity condition in (7.2) can also be reformu-

lated as a variational inequality (VI) [CPS92, AB08]:

∀y, (y − x)TΨ(x) ≥ 0. (7.3)

The solution x∗ correspond to λ in (7.2). The name variational inequality

originates from the elastostatic contact of continua where the variation of a

potential function is no longer zero but subject to an inequality given by a

unilateral constraint [WL06]. Combining the VI with the constrained equa-

tions of motion we obtain a differential variational inequality (DVI) [PS08].

This is equivalent to the DCP and it is a popular name given nowadays to the

problem of contact and friction as it can also encompass the infinite dimen-

sional case of continuous materials. In this thesis we are only dealing with the

finite dimensional case of particles and rigid bodies. In the case of deformable

bodies we consider the nodes obtained after finite element discretization (or

any other discretization) as particles with lumped mass.

The normal cone to a given set S at a point x ∈ S is the set:

NS(x) = {p : ∀y ∈ S, (y − x)Tp ≤ 0}. (7.4)

105

CHAPTER 7. NONSMOOTH DYNAMICS

For an interior point this set is {0}. For a boundary point x ∈ ∂S the normal

cone can be understood as the normal vector if the boundary is smooth or

the bundle of all possible normal-like directions when expressed in a sharp

corner [Stu09].

The dual of a cone K is the convex cone [BV04]:

K∗ = {y : ∀x ∈ K,xTy ≥ 0}. (7.5)

The negative normal cone is called the polar cone or the tangent cone: K◦ =

−K∗ with K = NS.

7.2 Continuous setting

In order to paint a clear picture of contact dynamics we illustrate in Figure

7.1 a particle contact point with a surface. At this point one can identify

a normal to the surface, ni, and any two tangent vectors, si and ti, so that

together they form an orthonormal frame. When switching to generalized

coordinates these normal tangent directions become the vectors Di
n, Di

s and

Di
t [Ani06, TA11]. Keep in mind that that all pairwise rigid body collisions

can be reduced to this scenario. In general, multiple contact points are

considered and this why we use i as the contact index.

The most general formulation of constrained dynamics with contact and

friction is given in continuous form by a DVI [TA11]:

M
dv

dt
=
∑
i∈GA

(γinD
i
n + γisD

i
s + γitD

i
t) +

∑
i∈GB

(γiB∇Ψi) + f ltot, (7.6)

dq

dt
= v, (7.7)

Ψi(q) = 0, i ∈ GB, (7.8)

0 ≤ Φi(q) ⊥ γin ≥ 0, i ∈ GA, (7.9)

(γis, γ
i
t) = arg min√

(γis)2+(γit)
2≤µiγin

(v)T (γisD
i
s + γitD

i
t), (7.10)

106

7.2. CONTINUOUS SETTING

v

°

s

t

n

n

T

T

Figure 7.1: Particle contact point with friction cone Υ given by θ = arctanµ
and its polar cone Υ◦ depicted below.

where i is the constraint index, GA is the set of active unilateral constraints,

GB is the set of bilateral constraints, Φi(q) is a unilateral constraint function

describing contact (i.e. gap function), Di
n is the gradient of the gap function:

∇Φi(ql+1), γin is the Lagrange multiplier of the contact condition (7.9), i.e.

normal reaction magnitude, Di
s and Di

t are the generalized tangent directions,

γis and γit are the corresponding tangent Lagrange multipliers, i.e. friction

force components, µi is the friction coefficient, Ψi(q) is a bilateral constraint

function, ∇Ψi(q) is its gradient, γiB is a Lagrange multiplier enforcing bilat-

eral constraints (7.13), and ftot is the total generalized force acting on the

system (external and Coriolis). Note that these equations are an extension

to (6.4)-(6.5) as they also accommodate contact (7.9), friction (7.10) and

nonsmooth trajectories. We also made a slight change of notation to keep in

line with some of our references, namely we use the transpose of the Jacobian

107

CHAPTER 7. NONSMOOTH DYNAMICS

matrices. e.g. Di
n = (Jin)T , and denote the Lagrange multipliers by γ and

give λ a different meaning (Section 7.3).

We give here directly a discretized form of the DVI:

M(vl+1 − vl) = h
∑
i∈GA

(γinD
i
n + γisD

i
s + γitD

i
t)

+ h
∑
i∈GB

(γiB∇Ψi) + hf ltot,
(7.11)

ql+1 = Λ(ql,vl+1, h), (7.12)

Ψi(ql+1) = 0, i ∈ GB, (7.13)

0 ≤ Φi(ql+1) ⊥ γin ≥ 0, i ∈ GA, (7.14)

(γis, γ
i
t) = arg min√

(γis)2+(γit)
2≤µiγin

(vl+1)T (γisD
i
s + γitD

i
t)., (7.15)

where Λ is an implicit Euler integration operator for the positions. The

novelty in our approach is that we are using a full implicit Euler integrator

instead of semi-implicit/symplectic Euler [ST96, AP97] and we keep the non-

penetration condition at position level as a nonlinear unilateral constraint.

Equations (7.11)-(7.12) represent the implicit Euler integration step (see

Sections 4.1 and 5.1 for more details). Equation (7.14) represents the Sig-

norini contact complementarity conditions and (7.15) the maximum dissipa-

tion principle that synthesizes the Coulomb friction laws [BETC14]. This can

also be stated as the condition that the total contact force γiA = (γin, γ
i
s, γ

i
t)

should reside inside the friction cone (see Figure 7.1 for an illustration):

Υi
A =

{
γiA :

√
((γis)

2 + (γit)
2) ≤ µiγin

}
. (7.16)

Note that the conditions (7.13) and (7.14) are strongly nonlinear which

makes the problem hard to tackle. Also, the problem in (7.11)-(7.15) is

nonconvex due to the coupling between the friction and the normal force

[AH04b, KSJP08]. Usually nonlinearity is eliminated by constraint lineariza-

tion [AH04a] (see also Section 6.3). In what follows we will present two new

ways of handling the nonlinearity and nonconvexity of the problem.

108

7.3. POLYHEDRAL FRICTION CONE

7.3 Polyhedral friction cone

We can reduce the DVI continuous formulation to a series of solvable mixed

LCPs by choosing a set of tangent vectors {d1 . . .dp} that describe a regular

polygon as the base of a pyramid approximating the friction cone:

Mv −Mvl − hf ltot − h
∑
i∈GB

(∇Ψi
kγ

i
B)−

h
∑
i∈GA

(γinD
i
n,k +

p∑
j=1

βijD
i
j,k) = 0,

(7.17)

i ∈ GA, 0 ≤ Φi(qk) + h(Di
n,k)

Tv ⊥ γin ≥ 0, (7.18)

0 ≤ λi + (Di
j,k)

Tv ⊥ βij ≥ 0, (7.19)

0 ≤ µiγin −
p∑
j=1

βij ⊥ λi ≥ 0, (7.20)

i ∈ GB,Ψi(qk) + h(∇Ψi
k)
Tv = 0, (7.21)

where Dj is the generalized coordinates equivalent of dj, βj are the fric-

tion Lagrange multipliers and λ is a Lagrange multiplier approximating the

tangential slip velocity. This formulation cannot be expressed as a convex

quadratic program (QP) but only as a mixed LCP and the existence of so-

lutions is given by the copositivity of the LCP system matrix [CPS92].

Note that in order to obtain full implicit integration we need to use a

fixed point iteration that converges to the solution vl+1 of the DVI nonlinear

problem. This is done by successively recomputing the constraint functions

and all the constraint directions at point qk, where k is the iteration number.

The solution of each resulting system is vk+1 and the new positions are

qk+1 = Λ(ql,vk+1, h). The iteration described above is nothing else than the

nonlinear scheme presented in Section 3.6 of [ST96]. We present a sketch of

the proof of convergence in the rest of the section.

Let vk+1 = P (vk) be a mapping that extracts the velocity part of the

solution (vk+1,γn,β,λ) of the MLCP in (7.17)-(7.21). The existence of the

solution for the MLCP is proven by showing that the matrix of the equivalent

LCP is copositive [ST96, AH04a].

109

CHAPTER 7. NONSMOOTH DYNAMICS

It can be shown easily that the solution to the nonlinear complementarity

problem (NCP) obtained by replacing (7.18) with

0 ≤ Φi(ql+1) ⊥ γin ≥ 0, i ∈ GA (7.22)

is a fixed point of P , i.e. v∗ = P (v∗). Using Theorem 2.1 from [AH04a]

we can show that P is equivalent to a quadratic problem perturbed on both

the left and the right hand sides by the parameters vk and Γi = µiλi, i.e.

QP (v,Γ) ≡ QP (c(v),D(v),Γ):

minimize 1
2
vTMv − vT (Mvl + hf ltot)

subject to (Di
n,k)

Tv + µi(Di
j,k)

Tv ≥ −(1
h
φi(vk) + Γi),

(7.23)

where φ(v) = Φ(ql+hv)−h∇Φ(ql+hv)Tv. Using Lemma 2.2 from [AH04a]

we can choose a solution λ∗ = −minj{dTj v∗} = Λ(v∗), where v∗ is a solution

of (7.23) or a fixed point of P . As the mapping P is equivalent to QP we

can now write the fixed point formulation:

v∗ = P (v∗) = QP (v∗, µΛ(v∗)). (7.24)

We can now prove that P is a contraction or that

‖P (v1)− P (v2)‖ ≤ c‖v1 − v2‖, (7.25)

for any v1 and v2 and c < 1. The QP in (7.23) is non-convex in terms of v

and λ, but convex in terms of v only as the matrix M is positive definite.

Using Theorem 1 from [AP97] we get Lipschitz continuity for the mapping

QP and by adapting Theorem 3i from the same source we get:

‖QP (v1,Γ1)−QP (v2,Γ2)‖ ≤ L(Kµ, KΓ, Kv)(‖Γ1−Γ2‖+‖v1−v2‖), (7.26)

for any Γj ≤ KΓ and vj ≤ Kv, where j = 1, 2 and µ ≤ Kµ. These as-

sumptions are needed as they are tightly connected to the feasibility of the

QP in (7.23): this happens only under Mangasarian-Fromovitz constraint

110

7.4. SMOOTH FRICTION CONE

qualification (MFCQ) which is equivalent to a pointed friction cone condi-

tion (Lemma 2.5, [AH04a]). We now use the fact that Γ = µΛ(v) and the

mapping Λ is globally Lipschitz with a parameter KD (Lemma 6, [AP97]):

‖Λ(v1)− Λ(v2)‖ ≤ KD‖v1 − v2‖, (7.27)

for any v1 and v2, and so from equations (7.24), (7.26) and (7.27) we obtain:

‖P (v1)− P (v2)‖ ≤ µL(Kµ, KΓ, Kv)(KD + 1)‖v1 − v2‖, (7.28)

for any v1 and v2 in a vicinity of v∗, where µ = max(µi) and L, Kµ, KΓ, Kv

and KD are Lipschitz continuity parameters. Thus, if we choose µ sufficiently

small:

µ < µ◦ =
1

L(Kµ, KΓ, Kv)(KD + 1)
, (7.29)

we can prove that P is a contraction and so the fixed point iteration in

(7.17)-(7.21) converges to a solution of the NCP. Moreover, it can be shown

that it is also dissipative by reusing Theorem 3.2 from [AH04a] in a recurrent

fashion, i.e. the kinetic energy after any number of iterations is always less

than the initial kinetic energy plus the work of external forces.

7.4 Smooth friction cone

In [Ani06] the DVI is linearized and convexified so that it can be expressed

in the end as a quadratic minimization problem with conic constraints. We

take this formulation and extend it to the fully implicit and nonlinear case

in (7.11)-(7.15):

minimize W (v) = 1
2
vTMv − f̂Tv

subject to Φi(ql+1)− hµi‖viT‖ ≥ 0, i ∈ GA,

Ψi(ql+1) = 0, i ∈ GB,

(7.30)

where f̂ = Mvl+hf ltot and ‖viT‖ =
√

((Di
s)
Tv)2 + ((Di

t)
Tv)2 is the magnitude

of the tangential relative velocity at the contact point. It is easy to show that

111

CHAPTER 7. NONSMOOTH DYNAMICS

the solution to (7.30) is a fixed point of the smooth cone optimization problem

in [Ani06] (equation 5.5). Our approach for solving this problem is to derive

a new fixed point iteration that is equivalent to a CCP at every kth iteration:

Υ◦k 3 −(hDT
k v + bk) ⊥ γ ∈ Υk, (7.31)

where γ = (γA,γB) is the Lagrange multipliers vector and bk = (bk,A,bk,B) -

the first component corresponding to contacts bk,A = (Φ(qk)−hDT
n,kvk , 0 , 0)

and the second to bilateral constraints bk,B = Ψ(qk) − h∇ΨT
k vk. Υ is the

direct sum of all friction and bilateral cones, Υ◦ is the corresponding polar

cone and D is the concatenation of all constraint directions, i.e. Di
A =

[Di
n|Di

s|Di
t] and Di

B ≡ ∇Ψi. You can consult [TA11] for more details on

notation and how (7.31) can be derived from a linearization of (7.30) around

(qk,vk). The CCP in (7.31) can be solved using another fixed point iteration

based on matrix splitting (i.e. relaxation) with constraint projection, shown

to converge in [TA11]. After k iterations the solution is vk+1 which can be

substituted for vl+1.

We would like to note that the scheme in (7.31) is similar in approach

to the nonlinear mixed complementarity scheme presented in Section 3.6 of

[ST96]. Also, running only one relaxation iteration inside the Newton like

scheme in (7.31) is analogous to the nonlinear projected Gauss-Seidel or

Jacobi scheme used in PBD [Jak01, MHHR07]. We will show in the next

section that the nonlinear iteration (7.31) is actually the basis for position

projection methods (including PBD) and that this is a novel result that

allows the accurate inclusion of friction inside position based solvers.

One drawback of the velocity based convexified smooth cone approach

is that it may produce normal impulse artifacts [Ani06] but these manifest

only for high slip speeds and big friction coefficients [MHNT15]. Given that

our approach is a fixed point iteration very similar to the one in [ACLM11]

(i.e. the velocity is updated at every iteration) it should also converge to

the solution of the original nonconvex problem. However, in practice, when

running fewer iterations one may choose to use a different friction model in

order to avoid potential artifacts. For example one can use the mixed LCP

112

7.5. POSITION PROJECTION

(MLCP) polyhedral friction cone model (see supplemental material for a con-

vergence proof) or another model like box LCP (BLCP) friction [BETC14].

Note that all these alternative friction models manifest anisotropy. Another

choice was to use a simple cylinder projection operator that does not affect

the normal impulse. This simply clamps the friction force at each iteration,

but unfortunately we do not a have convergence proof (although in simple

stacking experiments we saw no difference to cone projection). For further

discussion see Section 7.8.

Extending the proof in the previous section to the smooth cone case boils

down to showing that the solution of (7.30) is a fixed point of the mapping in

(7.31), i.e. v∗ = CCP (v∗), and that CCP (v) is a contraction. The former is

trivial, while the latter can be shown by noting that CCP (v) is a perturbed

CCP that results from the QP formulation from [Ani06] in the limit case

p → ∞. Thus we can obtain a Lipschitz continuity (sensitivity) result for

the CCP mapping similar to the one presented above. Then if we choose a

sufficiently small maximum friction coefficient like the one in (7.29) we can

show that the fixed point iteration described in (7.31) converges. Still, this

is not a complete result, as we do not have a theorem ensuring stability of

the conic constraints problem CCP (ν) under perturbations ν like we had in

the polyhedral case. Even so, we conjecture that our result is true for the

smooth cone case and it can be proven in the future with a more thorough

mathematical investigation.

7.5 Position projection

If we define ṽ = vl + hM−1f ltot = M−1f̂ as the unconstrained velocity then

it is easy to show that the problem in (7.30) remains unchanged if we set

W (v) = 1
2
δvTMδv, where δv = v− ṽ. By looking at (7.12) we can see that

we can approximate δv by a linear relationship to the displacements δq =

ql+1− q̃, where q̃ = Λ(ql, ṽ, h) are the unconstrained positions. This relation

is often exact in implementations and we can write δv = h−1Lδq, where L

is a linear mapping that can depend on q. Thus it can be shown that the

113

CHAPTER 7. NONSMOOTH DYNAMICS

quadratic objective in (7.30) can be reformulated in terms of displacements:

minimize W (δq) = 1
2h2
δqTM̄δq,

subject to − u ∈ Υ◦,
(7.32)

where M̄ = LTML and u(δq) = (uA,uB) with uA = hDT
k v + bk =

(Φ(ql+1), hDT
s vl+1, hDT

t vl+1) and uB = Ψ(ql+1). The constraints are the

same as for (7.30) but they are expressed in a more compact form as in

[TA11]: the velocity-like term u should reside inside the dual of the friction

cone Υ∗ = −Υ◦.

In this form we can easily recognize the projection method for solving

differential equations on manifolds (see equation (6.9)). The fixed point

iteration in (7.31) extends the projection method to unilateral constraints

and friction, given that we use the initial guess for velocity v0 = ṽ. If we use

v0 = 0 instead and only one fixed point iteration we obtain the velocity time

stepping method with linearized constraints that is prevalent in rigid body

dynamics simulations [AH04a].

For the equality constrained case, the fast projection method presented

in [Gol10] can be used to minimize (7.32). PBD accomplishes the same task

using nonlinear projected relaxation (e.g. Gauss-Seidel, Jacobi, SOR). What

fast projection essentially does is it successively projects the positions on

the constraint manifold. This is done by iteratively solving the weighted

least squares problem given by (7.32) in terms of the dual variables γk+1.

Or rather constraint force increments δγk+1 are computed in a sequential

quadratic programming (SQP) approach, which are then used to update the

state of the system. This is the frictionless case presented in Section 6.12.

The dual form problem is obtained following the approach in [MHNT15]

and [TA11] (see also Section 6.4):

minimize 1
2
δγTAkδγ + δγT rk

subject to γk + δγ ∈ Υk,
(7.33)

where Ak = h2DT
k M̄−1Dk and rk = hDT

k vk+bk. By taking the limit k →∞

114

7.6. PROJECTED ITERATIVE SOLVERS

we can formulate this SQP-like fixed point iteration by a single nonlinear

minimization problem with conic constraints:

minimize 1
2
γTAγ + γT r

subject to γ ∈ Υ,
(7.34)

where A = h2DTM̄−1D with D evaluated in ql+1 and r = u. This is none

more than the dual of (7.32). In conclusion, equations (7.32) and (7.34)

are the most general formulations of position projection methods (e.g. fast

projection, PBD) and they are derived from the nonlinear velocity based

formulation in (7.30). We believe that this is a new result and it makes a

powerful connection between velocity and position level methods.

7.6 Projected iterative solvers

All the solvers presented in the previous chapter (Section 6.6) can also be

applied to VTS methods and nonlinear position projection too. This is done

using projection operators on the permissible set. This was done in the past

for relaxation solvers for both VTS (either in a LCP or CCP formulation)

[CPS92, TA11, Lac03] and PBD. In essence this was the motivation for all

our nonlinear schemes described above: to develop a rigorous mathematical

model for projection on the friction cone. This is because in all our inves-

tigations of the literature we found no clear way of handling friction in the

context of position based dynamics and no proof to why such a nonsmooth

dynamics approach would work. We think this is an important contribution

that was lacking - up to this point we found no previous work that stated

the same results in a direct fashion. Also, this is also the strongest proof

besides the regularization equivalence approach in the previous chapter that

position projection is indeed a physically correct method.

We followed the example of projected relaxation methods and devised

our own general projected gradient descent template for solving unilateral

115

CHAPTER 7. NONSMOOTH DYNAMICS

constraints similar to (6.33) [FM14a]:

λk+1 = proj(λk + αdk + β(λk − λk−1)), (7.35)

where the projection operator can be as simple as a clamp for nonnegative

or box constraints [SHNE10b, Lac03] or more complex like a cone projection

[TA11]. Our mathematical approach was not so mathematically rigorous but

we found it to work in practice. For example we chose not to do gradient

projection as is done in other works [RA05, HATN12, WN99] but only project

the solutions at every iteration on the admissible set. The motivation behind

this was that in the end we developed an improved or accelerated form of

Jacobi that is not that different from the classical method, so neither should

be the projection step. However, more mathematical investigation should be

done here to see if additional tangent space projection steps are beneficial.

The last term in (7.35) is called a momentum term and it is used mainly in

APGD [MHNT15] and our improved Jacobi scheme.

7.7 Rigid bodies

In this section we present another of our contributions: a rigid body simu-

lation method with contact and friction using position projection. Previous

position based contact approaches are not very rigorous [Jak01, MHHR07].

Some authors also preferre to use bilateral constraints instead [Gol10, Bri14].

The only paper we found on rigid body simulation using position based dy-

namics [DCB14] does not offer a proof to why the method works and there

is no backing material in the mechanical engineering literature either.

Modeling contact and friction can be done by adding a gap scalar function

along the contact normal direction nij:

Φ(q) = nij · (xi + Ripi − xj −Rjpj), (7.36)

where pi and pj are the pair of closest points expressed in their respective

local frames. The derivation of the Jacobian, i.e. the normal generalized

116

7.7. RIGID BODIES

constraint direction Dn, can be found in many references [Cat05, Smi05],

while Ds and Dt can be built from it. Similarly a bilateral constraint rep-

resenting a spherical joint can be represented by a 3 valued vector function:

Ψ(q) = xi + Ripi − xj −Rjpj = 0. A hinge constraint has only one value,

this number representing the number of unconstrained rotational degrees of

freedom.

Contact only has been tackled in the past either by instantaneously con-

sidering it as a bilateral constraint or through a crude complementarity ap-

proach. Friction on the other hand has had no solid mathematical framework

to rely on and we believe that our nonlinear fixed point iteration is the first

(using either an LCP or CCP discretization). You can find our pseudo-code

for frictional contact between rigid bodies in Algorithm 5. Note that we

identify the two bodies by the indices 1 and 2 and a contact pair is fully de-

termined by a world normal n and the closest points between the two bodies

a1 and a2 - each expressed in their respective frame.

Algorithm 5 Pseudo-code for computing the normal and friction forces be-
tween 2 rigid bodies in contact. Can be used with either a Jacobi or a
Gauss-Seidel approach (ω ≥ 1, β = 0).

Input: contact pair (n, a1, a2), β, old force γ, and increment δγ
p1 = R1a1,p2 = R2a2

Compute normal residual rn = n · (x1 + p1 − x2 − p2) (gap)
Compute normal diagonal term dn of matrix A
γn = clamp(γn − ω

h2dn
rn − βδγn, 0,∞), γT = 0

Compute relative velocity v12 = (v1 + ω1 × p1)− (v2 + ω2 × p2)
Compute tangential relative velocity vT = v12 − (n · v12)n
if vT 6= 0 then

Compute tangential residual rT = ‖vT‖ (slip speed)
Compute tangential direction τ = vT/vT
Compute tangential diagonal term dT
(γn, γT) = project(γn, γT − ω

h2dT
rT − βδγT)

end if
Output: contact force γ = (γn, γT), i.e. f = γnn + γTτ

117

CHAPTER 7. NONSMOOTH DYNAMICS

7.8 Friction models

The pseudocode in Algorithm 5 is built in such a way that we only need

one tangential direction for computing the friction impulse, i.e. τ = vT/vT

(although this may prove tricky when vT is close to zero). We found that

when using the cone projection operator in [TA11] we do not necessarily need

to use two tangent orthogonal directions and projecting directly the vector

along τ is a good approximation. This is also a good optimization in the

sense that we only do the relaxation solve for one normal and one tangential

component per contact. The other existing methods need to do at least 3

local solves per contact. Another optimization we did was to use a cylinder

projection (i.e. clamp the magnitude of friction below the current normal

threshold µγn), even though we do not have a proof of convergence for this

scheme. The optimizations worked well and yielded plausible simulations.

Our motivation behind these optimizations was to simplify the model and

thus make it easy to implement for real-time applications where friction is

already heavily approximated.

For an overview of friction models see [Pre08] or the discussion in [Lac07].

It is important to note that some of these approximations are using an esti-

mate of the normal impulse component - the case of box or cylinder friction.

This estimate can be a constant [Cat05], coming from a previous frame or

from a previous solver iteration [PNE10]. The case that running the nor-

mal contact solver and friction solver one after the other is actually a stag-

gered approach is made in [BETC14]. The most popular friction model in

computer graphics and games is the box LCP or the square pyramid one

[Erl07, TBV12]. It was also used in the engineering literature [PT96]. Note

though that this is not the same pyramid approximation as in the Stewart-

Trinkle model (that would correspond to 4 spanning directions/faces). The

square pyramid has its edges parallel to the tangent axes, whereas the latter

polyhedral friction pyramid is rotated by 45 degrees (and the friction limits

vary depending whether the point is in a vertex or on an edge). However,

we have not implemented the Stewart-Trinkle model, as the square pyramid

model is better suited for interactive simulations.

118

7.8. FRICTION MODELS

Finally, we want to emphasize the fact that our nonlinear fixed point

iterative solver, and hence position based dynamics, can handle friction with

any of the above friction models, depending on the implementation choices.

This is why we provided proofs for the two most general cases we could think

of and the other models are just approximations. Still, it would be nice to

have clearly written proofs for the square pyramid and cylinder projection

that we used in practice. We leave this for future work.

119

Chapter 8

Unified simulation framework

8.1 Nonlinear constrained dynamics

Our unified simulator relies on the theoretical aspects presented in the pre-

vious chapters. It is in essence a position based dynamics solver with several

extensions. The most important result is that the problem can be formulated

as a constrained minimization. This permits us to use a range of algorithms

suited for nonlinear optimization.

The most compressed form of our solver can be found in equation (7.33)

with the contact and friction handling from Chapter 7 and bilateral con-

straints like the ones described in Chapter 6. Note that we can also use

regularization and damping to obtain springier soft constraints. This can

also be applied to contacts. Also very important, such constraints allow us

to simulate deformable bodies using FEM. Friction is handled correctly too:

for this we need to update the velocities at the same time as correcting the

positions. You can find the outline of such a solver in Algorithm 6 using

a Jacobi approach. Note that in the inner loop one can plug any type of

constraint solves like the ones in Algorithm 5 and 4. Some two way coupling

results between rigid and flexible bodies can be seen in Figures 8.1 and 8.2.

121

CHAPTER 8. UNIFIED SIMULATION FRAMEWORK

Algorithm 6 Nonlinear projected gradient descent constraint solver using a
Jacobi approach.

Unconstrained step to q̃, ṽ
q0 = q̃,v0 = ṽ
for k = 0:kmax − 1 do

Compute c(qk) and Dk

Compute residual rk
Update Lagrange multipliers (see Section 7.6)
Apply generalized force fc = Dkδγk+1 using both position and velocity
integrators

end for

8.2 Implementation and results

All of the algorithms were implemented in C++ in a unified manner such

that all constraints were solved at the same time and in the same solver. For

this we used a single common list of bodies that could have each a maximum

of 6 degrees of freedom. This list was split into groups, each group having

a different meaning (e.g. cloth, rigid body system or FEM soft body) and

different types of constraint lists. Some constraint types were specific to

only one group (e.g. link constraints for cloth), others were common among

several groups (e.g. contact constraints) and the rest were specially designed

for coupling between groups (e.g. rigid body vs. triangle).

In terms of constraint solving we used mainly two approaches: Gauss-

Seidel and accelerated Jacobi. We further optimized the latter using OpenMP

parallel for loop directives. You can find the speed-up factor in comparison

to Gauss-Seidel in Tables 8.1 and 8.2. Measurements were done on a dual

core laptop CPU (i5-3317U) and a quad core desktop CPU (i7-3770).

For cloth simulation our test model was mostly a rectangular grid of point

particles in order to avoid interlocking of triangle elements. We connected

the particles using stretch, shear and bend resisting links (see Section 5.4).

All the links were modeled as rigid constraints (as described in Chapter 6)

with various stiffness values like in [MHHR07]. Stretch constraints had a

stiffness factor ω (see equation (6.48)) of 1 or more if using Successive Over

122

8.2. IMPLEMENTATION AND RESULTS

Figure 8.1: Rigid bunnies falling on a piece of cloth with two way coupling.

Gauss-Seidel Accelerated Jacobi Speedup
2000 boxes 140 ms 90 ms 1.55x
50×50 cloth 6.3 ms 2.7 ms 2.33x
100×100 cloth 27.5 ms 19 ms 1.45x

Table 8.1: CPU time (for one simulation frame) comparison between Gauss-
Seidel and accelerated Jacobi nonlinear constrained dynamics solvers (dual
core).

Relaxation (SOR), whereas the other two types were closer to zero. Shearing

and bending links can also be treated as low stiffness springs, and thus can

be integrated explicitly. This is equivalent to doing only one projection step

at the beginning. If one needs more shearing and bending stiffness then more

projection steps need to be interleaved with the stretching ones.

For unconstrained integration we used Verlet, Symplectic Euler or the

special Newmark candidate step in Section 6.5. In time we gave up on Verlet

as it did not permit us to work directly with velocities.

This cloth model based on hard links is very popular for real-time simu-

lation in games as it is very simple and can be easily optimized. Although

we did implement angular bending constraints, one can use only links and

123

CHAPTER 8. UNIFIED SIMULATION FRAMEWORK

Figure 8.2: Flexible dragon falling on stairs and hitting rigid boxes.

contacts in order to keep the solver inner loop simple. This permitted us

to keep the code unified on the GPU despite the fact that bending links

do not always look well or are hard to build for triangular meshes. Usually

real-time models are not very large (few hundred particles) and are solved

using Gauss-Seidel type iterations on the CPU. For larger cloth pieces one

needs to exploit the parallel nature of the hardware and this is not trivial for

GS. Jacobi and MINRES are better suited for running on multi-core or GPU

Gauss-Seidel Accelerated Jacobi Speedup
2000 boxes 82.5 ms 40 ms 2.06x
100×100 cloth 15.4 ms 3.5 ms 4.4x
150×150 cloth 36.3 ms 15 ms 2.42x

Table 8.2: CPU time (for one simulation frame) comparison between Gauss-
Seidel and accelerated Jacobi nonlinear constrained dynamics solvers (quad
core).

124

8.2. IMPLEMENTATION AND RESULTS

0

400

800

1200

1600

2000

1 201 401 601 801 1001 1201 1401 1601 1801

C
o

n
st

ra
in

t
e

rr
o

r
L1

 n
o

rm

Frame number

GS

MINRES

CR

Figure 8.3: Evolution of cloth from initial state to steady state painted as
L1 norm of the constraint error for 30 iterations per frame using GS (blue),
MINRES (red) and CR (green).

but they need many more iterations. This is solved by CR as it has better

convergence rate than GS or by accelerated Jacobi which is comparable to

GS.

Our experiments have shown that the CR method converges better than

GS for the same number of iterations, thus making up for the extra computa-

tional cost. We illustrated stability and convergence information in Figures

8.3 and 6.3 and performance data in Figure 8.4. Measurements were done on

a 50×50 piece of cloth simulated with a time step of 8 ms on an Intel Core

i7 3770 (single threaded).

As you can see in the plot (Figure 6.3) already from 4 iterations CR

has better convergence than GS and it keeps getting better until at around

9 iterations when it’s already more CPU efficient to run CR instead of GS.

And the gap between the two increases linearly with the number of iterations,

125

CHAPTER 8. UNIFIED SIMULATION FRAMEWORK

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18 20

Si
m

u
la

ti
o

n
 f

ra
m

e
 t

im
e

 (
m

s)

Number of iterations used

CR

GS

Figure 8.4: Plot of the simulation cost per frame in milliseconds (vertical
axis) relative to the number of iterations (horizontal axis) for GS (red) and
CR (blue).

thus making CR especially suitable for very large problems targeting a large

degree of inextensibility. For example at 35 iterations GS takes roughly 1.5

more time (7.7 ms) than 12 iterations of CR (5 ms) that actually provide a

smaller error.

We implemented simplified parallel versions of both MINRES and CR

using C++ and OpenCL based on a Jacobi solver template with little mod-

ifications. After running this parallel implementation on a multi-core CPU

we obtained a speedup of up to 6 times compared to single threaded.

These results were also presented in [FM14b] and later extended in [FM14a]

where we introduced the improved form of Jacobi and a first method of real-

izing coupling and contact damping between particles and cloth: we called it

Sequential Positions (SP). In the latter paper we also focused more on gran-

ular matter simulation as you can see in Figure 5.9. We also took better care

126

8.2. IMPLEMENTATION AND RESULTS

of friction (Figure 8.5), although we did not have a clear theoretical model

and convergence result at that time. We attempted to reproduce the behav-

ior described in Section 5.8 with our methods and you can see the resulting

sand piles in Figure 8.6. Notice how the angle of repose increases with the

value of the friction coefficient.

(a) (b)

Figure 8.5: Cloth falling freely over a sphere with friction coefficient µ = 0.5:
(a) using accurate friction inside the iterative solver the cloth remains stable
on the sphere and (b) using the traditional PBD friction handling (velocity
post-processing) method the cloth falls very quickly off the sphere.

(a) µ = 0.1
(b) µ = 0.2

(c) µ = 0.3
(d) µ = 0.4

Figure 8.6: Sand piles formed by dropping 3000 particles using VTS with
different friction coefficients (15 iterations, Baumgarte stabilization γ = 0.5).

Initially we tested the accuracy of our improved Jacobi method on bilat-

127

CHAPTER 8. UNIFIED SIMULATION FRAMEWORK

eral constraints only. Our test scenario consisted of a 100×100 piece of cloth

falling from a horizontal position and hanging from two corners. The simu-

lation used a PBD method with a time step of 16 ms, one sub-step and 15

iterations. You can see the evolution in time of the system for three different

solvers in Figure 8.7. Clearly our method performs better.

0

40000

80000

120000

160000

1 201 401 601 801 1001 1201 1401 1601 1801 2001

C
o

n
st

ra
in

t
e

rr
o

r
L1

 n
o

rm

Frame number

GS

IJ

SOR

Figure 8.7: Plot of constraint error (L1 norm) for PBD cloth simulation with
different solvers (frame number on the horizontal axis): Gauss-Seidel (blue),
SOR (green) with ω = 1.2, and improved Jacobi (red) with ω = 0.5, a = 1
and b = 0.6.

Next we measured the positional errors for unilateral frictionless con-

straints by dropping 3000 particles in a box using a VTS method. As you

can see from the results (Figure 8.8), the improved Jacobi method is not

always more accurate than GS and we had to tweak it (a = 2) in order to get

better results. Still, even without tweaking, our method behaves similarly to

GS and at a similar cost (see Table 8.3).

128

8.2. IMPLEMENTATION AND RESULTS

0

200

400

600

800

1 301 601 901 1201 1501 1801

U
n

ila
te

ra
l c

o
n

st
ra

in
t

e
rr

o
r

L1
 n

o
rm

Frame number

GS

IJ

IJ1

SP GS

Figure 8.8: Plot of unilateral constraint error (L1 norm) for 3000 particles
falling in a box (VTS, γ = 0.5): Gauss-Seidel (blue), improved Jacobi with
ω = 0.5, a = 1 and b = 0.6 (red), improved Jacobi with a = 2 (green), and
Sequential Positions using GS (purple).

Gauss-Seidel Improved Jacobi
Cloth 39 ms 51 ms
Particles 5.2 ms 6.5 ms

Table 8.3: Frame time measurements made on a Intel Core i7 3770 CPU
(single-threaded) for the two presented scenarios: hanging cloth (PBD) and
falling particles (VTS).

We also tested heterogeneous mass values with large ratios between them

and found that improved Jacobi handles them just as robustly as GS. Adding

friction to the mix may introduce jitter but it can be alleviated by lowering

ω. You can see the results of a falling particles simulation with inverse mass

values between 0.01 and 1000 and friction (µ = 0.2) in Figure 8.9.

129

CHAPTER 8. UNIFIED SIMULATION FRAMEWORK

1000

1400

1800

2200

1 201 401 601 801

U
n

ila
te

ra
l c

o
n

st
ra

in
t

e
rr

o
r

L1
 n

o
rm

Frame number

GS

IJ

Figure 8.9: Plot of unilateral constraint error (L1 norm) for 3000 particles
in a box with varying masses and friction: GS (blue), improved Jacobi (red)
with ω = 0.4, a = 1, b = 0.6.

In our falling particles experiments we used 15 iterations and one sub-step

at 60 Hz, but the iteration count can be set even lower without breaking our

method. For very low iteration numbers we recommend decreasing ω and b

more in order to avoid jitter. Of course high velocities and small object sizes

can put even GS in difficulty. In this situations increasing the number of

iterations does not always work and we need to lower the time step, i.e. add

more sub-steps.

In order to measure convergence per frame for both VTS and PBD/SP

methods we switched to using the velocity error. We present results from

frame 100 (Figure 8.10) for 1000 falling particles with friction (60 iterations

per frame). Again improved Jacobi behaves very similarly to GS. Also our

SP method converges better than VTS, but only for a high enough number

130

8.2. IMPLEMENTATION AND RESULTS

0

10000

20000

30000

40000

1 11 21 31 41 51

R
e

la
ti

ve
 n

o
rm

al
 v

e
lo

ci
ty

Iteration number

GS

IJ

SP GS

Figure 8.10: Plot of relative velocity along constraints relative to the number
of iterations for 1000 particles falling in a box with contact and friction:
Gauss-Seidel (blue), improved Jacobi (red) with ω = 0.5, a = 1 and b = 0.6,
and Sequential Positions using GS with kc = 1 and kv = 0.1 (green).

of iterations. You can see in Figure 8.8 that the positional error of the SP-GS

method is also good but, for the visual aspect, impacts may require softening.

In [FM15a] we introduced the NCG solver (Section 4.3), soft constraints,

better energy dissipation and conservation through the Newmark integrator

(see also Section 6.5). Our most common test scenario was a piece of cloth

hanging by two corners, falling from a horizontal or vertical position, with

different parameters or tessellation. Given the multitude of methods used

and the differences between them it is hard to find a metric that measures

well the quality of the simulation. We opted to measure the total energy -

kinetic and potential (gravitational and elastic) and no damping, and chart

its evolution in time.

131

CHAPTER 8. UNIFIED SIMULATION FRAMEWORK

-4

-2

0

2

4

6

8

10

12

14

16

1 501 1001 1501 2001

To
ta

l
e

n
e

rg
y

Frames

Nonlinear CG

Soft Constraints

Newmark

Figure 8.11: Total energy evolution in time for the simulation of a 10×10
rubber cloth (κ = 2 N/m, 25 iterations) using NCG implicit integration
(blue), regularized PBD (red) and regularized energy preserving projection
(green).

In Figure 8.11 you can see the NCG solver behaves well and has good

convergence, but decays non-monotonically. The regularized PBD method is

smoother, dissipates energy slower, but the Gauss-Seidel solver is less accu-

rate. Energy preserving projection offers even slower energy decay while the

higher energy line is due to the kinetic energy of the oscillation.

Realistic damping is quite hard to obtain. Reducing the velocity along

constraint directions or explicitly applying damping forces many times results

in increasing the system’s oscillation. The method presented in [MHHR07]

that blends between rigid and cloth motion remains a viable option, although

what we really want to do is apply strong damping forces (like in a dash-pot)

in a stable manner.

For our damping method (see Section 6.9) we measured the total energy

minus the elastic potential in order to give a clearer picture of the velocity

reduction (Figure 8.12). As you can see a damping factor of ρ = 10h gives

a significant energy dissipation compared to soft projection (or PBD just

132

8.2. IMPLEMENTATION AND RESULTS

as well). Reaching this level of dissipation so quickly is not possible using

the method we compared against, i.e. reducing the relative velocity along

the constraint direction (basically velocity projection). We used the energy

preserving projector with a damping ratio ρ = h in order to obtain as little

artificial damping as possible while at same time damping the simulation just

a bit less than PBD would normally do.

-5

0

5

10

15

20

25

1 501 1001 1501 2001

K
in

e
ti

c
an

d
 g

ra
vi

ta
ti

o
n

al
 e

n
e

rg
y

Frames

No damping

Soft γ=10h

Newmark γ=h

Figure 8.12: Damping response for the simulation of a 40×40 piece of cloth (κ
= 2000 N/m, 25 iterations) using regularized PBD (blue), aggressive damping
(red) and slightly damped energy preserving projection (green).

Collision detection was done using both Bullet [Cou10] and our own trian-

gle mesh tests. We implemented our own code because we needed continuous

collision detection when performing tests versus cloth or for self-collisions.

We accelerated these tests using OpenMP loops and a variant of dynamic

AABB trees. Collision detection is run right after the unconstrained position

step when non-penetration constraints are sure to be violated. We do cloth-

primitive and cloth-mesh intersection tests by testing all pairs of vertices and

triangles or other primitives (e.g. sphere) in a similar fashion to [MHHR07]

and [BFA02]. We also employed continuous collision detection techniques

using the ideas presented in [Sta09] based on swept spheres. This was done

133

CHAPTER 8. UNIFIED SIMULATION FRAMEWORK

in order to catch tunneling artifacts although the contacts are still solved at

the end of the time step, which is kept fixed.

Many of the simulations for this thesis were done in real-time inside our

own OpenGL powered Windows application (see Figure 8.13). Others were

done in an offline manner and then exported as Alembic geometry caches

to Autodesk Maya and rendered using Pixar RenderMan. However, the

simulator was written with real-time in mind and a lot of the scenarios ran at

interactive rates, some even at 60 Hz. Generally we used a time step h = 16

ms, gravity g = −9.8m/s2 and 10 to 50 iterations or more for our iterative

solvers. For elastic bodies we used a Young’s modulus E = 0.5 GPa and a

Poisson ratio below 0.2. The masses of cloth and the soft bodies were raised

up to around 10 kg in order interact smoothly with rigid bodies of unit mass

or less.

Figure 8.13: Windows application written in MS Visual C++ using OpenGL.

8.3 Mixing PBD and VTS

As not all types of bodies or steps in a constraint based simulator require

nonlinear solvers, we looked at ways of combining PBD like methods with

134

8.3. MIXING PBD AND VTS

velocity time stepping (VTS). For example PBD can be used as a post-

stabilization step after VTS. This was already done in the past, but without

updating the velocities too [CP03]. Also VTS can be used before PBD to

soften the impacts. Thus we arrive at the conclusion that the two meth-

ods can be used sequentially to good results, similarly to the phase space

projection approach in RATTLE.

Still one wonders whether a single solving step can address all the issues.

VTS handles contacts well as it always tries to zero out relative velocities.

PBD can be very violent as the relative velocities depend on the penetration

which is brought near zero. Stewart referred to this as a random coefficient of

restitution manifested by the nonlinear approach. On the other hand PBD

handles bilateral constraints much better (especially when the direction is

changing fast). Then there is also the issue of initial guesses: we found that

not using the unconstrained step is often more stable for contacts. Possible

solutions include: damped PBD, a nonlinear VTS scheme (more Newton-

like iterations), limit the restitution velocity of PBD. Another thing we tried

were hybrid schemes, where some constraints or subsystems are solved using

either PBD or VTS. Unfortunately this did not work well in all cases (see

Figure 8.14), but we are still investigating ways of coupling the two methods.

One outcome would be using VTS rigids or VTS-FEM which is faster in

conjunction with PBD cloth or hair.

135

CHAPTER 8. UNIFIED SIMULATION FRAMEWORK

Figure 8.14: Hybrid method - VTS for contacts after PBD for links

136

Chapter 9

Conclusions and future work

9.1 Conclusions

We did not answer all the questions or fulfill all the goals we set in the

introduction. But we did clarify a lot of aspects during this doctoral research.

For instance, we know now that position based dynamics is truly a physically

correct method and there is no cheating involved. It is also deeply connected

to velocity time stepping methods used in rigid body simulation: VTS is

just a linearization of PBD. We also found out that both PBD and VTS

can be expressed as optimization problems and new solving strategies can be

used. Even in the case of frictional contact we no longer need to express the

problem solely as a LCP but we can turn it into a convex minimization. And

this allows us a unifying view of all constraints and a general formulation of

PBD as a fully implicit and nonlinear projection scheme.

We have also learned the relationship between Lagrange multiplier meth-

ods and penalty methods. If one finds ideal constraints too restrictive she can

still use force based constitutive laws under the same formulation and solving

approach of PBD and VTS. This is done through softening the constraints

(same as adding compliance or regularization) which is a completely physical

process. You can use it to turn a rigid link into a spring or a tetrahedron

into a finite element. We have shown proof for these arguments through-

out the thesis and also made the important point that the residual of the

137

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

iterative solvers is what really introduces elasticity into constrained systems.

In conclusion, constraint based solvers are very good at handling very stiff

systems, with the exact solution corresponding to infinite stiffness. Other-

wise, when regularized they correspond to the real physical models with given

constitutive parameters. So PBD can really be physically correct from this

viewpoint, and is actually better than VTS which is linear, semi-implicit and

has stability issues.

The same reasoning can be applied to contact: the complementarity ap-

proach is just the stiffness limit of the penalty method. And the setting of

nonsmooth dynamics allows for treating impulsive forces like impact and fric-

tion ones in a simple time stepping manner. We did our best in this thesis to

prove that the apparatus developed for nonsmooth VTS methods does also

apply for PBD. And our final conclusion was that PBD can be expressed as

a series of stabilized VTS steps or a fixed point iteration designed to solve

the original nonlinear problem.

All these theoretical findings gave us confirmation to build a unified sim-

ulation implementation. This was not essentially new but it now has an

underlying mathematical formulation to build upon. We can now simulate

rigid bodies, particles, cloth, soft bodies and possibly many others in the fu-

ture using one single constraint solver. We stress the fact two way coupling

is achieved out of the box in this way and there is no need for co-simulation,

i.e. mixing penalty solvers with constraint based ones. One can still add

forces to the mix (even in an implicit way) but the beauty of our solving

approach is that it is matrix free and easy to grasp and implement.

The author is very happy to have achieved all these things and most

importantly to have understood all these phenomena and numerical methods

better. Also he wonders why all these things were not clear from the start.

Even though some authors do seem to have hinted in these directions, the

real challenge was in selecting the signal from the noise. There is still much

to learn and work on ahead, but we are content of knowing now how the

puzzle pieces fit together. We hope that the reader has also had a good

experience reading this thesis and that she also learned new things about

simulation methods, how they relate to each other and how they can be

138

9.2. CONTRIBUTIONS

tackled numerically.

9.2 Contributions

We will now give a brief list of the original contributions presented in this

thesis together with a reference to the section where they are presented and

the article where they were published (where applicable):

• a nonlinear conjugate gradient (NCG) solver for cloth simulation - pre-

sented in Section 4.3 and published in [FM15a];

• a general formulation of position based dynamics as a minimization

problem with nonlinear constraints (Section 6.4) equivalent with im-

plicit Euler integration; we first used this formulation in an SQP solving

approach in terms of dual variables and published it in [FM14b];

• a physical foundation for the minimization formulation based on vari-

ational principles of mechanics and the Newmark integrator (Section

6.5);

• a nonlinear minimum residual and a conjugate residuals (CR) solver

for the position based dynamics optimization problem (Section 6.6.2)

also published in [FM14b];

• an improved Jacobi scheme (with two variants) based on an extra mo-

mentum term that has better convergence than standard Jacobi, is

comparable to Gauss-Seidel and can be parallelized (Section 6.6.3);

• an equivalence result between the implicit integration of elastic poten-

tials and position based dynamics with soft constraints (or regulariza-

tion - Section 6.8) published in [FM15a];

• an explanation to why conjugate residuals work better than conjugate

gradients for solving constraints based on the transformation from pri-

mal to dual variables (Section 6.8 and [FM15a]);

139

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

• an alternative way of damping constraint based simulations (Section

6.9), also derived in a different manner in [FM15a] where we also in-

troduced the energy preserving Newmark projection (Section 6.5);

• an accurate finite element method expressed in terms of constraint solv-

ing (Section 6.11) based on two aforementioned equivalences: 1. posi-

tion based dynamics is equivalent to implicit integration and 2. elastic

potentials are equivalent to regularized constraints (see also [FM15a]

for an application in cloth simulation);

• an accurate frictional contact model for position based dynamics stem-

ming from nonsmooth dynamics together with a convergence proof

(Chapter 7);

• a rigid body simulator using position based dynamics and the above

frictional contact model (Section 7.7).

• two way coupling between rigid bodies and deformable bodies (includ-

ing particles and cloth) obtained for free by modeling all interactions

as constraints and running them in the same solver, e.g. cloth links,

FEM constraints, contacts with friction etc. (Chapter 8).

9.3 Future work

There are many topics that we did not get enough time to study, investigate,

understand or implement. In fact they are so many that we could fill several

pages talking about them. Instead we will try to be as brief as possible. This

section is about those topics that we would like to continue working on after

the PhD is over.

Given that we studied contact last and we ran out of time before trying

out everything we had in mind it is natural that we would like to continue

that work (it would fill another thesis probably). We would have liked to

have a benchmark system made out of nonsmooth dynamics methods not

only from Stewart, Anit,escu, Negrut, , Tasora but also others, e.g. the sweep-

ing process, the nonsmooth contact dynamics (NSCD) method, variational

140

9.3. FUTURE WORK

contact integrators and so on. This is not only for comparison reasons but

also to better understand the DVI formulation and subtleties about its so-

lutions and proofs. We are still in need of a sensitivity result for conic QPs.

We also want to implement at least one variant of the Newton approaches

to the complementarity problem; the same applies for saddle point problem

approaches. Even for the LCP and CCP discretization we still plan to test

multigrid methods and other iterative solvers: spectral projected gradient

methods (e.g. Barzilai-Borwein), accelerated gradient methods (e.g. Nes-

terov) and other improvements to relaxation schemes. We need to spend

more time on our position based rigid body simulator and improve stacking.

Besides these we think the following items are still open problems not only

for us but the whole field of nonsmooth contact dynamics:

• friction model with cylindrical projection,

• methods that guarantee the coefficient of restitution,

• artifacts from convexification,

• sources of jitter and solutions to alleviate it at low iteration count.

Regarding bilateral constraints we would like to spend some time on the

subject of hair simulation. We also wanted to extend our FEM support

to fracture, invertible elements, model reduction and other elasticity mod-

els, e.g. co-rotational or neo-Hookean. We hope that our soft constraints

approach extends to nonlinear springs too. We need to study more the re-

lationship between the number of iterations and the observed stiffness and

behavior. We want to find out how badly this dependence affects the quality

of the simulation and the appeal of our approach in comparison to other

methods, e.g. implicit integration, projective dynamics. We definitely need

to clarify if PBD and VTS can be mixed together and how.

One aspect we would have liked to know sooner is that constrained sys-

tems can be solved in either primal variables (velocities) or dual ones (con-

straint forces). This is a mind opener as many more algorithms can be used

in either of the forms and it makes the equivalence to implicit springs more

141

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

obvious. If we were to do our research all over again we would start from

here. We would also use more off the shelf optimization solvers like Mosek,

PATH or the ones from MATLAB.

Simulation-wise we want to spend more time on hair and fluids. We

would like to approach the latter in a constraint based approach. This has

already been done with constraint fluids in a Lagrangian view or optimization

formulations in the Eulerian one. We also did not have time to build real

complex simulation scenarios to show off our coupling and friction results

and we intend to address this in the future.

For the implementation part there is of course a lot of work to do too.

Our biggest remaining task is to implement a full unified physics pipeline on

the GPU (and replace OpenCL by CUDA). Collision detection also needs a

lot of work on many aspects:

• self-collision handling and CCD,

• broadphase and midphase acceleration structures (e.g. BVH),

• triangle mesh penetration tests and contact normals generation,

• contact manifold reduction,

• overall quality of contacts (e.g. spurious normals).

142

Bibliography

[AB08] Vincent Acary and Bernard Brogliato. Numerical Methods for

Nonsmooth Dynamical Systems: Applications in Mechanics and

Electronics. Springer Science & Business Media, 2008.

[ACLM11] Vincent Acary, Florent Cadoux, Claude Lemaréchal, and

Jérôme Malick. A Formulation of the Linear Discrete Coulomb

Friction Problem via Convex Optimization. ZAMM-Journal

of Applied Mathematics and Mechanics/Zeitschrift für Ange-

wandte Mathematik und Mechanik, 91(2):155–175, 2011.

[ACPR95] Uri M. Ascher, Hongsheng Chin, Linda R. Petzold, and Sebas-

tian Reich. Stabilization of Constrained Mechanical Systems

with Daes and Invariant Manifolds. Journal of Structural Me-

chanics, 23(2):135–157, 1995.

[AH04a] Mihai Anit,escu and Gary D. Hart. A Constraint-Stabilized

Time-Stepping Approach for Rigid Multibody Dynamics with

Joints, Contact and Friction. International Journal for Numer-

ical Methods in Engineering, 60(14):2335–2371, 2004.

[AH04b] Mihai Anit,escu and Gary D. Hart. A Fixed-Point Iteration Ap-

proach for Multibody Dynamics with Contact and Small Fric-

tion. Mathematical Programming, 101(1):3–32, 2004.

[And83] Hans C. Andersen. Rattle: A “Velocity” Version of the Shake

Algorithm for Molecular Dynamics Calculations. Journal of

Computational Physics, 52(1):24–34, 1983.

143

BIBLIOGRAPHY

[Ani06] Mihai Anit,escu. Optimization-Based Simulation of Nons-

mooth Rigid Multibody Dynamics. Mathematical Program-

ming, 105(1):113–143, 2006.

[AO11] Iván Alduán and Miguel A. Otaduy. SPH Granular Flow with

Friction and Cohesion. In ACM SIGGRAPH 2011 Papers, SIG-

GRAPH ’11, New York, NY, USA, 2011. ACM.

[AP97] Mihai Anit,escu and Florian A. Potra. Formulating Dynamic

Multi-Rigid-Body Contact Problems with Friction as Solv-

able Linear Complementarity Problems. Nonlinear Dynamics,

14(3):231–247, 1997.

[AP02] Mihai Anit,escu and Florian A. Potra. A Time-Stepping Method

for Stiff Multibody Dynamics with Contact and Friction. In-

ternational Journal for Numerical Methods in Engineering,

55(7):753–784, 2002.

[Arn13] Vladimir Igorevich Arnol’d. Mathematical Methods of Classical

Mechanics, volume 60. Springer Science & Business Media,

2013.

[ATO09] Iván Alduán, Angel Tena, and Miguel A. Otaduy. Simulation of

High-Resolution Granular Media. In Proc. of Congreso Español

de Informática Gráfica, volume 1, 2009.

[BAC+06] Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard

Querleux, Frédéric Leroy, and Jean-Luc Lévêque. Super-Helices

for Predicting the Dynamics of Natural Hair. ACM Transac-

tions on Graphics (TOG), 25(3):1180–1187, 2006.

[Bar94] David Baraff. Fast Contact Force Computation for Nonpene-

trating Rigid Bodies. In ACM SIGGRAPH 1994 Papers, pages

23–34, 1994.

144

BIBLIOGRAPHY

[Bar97] David Baraff. Physically Based Modeling: Rigid Body Simula-

tion. SIGGRAPH Course Notes, ACM SIGGRAPH, 2(1):2–1,

1997.

[Bat06] Klaus-Jürgen Bathe. Finite Element Procedures. Prentice Hall,

Pearson Education, Inc., 2006.

[Bau72] Joachim Baumgarte. Stabilization of Constraints and Integrals

of Motion in Dynamical Systems. Computer methods in applied

mechanics and engineering, 1(1):1–16, 1972.

[BBD09] Jan Bender, Daniel Bayer, and Raphael Diziol. Dynamic Sim-

ulation of Inextensible Cloth. IADIS International Journal on

Computer Science and Information Systems, 4(2):86–102, 2009.

[BBH08] Derek Bradley, Tamy Boubekeur, and Wolfgang Heidrich. Ac-

curate Multi-View Reconstruction Using Robust Binocular

Stereo and Surface Meshing. In Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on, pages

1–8. IEEE, 2008.

[BCP96] Kathryn Eleda Brenan, Stephen L. Campbell, and Linda Ruth

Petzold. Numerical Solution of Initial-Value Problems in

Differential-Algebraic Equations, volume 14. Siam, 1996.

[BDCDA11] Florence Bertails-Descoubes, Florent Cadoux, Gilles Daviet,

and Vincent Acary. A Nonsmooth Newton solver for Capturing

Exact Coulomb Friction in Fiber Assemblies. ACM Transac-

tions on Graphics (TOG), 30(1):6, 2011.

[BETC14] Jan Bender, Kenny Erleben, Jeff Trinkle, and Erwin Coumans.

Interactive Simulation of Rigid Body Dynamics in Computer

Graphics. Computer Graphics Forum, 33(1):246–270, 2014.

[BFA02] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust

Treatment of Collisions, Contact and Friction for Cloth Anima-

tion. In ACM SIGGRAPH 2002 Papers, pages 594–603, 2002.

145

BIBLIOGRAPHY

[BHW94] David E. Breen, Donald H. House, and Michael J. Wozny.

Predicting the Drape of Woven Cloth Using Interacting Parti-

cles. In Proceedings of the 21st annual conference on Computer

graphics and interactive techniques, pages 365–372. ACM, 1994.

[BKCW14] Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber.

Position-Based Simulation of Continuous Materials. Computers

& Graphics, 44:1–10, 2014.

[BKLS95] Eric Barth, Krzysztof Kuczera, Benedict Leimkuhler, and

Robert D. Skeel. Algorithms for Constrained Molecular Dy-

namics. J. Comp. Chem, 16:1192–1209, 1995.

[BLS12] Kenneth Bodin, Claude Lacoursière, and Martin Servin. Con-

straint fluids. Visualization and Computer Graphics, IEEE

Transactions on, 18(3):516–526, 2012.

[BMF03] Robert Bridson, Sebastian Marino, and Ronald Fedkiw. Simu-

lation of Clothing with Folds and Wrinkles. In Proceedings of

the 2003 ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, pages 28–36, 2003.

[BML+14] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Ka-

van, and Mark Pauly. Projective Dynamics: Fusing Con-

straint Projections for Fast Simulation. ACM Trans. Graph.,

33(4):154:1–154:11, 2014.

[BMOT13] Jan Bender, Matthias Müller, Miguel A. Otaduy, and Matthias

Teschner. Position-based Methods for the Simulation of Solid

Objects in Computer Graphics. In EUROGRAPHICS 2013

State of the Art Reports. Eurographics Association, 2013.

[BP97] Marshall Wayne Bern and Paul E. Plassmann. Mesh Genera-

tion. Pennsylvania State University, Department of Computer

Science and Engineering, College of Engineering, 1997.

146

BIBLIOGRAPHY

[BPS+08] Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich,

and Tamy Boubekeur. Markerless Garment Capture. In ACM

Transactions on Graphics (TOG), volume 27, page 99. ACM,

2008.

[Bri14] Robert Bridson. Animating Cloth with Coupled Contact (a

Quick and Dirty Approach). Computational Contact Mechan-

ics: Advances and Frontiers in Modeling Contact, 2014.

[Bri15] Robert Bridson. Fluid Simulation for Computer Graphics. CRC

Press, 2015.

[Bro96] Bernard Brogliato. Nonsmooth Impact Mechanics (Models, Dy-

namics and Control). Lecture notes in control and information

sciences, 1996.

[BTH+03] Kiran S. Bhat, Christopher D. Twigg, Jessica K. Hodgins,

Pradeep K. Khosla, Zoran Popović, and Steven M. Seitz. Esti-

mating Cloth Simulation Parameters from Video. In Proceed-

ings of the 2003 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 37–51. Eurographics Associa-

tion, 2003.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization.

Cambridge University Press, 2004.

[BW97] Javier Bonet and Richard D. Wood. Nonlinear Continuum

Mechanics for Finite Element Analysis. Cambridge University

Press, 1997.

[BW98] David Baraff and Andrew Witkin. Large Steps in Cloth Simu-

lation. In ACM SIGGRAPH 1998 Papers, pages 43–54, 1998.

[BWH+06] Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin,

and Eitan Grinspun. A Quadratic Bending Model for Inexten-

sible Surfaces. In Symposium on Geometry Processing, pages

227–230, 2006.

147

BIBLIOGRAPHY

[BYM05] Nathan Bell, Yizhou Yu, and Peter J. Mucha. Particle-based

Simulation of Granular Materials. In Proceedings of the 2005

ACM SIGGRAPH/Eurographics Symposium on Computer An-

imation, SCA ’05, pages 77–86, New York, NY, USA, 2005.

ACM.

[BZX14] Jernej Barbic, Yili Zhao, and Hongyi Xu. Implicit Multibody

Penalty-based Distributed Contact. IEEE Transactions on Vi-

sualization and Computer Graphics, 99(PrePrints):1, 2014.

[Cat05] Erin Catto. Iterative Dynamics with Temporal Coherence.

Game Developer Conference, January 2005.

[Cat10] Erin Catto. Soft Constraints: Reinventing the Spring. Game

Developer Conference, 2010.

[CC13] Teodor Cioacă and Horea Cărămizaru. On the Impact of

Explicit or Semi-Implicit Integration Methods Over the Sta-

bility of Real-Time Numerical Simulations. arXiv preprint

arXiv:1311.5018, 2013.

[CK02] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but Responsive

Cloth. In Proceedings of the 29th Annual Conference on Com-

puter Graphics and Interactive Techniques, SIGGRAPH ’02,

pages 604–611, 2002.

[Cou10] Erwin Coumans. Bullet Physics Engine. Open Source Software:

http://bulletphysics.org, 2010.

[Cou12] Erwin Coumans. Destruction. In Game Developers Conference

Proceedings. CMP Media, Inc., 2012.

[Cou14] Erwin Coumans. Exploring MLCP Solvers and Featherstone.

GDC, 2014.

[CP03] Michael B. Cline and Dinesh K. Pai. Post-Stabilization for

Rigid Body Simulation with Contact and Constraints. In

148

BIBLIOGRAPHY

Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE

International Conference on, volume 3, pages 3744–3751. IEEE,

2003.

[CPS92] Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. The

Linear Complementarity Problem. Classics in Applied Mathe-

matics. Society for Industrial and Applied Mathematics (SIAM,

3600 Market Street, Floor 6, Philadelphia, PA 19104), 1992.

[DCB14] Crispin Deul, Patrick Charrier, and Jan Bender. Position-Based

Rigid Body Dynamics. In Proceedings of the 27th International

Conference on Computer Animation and Social Agents, May

2014.

[DSF98] Géry De Saxcé and Zhi-Qiang Feng. The Bipotential Method:

A Constructive Approach to Design the Complete Contact Law

with Friction and Improved Numerical Algorithms. Mathemat-

ical and Computer Modeling, 28(4):225–245, 1998.

[DTE+04] Andreas Divivier, Rainer Trieb, Aea Ebert, Hans Hagen,

Clemens Gross, Arnulph Fuhrmann, Volker Luckas, et al. Vir-

tual Try-On Topics in Realistic, Individualized Dressing in Vir-

tual Reality. 2004.

[Dug57] René Dugas. A History of Mechanics. JR Maddox. London,

1957.

[EB08] Elliot English and Robert Bridson. Animating Developable

Surfaces Using Nonconforming Elements. ACM Trans. Graph.,

27(3):66:1–66:5, 2008.

[EEH00] Bernhard Eberhardt, Olaf Etzmuß, and Michael Hauth.

Implicit-Explicit Schemes for Fast Animation with Particle Sys-

tems. In In Eurographics Computer Animation and Simulation

Workshop, pages 137–151, 2000.

149

BIBLIOGRAPHY

[Eri04] Christer Ericson. Real-Time Collision Detection. CRC Press,

2004.

[Erl05] Kenny Erleben. Physics-based Animation. Charles River Media,

2005.

[Erl07] Kenny Erleben. Velocity-based Shock Propagation for Multi-

body Dynamics Animation. ACM Trans. Graph., 26, 2007.

[Fau99] François Faure. Interactive Solid Animation Using Linearized

Displacement Constraints. Springer, 1999.

[Fea14] Roy Featherstone. Rigid Body Dynamics Algorithms. Springer,

2014.

[Fin09] J. Michael Finn. Classical Mechanics. Jones & Bartlett Pub-

lishers, 2009.

[FM14a] Mihai Francu and Florica Moldoveanu. An Improved Jacobi

Solver for Particle Simulation. In VRIPHYS 14 - 11th Work-

shop on Virtual Reality Interactions and Physical Simulations,

pages 125–134, 2014.

[FM14b] Mihai Frâncu and Florica Moldoveanu. Minimum Residual

Methods for Cloth Simulation. In System Theory, Control

and Computing (ICSTCC), 2014 18th International Confer-

ence, pages 550–555, Oct 2014.

[FM15a] Mihai Frâncu and Florica Moldoveanu. Cloth simulation using

soft constraints. Journal of WSCG, 2015.

[FM15b] Mihai Frâncu and Florica Moldoveanu. Virtual Try On Systems

for Clothes: Issues and Solutions. Scientific Bulletin, 2015.

[FMOW03] Răzvan C. Fetecău, Jerrold E. Marsden, Michael Ortiz, and

Matthew West. Nonsmooth Lagrangian Mechanics and Varia-

tional Collision Integrators. SIAM Journal on Applied Dynam-

ical Systems, 2(3):381–416, 2003.

150

BIBLIOGRAPHY

[GBF03] Eran Guendelman, Robert Bridson, and Ronald Fedkiw. Non-

convex Rigid Bodies with Stacking. In ACM SIGGRAPH 2003

Papers, SIGGRAPH ’03, pages 871–878, New York, NY, USA,

2003. ACM.

[GHF+07] Rony Goldenthal, David Harmon, Raanan Fattal, Michel

Bercovier, and Eitan Grinspun. Efficient Simulation of Inex-

tensible Cloth. In ACM SIGGRAPH 2007 Papers, 2007.

[Gol10] Adrian R. Goldenthal. Implicit Treatment of Constraints for

Cloth Simulation. PhD thesis, 2010.

[GPS02] Herbert Goldstein, Charles P. Poole, and John L. Safko. Clas-

sical Mechanics. Addison Wesley, 2002.

[GS02] Gianni Gilardi and Inna Sharf. Literature Survey of Con-

tact Dynamics Modelling. Mechanism and Machine Theory,

37(10):1213–1239, 2002.

[Had06] Sunil Hadap. Oriented Strands: Dynamics of Stiff Multi-

Body System. In Proceedings of the 2006 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation,

pages 91–100. Eurographics Association, 2006.

[Han06] Andrew J. Hanson. Visualizing Quaternions (The Morgan

Kaufmann Series in Interactive 3D Technology). Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2006.

[Har07] Takahiro Harada. Real-Time Rigid Body Simulation on GPUs.

In Hubert Nguyen, editor, GPU Gems 3, chapter 29. Addison

Wesley Professional, August 2007.

[HATN12] Toby Heyn, Mihai Anit,escu, Alessando Tasora, and Dan

Negrut, . Using Krylov Subspace and Spectral Methods for Solv-

ing Complementarity Problems in Many-Body Contact Dynam-

ics Simulation. International Journal for Numerical Methods in

Engineering, 2012.

151

BIBLIOGRAPHY

[Hau05] Michael Hauth. Numerical Techniques for Cloth Simulation.

system (figure 2 (a), 15:3, 2005.

[HCJ+05] Min Hong, Min-Hyung Choi, Sunhwa Jung, Samuel Welch, and

John Trapp. Effective Constrained Dynamic Simulation Using

Implicit Constraint Enforcement. In Robotics and Automation,

ICRA 2005, pages 4520–4525, 2005.

[HE01] Michael Hauth and Olaf Etzmuss. A High Performance Solver

for the Animation of Deformable Objects Using Advanced Nu-

merical Methods. In Eurographics 2001, volume 20, pages 319–

328, 2001.

[HH12] Dongsoo Han and Takahiro Harada. Real-Time Hair Simulation

with Efficient Hair Style Preservation. 2012.

[HLR89] Ernst Hairer, Christian Lubich, and Michel Roche. The Numer-

ical Solution of Differential-Algebraic Systems by Runge-Kutta

Methods. 1989.

[HLW03] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geo-

metric Numerical Integration Illustrated by the Störmer–Verlet

Method. Acta Numerica, 12:399–450, 2003.

[HLW06] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geomet-

ric Numerical Integration: Structure-Preserving Algorithms for

Ordinary Differential Equations, volume 31. Springer Science

& Business Media, 2006.

[HNW87] Ernst Hairer, Syvert Paul Norsett, and Gerhard Wanner. Solv-

ing ordinary differential equation I: nonstiff problems. Springer

Ser. in Comput. Math, 8, 1987.

[How11] Lee Howes. Cloth Simulation in the Bullet Physics SDK. In

Aaftab Munshi, Benedict R. Gaster, Timothy G. Mattson,

James Func, and Dan Ginsburg, editors, OpenCL Programming

Guide, chapter 17, page 425–448. Addison Wesley, 06 2011.

152

BIBLIOGRAPHY

[HS07] Paul Hellard and Jos Stam. Stam on Maya’s nCloth. CGSociety,

May 2007.

[HY90] Edward J. Haug and Jeng Yen. Generalized Coordinate Par-

titioning Methods for Numerical Integration of Differential-

Algebraic Equations of Dynamics. In Real-time Integration

Methods for Mechanical System Simulation, pages 97–114.

Springer, 1990.

[HZ06] William W. Hager and Hongchao Zhang. A survey of Nonlinear

Conjugate Gradient Methods. Pacific Journal of Optimization,

2(1):35–58, 2006.

[IWT12] Markus Ihmsen, Arthur Wahl, and Matthias Teschner. High-

Resolution Simulation of Granular Material with SPH. In

Workshop on Virtual Reality Interaction and Physical Simu-

lation, pages 53–60. The Eurographics Association, 2012.

[JAJ98] Franck Jourdan, Pierre Alart, and Michel Jean. A Gauss-Seidel

like Algorithm to Solve Frictional Contact Problems. Computer

Methods in Applied Mechanics and Engineering, 155(1):31–47,

1998.

[Jak01] Thomas Jakobsen. Advanced Character Physics. In Game De-

velopers Conference Proceedings, pages 383–401, 2001.

[Jea99] Michel Jean. The Non-Smooth Contact Dynamics Method.

Computer Methods in Applied Mechanics and Engineering,

177(3):235–257, 1999.

[JNB96] Heinrich M. Jaeger, Sidney R. Nagel, and Robert P. Behringer.

Granular Solids, Liquids, and Gases. Rev. Mod. Phys., 68:1259–

1273, Oct 1996.

[KGBS11] Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, and

Peter-Pike Sloan. Physics-Inspired Upsampling for Cloth Sim-

153

BIBLIOGRAPHY

ulation in Games. ACM Transactions on Graphics (TOG),

30(4):93, 2011.

[KKN+13] Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian,

Adrien Treuille, and James F. O’Brien. Near-Exhaustive Pre-

computation of Secondary Cloth Effects. ACM Transactions on

Graphics (TOG), 32(4):87, 2013.

[KMOW99] Couro Kane, Jerrold E. Marsden, Michael Ortiz, and Matthew

West. Variational Integrators and the Newmark Algorithm for

Conservative and Dissipative Mechanical Systems. Internat. J.

Numer. Methods Engrg, 49:1295–1325, 1999.

[KNE10] Micky Kelager, Sarah Niebe, and Kenny Erleben. A Triangle

Bending Constraint Model for Position-Based Dynamics. VRI-

PHYS, 10:31–37, 2010.

[KNM10] Shoji Kunitomo, Shinsuke Nakamura, and Shigeo Morishima.

Optimization of Cloth Simulation Parameters by Considering

Static and Dynamic Features. In ACM SIGGRAPH 2010

Posters, page 15. ACM, 2010.

[Kny10] Anton Knyazyev. Ropes as Constraints. In Game Physics

Pearls, pages 179–193. AK Peters/CRC Press, 2010.

[KP12] Danny M. Kaufman and Dinesh K. Pai. Geometric Numerical

Integration of Inequality Constrained, Nonsmooth Hamiltonian

systems. SIAM Journal on Scientific Computing, 34(5):A2670–

A2703, 2012.

[KPGF07] Blazej Kubiak, Nico Pietroni, Fabio Ganovelli, and Marco

Fratarcangeli. A Robust Method for Real-Time Thread Simu-

lation. In Proceedings of the 2007 ACM symposium on Virtual

reality software and technology, pages 85–88. ACM, 2007.

[KROM99] Couro Kane, E.A. Repetto, Michael Ortiz, and Jerrold E. Mars-

den. Finite Element Analysis of Nonsmooth Contact. Computer

154

BIBLIOGRAPHY

Methods in Applied Mechanics and Engineering, 180(1):1–26,

1999.

[KSJP08] Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Di-

nesh K. Pai. Staggered Projections for Frictional Contact in

Multibody Systems. ACM Transactions on Graphics (SIG-

GRAPH Asia 2008), 27(5):164:1–164:11, 2008.

[KTS+14] Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-

Marie Aubry, and Eitan Grinspun. Adaptive Nonlinearity for

Collisions in Complex Rod Assemblies. ACM Trans. Graph.,

33(4):123:1–123:12, July 2014.

[KYT+06a] Liliya Kharevych, Weiwei Yang, Yiying Tong, Eva Kanso, Jer-

rold E Marsden, Peter Schröder, and Matthieu Desbrun. Ge-

ometric, Variational Entegrators for Computer Animation. In

Proceedings of the 2006 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation, pages 43–51. Eurographics

Association, 2006.

[KYT+06b] Liliya Kharevych, Weiwei Yang, Yiying Tong, Eva Kanso, Jer-

rold E. Marsden, Peter Schröder, and Matthieu Desbrun. Ge-

ometric, Variational Integrators for Computer Animation. In

Proceedings of the 2006 ACM SIGGRAPH/Eurographics sym-

posium on Computer animation, pages 43–51. Eurographics As-

sociation, 2006.

[Lac03] Claude Lacoursière. Splitting Methods for Dry Frictional Con-

tact Problems in Rigid Multibody Systems: Preliminary Per-

formance Results. In The Annual SIGRAD Conference. Special

Theme – Real-Time Simulations. Conference Proceedings from

SIGRAD2003, 2003.

[Lac07] Claude Lacoursière. Ghosts and Machines: Regularized Varia-

tional Methods for Interactive Simulations of Multibodies with

155

BIBLIOGRAPHY

Dry Frictional Contacts. PhD thesis, Ume̊a University, Com-

puting Science, 2007.

[Lan70] Cornelius Lanczos. The Variational Principles of Mechanics.

Dover Publications, 1970.

[LBOK13] Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and

Ladislav Kavan. Fast Simulation of Mass-spring Systems. ACM

Trans. Graph., 32(6):214:1–214:7, 2013.

[Lew03] Adrián Lew. Variational Time Integrators in Computational

Solid Mechanics. PhD thesis, California Institute of Technology,

2003.

[LL60] Lev D. Landau and Evgeny M. Lifshitz. Mechanics. 1960.

[LR04] Benedict Leimkuhler and Sebastian Reich. Simulating Hamilto-

nian Dynamics, volume 14. Cambridge University Press, 2004.

[LSB10] Claude Lacoursière, Martin Servin, and Anders Backman. Fast

and Stable Simulation of Granular Matter and Machines. 2010.

[LY84] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Pro-

gramming, volume 2. Springer, 1984.

[LZY10] Yong-Jin Liu, Dong-Liang Zhang, and Matthew Ming-Fai Yuen.

A Survey on CAD Methods in 3D Garment Design. Computers

in Industry, 61(6):576–593, 2010.

[Mar03] F. Landis Markley. Attitude Error Representations for Kalman

Filtering. Journal of Guidance, Control, and Dynamics,

26(2):311–317, 2003.

[Maz16] Hammad Mazhar. Multi-Physics Computational Dynmics Us-

ing Complementarity and Hybrid Lagrangian-Eeulerian Meth-

ods. PhD thesis, 2016.

156

BIBLIOGRAPHY

[MBPV11] Lorenzo Mariti, Nicola P. Belfiore, Ettore Pennestr̀ı, and Pier P.

Valentini. Comparison of Solution Strategies for Multibody Dy-

namics Equations. International Journal for Numerical Meth-

ods in Engineering, 88(7):637–656, 2011.

[MBT+12] Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd

Bickel, Wojciech Matusik, Miguel A. Otaduy, and Steve

Marschner. Data-Driven Estimation of Cloth Simulation Mod-

els. In Computer Graphics Forum, volume 31, pages 519–528.

Wiley Online Library, 2012.

[MCKM14] Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and

Miles Macklin. Strain Based Dynamics. In Proceedings of the

ACM SIGGRAPH/Eurographics Symposium on Computer An-

imation, SCA ’14, pages 149–157, Aire-la-Ville, Switzerland,

Switzerland, 2014. Eurographics Association.

[MFN16] Hammad Mazhar, Mihai Frâncu, and Dan Negrut, . Simulat-

ing Large Scale Coupled Granular Material Simulations using

Position Based Dynamics. In The 4th Joint International Con-

ference on Multibody System Dynamics, 2016.

[MHHR07] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and

John Ratcliff. Position Based Dynamics. J. Vis. Comun. Image

Represent., 18(2):109–118, 2007.

[MHNT15] Hammad Mazhar, Toby Heyn, Dan Negrut, , and Alessandro

Tasora. Using Nesterov’s Method to Accelerate Multibody

Dynamics with Friction and Contact. ACM Transactions on

Graphics (TOG), 34(3):32, 2015.

[Mir96] Brian Vincent Mirtich. Impulse-Based Dynamic Simulation of

Rigid Body Systems. PhD thesis, University of California at

Berkeley, 1996.

[MM13] Miles Macklin and Matthias Müller. Position Based Fluids.

ACM Trans. Graph., 32(4):104:1–104:12, July 2013.

157

BIBLIOGRAPHY

[MMCK14] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and

Tae-Yong Kim. Unified Particle Physics for Real-Time Ap-

plications. ACM Transactions on Graphics (TOG), 33(4):104,

2014.

[Mor88] Jean J. Moreau. Unilateral Contact and Dry Friction in Finite

Freedom Dynamics. In Nonsmooth Mechanics and Applications,

pages 1–82. Springer, 1988.

[Mor05] Adam Moravánszky. NovodeX Demo Exercise. 2005.

[MSJT08] Matthias Müller, Jos Stam, Doug James, and Nils Thürey. Real

Time Physics: Class Notes. In ACM SIGGRAPH 2008 Classes,

pages 88:1–88:90, 2008.

[MSW14] Dominik L. Michels, Gerrit A. Sobottka, and Andreas G. We-

ber. Exponential Integrators for Stiff Elastodynamic Problems.

ACM Trans. Graph., 33(1):7:1–7:20, February 2014.

[MT10] Nadia Magnenat-Thalmann. Modeling and Simulating Bodies

and Garments. Springer Science & Business Media, 2010.

[MTGG11] Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun,

and Markus Gross. Example-Based Elastic Materials. ACM

Transactions on Graphics (TOG), 30(4):72, 2011.

[MTKV+11] Nadia Magnenat-Thalmann, Bart Kevelham, Pascal Volino,

Mustafa Kasap, and Etienne Lyard. 3d Web-Based Virtual Try

On of Physically Simulated Clothes. Computer-Aided Design

and Applications, 8(2):163–174, 2011.

[Mül08] Matthias Müller. Hierarchical Position Based Dynamics. 2008.

[MW01] Jerrold E. Marsden and Matthew West. Discrete Mechanics

and Variational Integrators. Acta Numerica 2001, 10:357–514,

2001.

158

BIBLIOGRAPHY

[NGL10] Rahul Narain, Abhinav Golas, and Ming C. Lin. Free-flowing

Granular Materials with Two-way Solid Coupling. In ACM

SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA ’10, pages

173:1–173:10, New York, NY, USA, 2010. ACM.

[NSO12] Rahul Narain, Armin Samii, and James F. O’Brien. Adaptive

Anisotropic Remeshing for Cloth Simulation. ACM Transac-

tions on Graphics (TOG), 31(6):152, 2012.

[OAW06] Seungwoo Oh, Junghyun Ahn, and Kwangyun Wohn. Low

Damped Cloth Simulation. Vis. Comput., 22(2):70–79, 2006.

[OR70] James M. Ortega and Werner C. Rheinboldt. Iterative Solution

of Nonlinear Equations in Several Variables, volume 30. Siam,

1970.

[OR07] Ricardo Ortiz-Rosado. Newton-AMG Algorithm for Solving

Complementarity Problems Arising in Rigid Body Dynamics

with Frictional Impacts. ProQuest, 2007.

[Pai02] Dinesh K. Pai. Strands: Interactive Simulation of Thin Solids

Using Cosserat Models. In Computer Graphics Forum, vol-

ume 21, pages 347–352. Wiley Online Library, 2002.

[PKMO02] A. Pandolfi, Couro Kane, Jerrold E. Marsden, and Michael Or-

tiz. Time-Discretized Variational Formulation of Non-Smooth

Frictional Contact. International Journal for Numerical Meth-

ods in Engineering, 53(8):1801–1829, 2002.

[PNE10] Morten Poulsen, Sarah Niebe, and Kenny Erleben. Heuristic

Convergence Rate Improvements of the Projected Gauss–Seidel

Method for Frictional Contact Problems. pages 135–142. Václav

Skala - UNION Agency, 2010.

[PO09] Eric G. Parker and James F. O’Brien. Real-Time Deforma-

tion and Fracture in a Game Environment. In Proceedings of

159

BIBLIOGRAPHY

the 2009 ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, pages 165–175. ACM, 2009.

[PPR11] Tobias Preclik, Constantin Popa, and Ulrich Rüde. Regular-

izing a Time-Stepping Method for Rigid Multibody Dynamics.

Proceedings of Multibody Dynamics, 2011, 2011.

[Pre08] Tobias Preclik. Iterative Rigid Multibody Dynamics, 2008.

[Pro96] Xavier Provot. Deformation Constraints in a Mass-Spring

Model to Describe Rigid Cloth Behavior. In In Graphics Inter-

face, pages 147–154, 1996.

[PS08] Jong-Shi Pang and David E Stewart. Differential Variational

Inequalities. Mathematical Programming, 113(2):345–424, 2008.

[PT96] Jong-Shi Pang and Jeffrey C. Trinkle. Complementarity For-

mulations and Existence of Solutions of Dynamic Multi-Rigid-

Body Contact Problems with Coulomb Friction. Mathematical

programming, 73(2):199–226, 1996.

[PTVF07] William H. Press, Saul A. Teukolsky, William T. Vetterling,

and Brian P. Flannery. Numerical Recipes in C. Cambridge

University Press, 1:3, 2007.

[RA05] Mathieu Renouf and Pierre Alart. Conjugate Gradient Type Al-

gorithms for Frictional Multi-Contact Problems: Applications

to Granular Materials. Computer Methods in Applied Mechan-

ics and Engineering, 194(18):2019–2041, 2005.

[RCB77] Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman J. C.

Berendsen. Numerical Integration of the Cartesian Equations

of Motion of a System with Constraints: Molecular Dynamics

of n-Alkanes. J. Comput. Phys, pages 327–341, 1977.

[RKC02] Stéphane Redon, Abderrahmane Kheddar, and Sabine Co-

quillart. Gauss’ Least Constraints Principle and Rigid Body

160

BIBLIOGRAPHY

Simulations. In Robotics and Automation, 2002. Proceedings.

ICRA’02. IEEE International Conference on, volume 1, pages

517–522. IEEE, 2002.

[Saa03] Yusef Saad. Iterative Methods for Sparse Linear Systems. Soci-

ety for Industrial and Applied Mathematics, 2nd edition, 2003.

[SB12] Eftychios Sifakis and Jernej Barbic. FEM Simulation of 3D De-

formable Solids: A Practitioner’s Guide to Theory, Discretiza-

tion and Model Reduction. In ACM SIGGRAPH 2012 Courses,

SIGGRAPH ’12, pages 20:1–20:50, New York, NY, USA, 2012.

ACM.

[SD06] Ari Stern and Mathieu Desbrun. Discrete Geometric Mechanics

for Variational Time Integrators. In ACM SIGGRAPH 2006

Courses, SIGGRAPH ’06, pages 75–80, New York, NY, USA,

2006. ACM.

[Sha09] Ahmed A. Shabana. Computational Dynamics. John Wiley &

Sons, 2009.

[She94] Jonathan R. Shewchuk. An Introduction to the Conjugate Gra-

dient Method Without the Agonizing Pain. Technical report,

Pittsburgh, PA, USA, 1994.

[SHNE10a] Morten Silcowitz-Hansen, Sarah Niebe, and Kenny Erleben.

A Nonsmooth jugate Gradient Method for Interactive Contact

Force Problems. The Visual Computer, 26(6-8):893–901, 2010.

[SHNE10b] Morten Silcowitz-Hansen, Sarah Niebe, and Kenny Erleben.

Projected Gauss-Seidel Subspace Minimization Method for In-

teractive Rigid Body Dynamics - Improving Animation Qual-

ity Using a Projected Gauss-Seidel Subspace Minimization

Method. In Paul Richard, José Braz, and Adrian Hilton, edi-

tors, GRAPP, pages 38–45. INSTICC Press, 2010.

[Sho85] Ken Shoemake. Quaternions. 1985.

161

BIBLIOGRAPHY

[SKV+12] Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus

Tamstorf, and Eitan Grinspun. Reflections on Simultaneous Im-

pact. ACM Transactions on Graphics (TOG), 31(4):106, 2012.

[SLM06] Martin Servin, Claude Lacoursière, and Niklas Melin. Interac-

tive Simulation of Elastic Deformable Materials. In SIGRAD

2006 Conference Proceedings, pages 22–32, 2006.

[Smi05] Russell Smith. Constraints in Rigid Body Dynamics. Game

Programming Gems, 4:241–251, 2005.

[Smi06] Russell Smith. Open Dynamics Engine v0.5 User Guide. 2006.

[SS98] Jörg Sauer and Elmar Schömer. A Constraint-Based Approach

to Rigid Body Dynamics for Virtual Reality Applications. In

Proceedings of the ACM symposium on Virtual Reality Software

and Technology, pages 153–162. ACM, 1998.

[SSB13] Funshing Sin, D. Schroeder, and Jernej Barbic. Vega: Non-

Linear FEM Deformable Object Simulator. Comput. Graph.

Forum, 32(1):36–48, 2013.

[SSC+13] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph

Teran, and Andrew Selle. A Material Point Method for Snow

Simulation. ACM Transactions on Graphics (TOG), 32(4):102,

2013.

[ST96] David Stewart and Jeffrey C. Trinkle. An Implicit Time-

Stepping Scheme for Rigid Body Dynamics with Coulomb Fric-

tion. International Journal for Numerical Methods in Engineer-

ing, 39:2673–2691, 1996.

[Sta09] Jos Stam. Nucleus: Towards a Unified Dynamics Solver for

Computer Graphics. In Computer-Aided Design and Computer

Graphics, pages 1–11, 2009.

[Ste00] David E Stewart. Rigid-Body Dynamics with Friction and Im-

pact. SIAM review, 42(1):3–39, 2000.

162

BIBLIOGRAPHY

[Str07] Gilbert Strang. Computational Science and Engineering.

Wellesley-Cambridge Press, 2007.

[Stu09] Christian Studer. Numerics of Unilateral Contacts and Fric-

tion: Modeling and Numerical Time Integration in Non-Smooth

Dynamics, volume 47. Springer Science & Business Media,

2009.

[TA10] Alessandro Tasora and Mihai Anit,escu. A Convex Comple-

mentarity Approach for Simulating Large Granular Flows. J.

Comput. Nonlinear Dynam., 5, 2010.

[TA11] Alessandro Tasora and Mihai Anit,escu. A Matrix-Free Cone

Complementarity Approach for Solving Large-Scale, Nons-

mooth, Rigid Body Dynamics. Computer Methods in Applied

Mechanics and Engineering, 200(5):439–453, 2011.

[TANN13] Alessandro Tasora, Mihai Anit,escu, Stefano Negrini, and Dan

Negrut, . A Compliant Visco-Plastic Particle Contact Model

Based on Differential Variational Inequalities. International

Journal of Non-Linear Mechanics, 53:2–12, 2013.

[TBV12] Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov.

Mass Splitting for Jitter-Free Parallel Rigid Body Simulation.

ACM Trans. Graph., 31(4):105:1–105:8, July 2012.

[TKH+05] Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger,

Gabriel Zachmann, Laks Raghupathi, Arnulph Fuhrmann, M-

P Cani, François Faure, Nadia Magnenat-Thalmann, Wolfgang

Strasser, et al. Collision Detection for Deformable Objects. In

Computer graphics forum, volume 24, pages 61–81. Wiley On-

line Library, 2005.

[TNGF15] Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and

François Faure. Stable Constrained Dynamics. ACM Trans.

Graph., 34(4):132:1–132:10, July 2015.

163

BIBLIOGRAPHY

[Ton12] Richard Tonge. Solving Rigid Body Contacts. Game Developer

Conference, 2012.

[TPS09] Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer.

Continuum-based strain limiting. Comput. Graph. Forum,

28(2):569–576, 2009.

[TSIHK06] Masayuki Tanaka, Mikio Sakai, Ishikawajima-Harima, and

Seiichi Koshizuka. Rigid Body Simulation Using a Particle

Method. In ACM SIGGRAPH 2006 Research Posters, SIG-

GRAPH ’06, New York, NY, USA, 2006. ACM.

[TWS07] Bernhard Thomaszewski, Markus Wacker, and Wolfgang

Straßer. Advanced Topics in Virtual Garment Simulation –

Part 1, 2007.

[Ver67] Loup Verlet. Computer ”Experiments” on Classical Fluids.

I. Thermodynamical Properties of Lennard-Jones Molecules.

Physical review, 159(1):98, 1967.

[VMT00] Pascal Volino and Nadia Magnenat-Thalmann. Virtual Cloth-

ing: Theory and Practice, 2000.

[VMTF09] Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure.

A Simple Approach to Nonlinear Tensile Stiffness for Accurate

Cloth Simulation. ACM Trans. Graph., 28(4):105:1–105:16,

2009.

[WCF07] Ryan White, Keenan Crane, and David A. Forsyth. Captur-

ing and Animating Occluded Cloth. In ACM Transactions on

Graphics (TOG), volume 26, page 34. ACM, 2007.

[WH91] Gerhard Wanner and Ernst Hairer. Solving Ordinary Differen-

tial Equations II, volume 1. Springer-Verlag, Berlin, 1991.

[Wit97] Andrew Witkin. Physically Based Modeling: Principles and

Practice - Constrained Dynamics. Computer graphics, pages

11–21, 1997.

164

BIBLIOGRAPHY

[WKMO99] Matthew West, Couro Kane, Jerold E. Marsden, and Michael

Ortiz. Variational Integrators, the Newmark Scheme, and Dis-

sipative Systems. In International Conference on Differential

Equations, volume 1, page 2. World Scientific, 1999.

[WL06] Peter Wriggers and Tod A. Laursen. Computational Contact

Mechanics, volume 30167. Springer, 2006.

[WN99] Stephen J Wright and Jorge Nocedal. Numerical Optimization.

Springer New York, 1999.

[ZB05] Yongning Zhu and Robert Bridson. Animating Sand As a Fluid.

In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 965–

972, New York, NY, USA, 2005. ACM.

[ZTZT77] Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, Olgierd Ce-

cil Zienkiewicz, and Robert Lee Taylor. The Finite Element

Method, volume 3. McGraw-hill London, 1977.

165

	Introduction
	Motivation
	Context
	Goals
	Simulation criteria
	Thesis outline
	Publications in connection with this thesis

	Related work
	State of the art
	Nonsmooth dynamics

	Equations of motion
	Newton equations of motion
	Lagrange equations of motion
	Rotation kinematics
	Newton-Euler equations for rigid bodies
	Continuum mechanics

	Time discretization
	Numerical integration
	Variational and symplectic integrators
	Integration as minimization

	Material models
	Rigid bodies
	Elasticity
	Threads
	Cloth
	Virtual try on for clothes
	Deformable bodies
	Fluids
	Granular matter
	Collision detection

	Constrained dynamics
	Constraints
	Differential algebraic equations
	Mechanical engineering
	Molecular dynamics
	Computer graphics

	Velocity time stepping
	Nonlinear minimization
	Variational minimization structure
	Solvers
	Relaxation
	Krylov subspace methods
	Accelerated Jacobi

	Applications
	Regularization
	Energy dissipation and damping
	Stability
	Constraint based FEM
	Unilateral constraints

	Nonsmooth dynamics
	Mathematical prelude
	Continuous setting
	Polyhedral friction cone
	Smooth friction cone
	Position projection
	Projected iterative solvers
	Rigid bodies
	Friction models

	Unified simulation framework
	Nonlinear constrained dynamics
	Implementation and results
	Mixing PBD and VTS

	Conclusions and future work
	Conclusions
	Contributions
	Future work

