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Rezumat

Această teză prezintă un cadru unificat atât teoretic cât s, i practic de simulare a cor-
purilor rigide s, i flexibile. El foloses,te teoria dinamicii bazată pe constrângeri ı̂mpreună cu
progrese mai recente ı̂n ecuat, ii diferent, iale algebrice s, i inegalităt, i variat, ionale diferent, iale.
Un efort ı̂nsemnat este pus ı̂n exprimarea tuturor modelelor de material ca o singură prob-
lemă neliniară de minimizare constrânsă. Sunt derivate rezolvatoare noi, sunt folosite noi
metode de integrare precum Newmark s, i este propusă o nouă metodă de amortizare.

Un alt pilon al cercetării noastre este dinamica bazată pe pozit, ii (PBD). În această
teză demonstrăm ca metoda este fizic corectă, este echivalentă cu integrarea Euler im-
plicită s, i poate fi reformulată ca o minimizare pornind de la principiile variat, ionale ale
mecanicii. Mai mult, când este folosită regularizarea, constrângerile devin mai slabe s, i
complet echivalente cu fort,e elastice integrate implicit. Aceasta este s, i baza pentru noul
nostru rezolvator de element finit ce se bazează pe proiect, ia pozit, iilor s, i este corect din
punct de vedere fizic.

În cele din urmă, tratăm subiectul contactului cu frecare ı̂n contextul dinamicii non-
netede. Arătăm că tratatea contactului de către PBD este de fapt o iterat, ie de punct fix
a deja doveditei scheme de păs, ire ı̂n timp la nivel de viteză. De asemenea, demonstrăm
convergent,a acestei iterat, ii s, i includem s, i un model mai riguros de frecare. Suntem primii
care exprimă PBD ca o problemă de minimizare neliniară s, i convexă cu constrângeri
conice. Această formulare include toate tipurile de constrângeri bilaterale s, i, mai ales,
contactul cu frecare.
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Abstract

This thesis presents a unified framework at both theoretical and practical level for simu-
lating rigid and flexible bodies. It uses constrained dynamics theory together with more
recent advances in differential algebraic equations and differential variational inequalities.
A particular effort is put into expressing all the material models as a single nonlinear
constrained minimization problem. New solvers are derived, new integration methods
like Newmark are used and a new damping method is proposed.

Another pillar of our research is position based dynamics (PBD). In this thesis we
prove that the method is physically correct, it is equivalent to implicit Euler integration
and can be recast as a minimization starting from the variational principles of mechanics.
Moreover, when regularization is employed the constraints become softer and fully equiv-
alent to implicitly integrated elastic forces. This is also the basis for our novel physically
correct finite element solver that relies on position projection.

Finally, we treat the subject of contact with friction in the context of nonsmooth
dynamics. We show that PBD contact handling is in fact a nonlinear fixed point iteration
of the established velocity time stepping scheme. We also prove convergence of this
iteration and include a more rigorous friction model. We are the first to express PBD
as a convex nonlinear minimization problem with conic constraints. This formulation
encompasses all types of bilateral constraints and, more importantly, nonsmooth frictional
contact.
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Chapter 1

Introduction

This thesis describes and extends a number of methods for mechanical simulation in the
context of computer graphics. The theory behind these methods belongs to a relatively
narrow subfield of mechanics called constrained dynamics, i.e. dynamics with added
constraints. In particular, we are focusing mainly on position projection methods modeled
as mathematical optimization problems.

1.1 Motivation

The author’s background is in games and physics for 3D games. This is why in this thesis
a strong emphasis is laid upon real time applications. Also, constrained dynamics is often
the method of choice of most rigid body physics engines. This is not always true for
deformable bodies where different methods are used. This is what lead us to the idea of
unification of methods so that a single engine is used for all simulations and also coupling
is achieved between rigid and flexible materials.

1.2 Context

This work was elaborated in the context of computer graphics with a focus on virtual
reality and interactivity. In contrast to engineering we perform no validation, but rely
only on visual inspection and plausibility. Still, we did our utmost best to start from the
same physical principles and obey the same physical laws as the other older and accepted
methods used in engineering and scientific simulations.

We are focusing only on constraint based methods in order to improve them. We
are also comparing them to more traditional elasticity based approaches. For solving the
numerical problem we focus on mathematical optimization methods and in particular on
iterative solvers and gradient descent approaches. Going deeper, we concentrate only on
the dual formulation of the problem in terms of Lagrange multipliers and matrix-free
formulations for quick, parallel and low memory footprint implementations.

1.3 Goals

As already hinted, our main goal was to simulate as many different phenomena possible
using the framework of constraints. This thesis was intended as a proof of concept and
limited itself to coupling rigid and deformable bodies inside the same solver.
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CHAPTER 1. INTRODUCTION

Another challenge we set ourselves was to make these methods suitable for real-time
and interactive applications. Our intuition was that if constraint methods proved so
successful in games and VFX then they are clearly the way to go and should be extended.

The biggest condition for reaching interactive frame rates is that our algorithms are
parallel and scale well with the number of computing units. This is why we set ourselves
the goal to develop new and competitive solvers that work well on multi-core and many-
core (i.e. GPGPU) architectures directly from the mathematical level.

1.4 Thesis outline

• Chapter 2 does a quick survey of the state of the art and also mentions some
historical details.
• Chapter 3 gives a brief overview of the equations of motion for particles, rigid

bodies and continua. Some focus is put on Lagrangian mechanics and the kinematics
of rotation.
• Chapter 4 treats the subject of numerical integration and gives short descriptions

of the types of integrators. We then focus on the implicit Euler integrator and
present its minimization form and our new Nonlinear Conjugate Gradient solver.
• Chapter 5 is intended to be an introduction to the practices of modeling different

types of objects and materials, so that we can focus solely on the mathematics and
numerical methods in the following chapters.
• Chapter 6 introduces the ideas of constrained dynamics with an emphasis on equal-

ity only and holonomic constraints, namely on differential algebraic equations. Our
contributions include a new parallel solver, proven equivalence between elasticity
and regularized position projection and an accurate position based finite element
solver.
• Chapter 7 gives a brief overview of nonsmooth dynamics, namely the necessity

of using impulses to handle impacts and friction. Then we proceed to presenting
our new nonlinear and fully implicit approach to nonsmooth dynamics yielding a
rigorous formal model of position projection with frictional contact.
• Chapter 8 describes the actual theoretical foundations and practical details to build

our unified simulator. We also added some numerical experiments we performed
during our research to analyze some issues in isolation.
• Chapter 9 gives the final conclusions and summarizes our work. We enumerate once

more our contributions and finally list quite a few issues that are still outstanding
and represent challenges for the future.

1.5 Publications in connection with this thesis

A good part of the research presented in this thesis was also published in the following
articles:
• Minimum residual methods for cloth simulation [36]
• An Improved Jacobi Solver for Particle Simulation [35]
• Cloth Simulation Using Soft Constraints [37]
• Virtual Try On Systems for Clothes: Issues and Solutions [38]
• Simulating Large Scale Coupled Granular Material Simulations using Position Based

Dynamics [66]
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Chapter 2

Related work

Now that we clearly defined the context of our thesis we can restrict ourselves to reviewing
only a subset of the existing dynamics simulation literature. This chapter will only cover
very high level aspects of the state of the art in the topics connected to our research.

2.1 State of the art

Rigid bodies with contact can be simulated with constrained dynamics and other meth-
ods, most importantly the penalty method [12]. Other approaches consider the rigid
body as a collection of particles and contact forces are computed using the discrete el-
ement method (DEM) or in other ways [91, 53]. The particles can move under rigid
transformations [47] or be constrained together to form a composite rigid object [31, 62].

Granular matter has been an area of research in computational mechanics for
decades. The method of choice is usually the discrete element method (DEM) which
treats the granules as elastic billiard balls and uses Hertzian contact theory [39]. The
DEM method was used in graphics too [16, 2, 47]. Another approach was a continuum
based one, considering the granular matter a special kind of fluid [100, 74]. This was
followed by a Lagrangian version derived from the smooth particle hydrodynamics (SPH)
method for simulating fluids [1, 51]. An alternative to DEM is the nonsmooth dynam-
ics approach where the particles are considered fully rigid and this is the path we are
following.

Deformable bodies have been traditionally simulated using implicit integrators due
to their unconditional stability properties. These have been applied not only to mass-
spring systems, but also to simulations using the finite element method (FEM) [73]. Re-
cently, the popular Backward Euler integrator has been recast as an optimization problem
[23] helping us to gain new insights on a problem that used be solved solely by the Newton
method.

Cloth is one example of a deformable body modeled as a mass-spring system [79].
The implicit integration of the equations of motion has become pervasive for cloth since
the seminal work of [11]. Its main attraction is its unconditional stability for very stiff
equations and large time steps. In games position based dynamics (PBD) is usually
preferred for simulating cloth [53, 72, 41].

Constrained dynamics was not initially considered for simulating deformable bod-
ies, but this changed with the advent of PBD and constraint regularization [83]. PBD
was originally introduced by Jakobsen for games based on molecular dynamics methods
and a nonlinear version of the Stewart-Trinkle solver for rigid bodies [53]. Goldenthal
later showed that position projection is equivalent to the fully implicit integration of a
constrained system [40].

9



CHAPTER 2. RELATED WORK

Constraint based methods appeared originally in their acceleration based formulation
for rigid body dynamics with joints and contacts [9, 25]. Later on, velocity or impulse
based methods gained more popularity [5, 33]. Position based methods are actually a
nonlinear version of velocity based ones, in the sense that they can still be expressed as
velocity filters, but constraints are enforced at positional level [90]. Part of the inspiration
for PBD came from molecular dynamics where methods like SHAKE or RATTLE are
widely used [13]. A more detailed study for the application to cloth simulation in computer
graphics was done in [40]. Here the method of fast projection is developed based on an
implicit treatment of constraint directions [50] and a better energy preserving integrator is
also derived. Position based methods rely on projection for solving differential algebraic
equations (DAE), which is ultimately an optimization problem [46]. Another part of
inspiration came from strain limiting techniques used in elastic cloth simulation [79, 26].

Constraint regularization was employed mainly in [57] for making rigid dynamics with
contact and friction more tractable numerically. We take the name soft constraints from
[28] where an older idea is used: regularization under the mask of Constraint Force Mixing
(CFM) [88]. Recently constraint regularization has been used for particle based fluid
simulation [61]. Another application was intended for the simulation of deformable elastic
models using a constraint based FEM formulation [83]. Similar position based approaches
can be found in [23] and [18]. The FEM constraint approach is similar in philosophy with
continuum strain limiting [93, 71].

Iterative methods are currently the preferred way of solving constrained mechanical
systems for real-time. Using exact methods can become infeasible when adding contact
and friction for more than a few hundred bodies [17]. The fastest and most robust iterative
method used in the present is Gauss-Seidel (GS) [27, 33]. GS also knows improvements
such as line search with conjugate directions [86] or subspace minimization [87]. Jacobi
is another relaxation method, closely resembling GS, but it converges slower and needs
modifications to remain stable. Still it is preferred to GS for parallel implementations as
it can process each constraint independently from the others [96].

The Conjugate Gradient (CG) method has a good reputation for solving linear systems
as it has better convergence than matrix splitting methods like Jacobi or GS [82]. Even
though it was used for implicit integration of mass-spring models [11] it has never gained
traction in constrained dynamics simulations. There have been attempts at using it [80],
but many argued against its applicability for different reasons [33, 95, 69]. Our approach
is based on a minimum residual variant of gradient descent algorithms as it guarantees
decreasing residual energy and is more stable. After optimizing the conjugate residuals
algorithm we arrived at a version of Jacobi with improved convergence. A minimum
residual method (GPMINRES) was also used in [49]. The line search Jacobi algorithm
offers similar improvements to ours [96, 29], but our addition of a momentum term bears
more resemblance to Nesterov’s method [67].

2.2 Nonsmooth dynamics

The formulation of contact dates back to Signorini in the context of elasticity. The solution
to the problem of contacting elastic bodies was given in the early 60s and contact com-
plementarity conditions were named Signorini-Fichera (or Moreau-Signorini) [99]. The
application of this conditions to particles and rigid bodies was done in the 70s and 80s
mainly by Moreau and Monteiro-Marques [70]. The work of Moreau was later continued
by the likes of Jean, Jourdan, Alart, Curnier and others. In this thesis we are following
mostly the work of Anit,escu and his collaborators and also variants of it that made it into
computer graphics and games.
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Chapter 3

Equations of motion

We present the equations of motion in the Newton and Lagrange formulations. We intro-
duce Hamilton’s principle and set it as a foundation of later results in this thesis. Rotation
kinematics and the Newton-Euler equations of the dynamics of the rigid body are briefly
presented and in the end we give a quick guide to continuum mechanics.

3.1 Newton equations of motion

Before mechanics came geometry as a physical science, so it is natural to measure the
movement of a particle as the variation of its position. The shape drawn by this point at
different moments in time is called a trajectory and can always be defined as a parametric
curve: ~x(t), t ∈ R. Newton’s form of equations of motion give us a law of the variation of
momentum when external forces are present. If considering the mass constant and using
acceleration we get a second order ordinary differential equation (ODE):

~̇p = m~̈x = ~f(~x,~v, t). (3.1)

In the end the first order equations that we will employ throughout this thesis are:

d

dt

(
x

Mv

)
=

(
v

f(x,v, t)

)
, (3.2)

with x(t0) = x0 and v(t0) = v0 as initial conditions.

3.2 Lagrange equations of motion

The alternative procedure of Lagrange implies identifying from the start the degrees of
freedom of the system and is often called a reduced coordinates formulation. These reduced
coordinates are also known as generalized coordinates q ∈ Rn, where n is the number of
degrees of freedom. They coincide with the aggregated coordinates x from the previous
section when motion is unconstrained and Cartesian coordinates are used. Generalized
velocities are simply denoted as q̇. Kinetic energy of a particle is T = mv2/2 and we can
also define a potential energy V such that the force acting on the particle is a gradient
of this potential, i.e. ~f = −∇V . We introduce the Lagrangian function as the difference
between the kinetic and the potential energy: L = T − V .

For a system of particles (and even in general) the kinetic energy has the form T =
1
2
vTMv, where M is the positive-definite mass matrix and the potential energy is a

function only on positions V (x). Then the Euler-Lagrange equations of motion are:

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

. (3.3)
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CHAPTER 3. EQUATIONS OF MOTION

The real power of these equations comes from the fact that they are equivalent to a
more general extremum principle known as Hamilton’s principle:

extremize S =

∫ t2

t1

L(q, q̇, t)dt. (3.4)

3.3 Rotation kinematics

Surprisingly, rotations bring most of the complexity to the dynamics of rigid bodies and
give birth to intricate mathematical constructs. There is a broad literature on the rep-
resentation of rotation[42, 34, 64]. The most common representation comes from linear
algebra and is a 3 by 3 orthonormal matrix: R ∈ R3×3,RTR = 13.

The kinematic equation in the rotation matrix representation is:

Ṙ = ~ω×R, (3.5)

where ~ω is the angular velocity and the × symbol means the skew-symmetric matrix
associated with a vector [10].

However, we will be dealing with this quaternion kinematic equation mostly:

ξ̇ = 1
2
~ω ◦ ξ, (3.6)

where ◦ denotes quaternion multiplication.

3.4 Newton-Euler equations for rigid bodies

In order to be able to write the rigid body equations of motion we need to introduce a
few more physical quantities. The most important one is the angular momentum, which
as the name states is the analog of linear momentum: ~L = I~ω, with

I =
∑

mi(r
2
i 1− ~ri~rTi ). (3.7)

The symmetric matrix I is called the inertia tensor and it is the analog of mass for
rotations.

The Newton-Euler equations in aggregated Cartesian coordinates are:

M̃v̇ = f(x,v), (3.8)

Iω̇ = τ − ω × Iω, (3.9)

where M̃ = diag(mi), τ is the external torque and the relationship between linear and
angular velocities (and corresponding generalized positions) is given by the kinematic
equations.

3.5 Continuum mechanics

In order to be able to define strain we need to introduce the deformation field and its
gradient. Thus for every point in the original undeformed object ~r there corresponds a
displaced point ~x = φ(~r) = ~r + ~u(~r), where u is the displacement. The gradient F = ∇φ
indicates the amount of deformation and also of accumulated elastic energy [85]. We
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CHAPTER 3. EQUATIONS OF MOTION

measure this by seeing how far off is F from being orthonormal and we obtain the Green-
Lagrange nonlinear strain:

εG = 1
2
(FTF− 1). (3.10)

Now that we know about strain, we can move on to the stress tensor which is the
analog of force. Together with strain they form an analog of Hooke’s law:

σ = Cε, (3.11)

where C is rank 4 symmetric tensor defining material properties.
The energy density function is:

Ψ(F(~x)) = εTCε. (3.12)

The total energy is the integral of Ψ over the whole volume and the stress is σ = ∂Ψ
∂ε

.
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Chapter 4

Time discretization

Time discretization means basically numerical integrators for ODEs. They are the heart
of a simulator as they are the only way of advancing trajectories in time.

4.1 Numerical integration

We are usually interested in two properties of the integrators: accuracy and stability.
Accuracy is generally denoted by the order of the integrator, meaning the power of the
time step to which the error is proportional. In this thesis we do not use order higher
than two. Stability is a more delicate issue and refers to keeping the error bounded over
a long integration time. There are two big classes of integrators: explicit and implicit,
and only the latter can guarantee unconditional stability.

4.2 Variational and symplectic integrators

The subject of variational or geometric or symplectic integration is currently under devel-
opment by mathematicians. The three words have almost similar meaning and originate
from properties of analytical mechanics: the variational principles of mechanics [58], the
geometric view on mechanics [46] and the symplectic property of Hamiltonian phase space
[7, 59]. In a nutshell, variational integration starts from the very basic principles of me-
chanics and develops a subset of integrators that fit with the nature of dynamical systems.
The main goal is to conserve energy and momentum as much as possible irrespective of
the integrator order.

4.3 Integration as minimization

Relatively recently the Implicit Euler integrator was recast as a minimization problem
[60, 23, 65]:

minimize 1
2
(vl+1)TMvl+1 + V (xl+1). (4.1)

At this point we can introduce one of our contributions, which is to apply a nonlinear
minimization algorithm directly on (4.1) instead of solving the nonlinear optimality con-
ditions with Newton’s method [78] or in a linearly implicit fashion as it was customary
[11]. We used a Nonlinear Conjugate Gradient (NCG) algorithm [84] and found that we
could ignore the second derivative of the potential in a stable and accurate manner (see
[37]).
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Chapter 5

Material models

This chapter is in fact about space discretization. If this concept does not apply so much
to particles and rigid bodies, this is not the case for deformable bodies where the choice
of discretization makes a world of difference between different simulation results.

5.1 Rigid bodies

Rigid bodies are large solid objects (much larger than a particle) that have shape and a
distribution of mass. A rigid body has 6 degrees of freedom: 3 for translation and 3 for
rotation. In practice we can use somewhere between 6 and 12 parameters to describe the
generalized position of a rigid body.

An important type of interaction between rigid bodies is contact, also known as col-
lision or impact. We will give a different meaning to each of these words. By contact
we will mean a type of constraint that prevents bodies from inter-penetrating (especially
when they are resting on top of each other). Contact is mostly persistent, manifesting
friction in the tangential plane (stick), but it can also break (slip). Collision is a word
that we will reserve mostly for the phase of collision detection, as it has caught on in time
and it refers to testing for intersection between objects and obtaining contact information.
Impact refers almost exclusively to high speed collisions that usually result in the objects
moving apart immediately after (i.e. elastic or partly elastic impacts).

Figure 5.1: Boxes falling on ground solved with position projection.
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CHAPTER 5. MATERIAL MODELS

5.2 Elasticity

In this section we address elastic materials. Bodies made of such materials are called (at
least in our context) deformable, flexible or soft bodies. There are many ways to model
deformable bodies and they all involve some kind of approximate spatial discretization.
Just like in the case of integration in time, the accuracy depends on the size of the
discretization resolution.

One of the most popular methods of discretization used in computer graphics consists
of particle systems interconnected by linear springs or other forces. The other two popular
approaches to modeling elastic bodies are finite differences and finite element.

5.3 Threads

Threads are most often modeled as a chain of particles connected through springs. These
springs can be either integrated implicitly or treated as hard links in a constraint approach.
More complex models involve articulated bodies [44], Cosserat theory [75], supper-helices
[20] and nonsmooth dynamics [21]. In addition, threads need modeling of torsion [56, 44].

5.4 Cloth

Cloth is a generic name we give in computer graphics to thin surfaces or shells or mem-
branes with applications mainly in garment simulation. There is a whole branch of study
in mechanical engineering about this type of objects [14], but we are not entering this
kind of detail. We focus mainly on the mass-spring approximation and at the end offer
an accurate alternative using FEM.

Figure 5.2: Links structure of cloth relative to one particle (white one in the center):
stretch links (red), shear links (blue), bend links (green).

As you can see in Figure 5.2 there are mainly 3 types of springs or links inside cloth.
The stretch links are structural as they hold the fabric together and also determine its
extension and compression properties, i.e. its tensile strength. Shear links have the role
of preventing skewing in the plane of the cloth; they are only an approximation of shear
stresses that arise in continuous materials. Bending links join more distant neighbors and,
as the name says, they prevent bending of the cloth (out of plane deformation). Bending
links can be replaced by other type of deformation functions (e.g. dihedral angle [11, 72],
curvature [55]) or potentials [19].

Even though cloth was simulated in the past using finite differences, the most popular
way of modeling cloth accurately nowadays is the finite element method [97, 94]. The
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CHAPTER 5. MATERIAL MODELS

Figure 5.3: Two snapshots of a side by side real-time simulation of two 40×40 cloth
pieces with the same Young’s modulus E: regularized FEM constraints (left) and soft
links (right).

continuum formulation in [11] is actually a particular case of the finite element method.
You can find our own constraint based approach in [37] (see also Figure 5.3).

5.5 Deformable bodies

In computer graphics there are many ways in which deformable bodies can be ”tricked”.
We leave aside animation techniques and focus only on dynamics simulation, but even
then one can use mass-springs lattices, cloth balloons, shape matching, example based
deformation and the list can continue. In engineering on the other hand, where accuracy
is important, the state of the art method is FEM.

5.6 Fluids

Fluids make up a special category of study in simulation. In engineering the field is called
computational fluid dynamics (CFD) and it usually entails very complex and accurate
methods. In computer graphics fluid simulation is also very popular and is used for a lot
of special effects (VFX) and computer generated imagery (CGI).

The standard SPH method has been extended in the recent years to an implicit version
with better incompressibility. Two of these methods, constraint fluids [22] and position
based fluids are strongly connected to the formalism of constrained dynamics. We think
that the PBF simulations in [62] are the best examples of how fluids can be coupled in
the same solver with other position-based methods including the ones presented in this
thesis.

5.7 Granular matter

Granular matter is a material with very curious properties as it sometimes behaves like
a solid and other times like a fluid [52]. For example, due to static friction piles of grains
maintain their shape, but if the angle of repose is reached avalanches can be triggered.
For similar reasons sand in an hourglass flows at a steady rate as the pressure does not
increase indefinitely with height as in the case of hidrostatic pressure.

Contact can be handled in two ways: the discrete element method (DEM) [16], which is
basically Hertzian contact theory, and complementarity approaches (including nonsmooth
dynamics).
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5.8 Collision detection

There are two important types of collision detection: discrete and continuous (CCD).
The former is usually implied and it is most used as it is easier to implement. Discrete
means that the penetration tests are done at instants of time and continuous implies that
the time of impact is identified precisely in between two moments in time. CCD was
developed mainly to prevent bullet through paper (or tunneling) artifacts when collisions
are missed due to high speeds. This is why CCD is mainly used for self-intersection tests
for cloth where it is very hard to tell locally which side is the correct one and there is no
notion of body interior.

Collision detection has three stages: broadphase, midphase and narrowphase. Broad-
phase is the stage when only potential collision candidates are identified based on simple
bounding volume tests. These volumes are usually axis aligned bounding boxes (AABB)
and one of the most popular methods used for broadphase is sweep and prune (SAP) [32].
Midphase is optional and it usually means testing two large composite objects against
one another. They usually imply using bounding volume hierarchies (BVH) for each
body and doing tree traversals in order to do the overlap tests. Finally, narrowphase
means doing the exact test between two relatively simple objects (e.g. boxes, spheres,
cylinders, capsules, triangles, convex polyhedra).
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Chapter 6

Constrained dynamics

Constraints are the stiffness limit of strong elastic forces. The method of choice for solving
constraints is that of Lagrange multipliers. We focus mostly on solvers that are more in
vein to nonsmooth or impulse based dynamics. We also go a step further by working
directly at position level where we present our contributions.

6.1 Constraints

Constraints usually appear in the context of analytical mechanics rather than the New-
tonian one, where everything is solved by determining forces. Our procedure increases
the number of variables rather than reducing it (redundant coordinates), by adding the
so called Lagrange multipliers.

Constraints have different classifications. Unilateral constraints involve inequality as
they usually mean that a body should stay on one side of a surface at any time, i.e.
contact constraint. Bilateral constraints are more popular in physics and they were given
more space in the literature as they are easier to deal with than inequalities. Bilateral
constraints have two distinctions: scleronomic vs. rheonomic and holonomic vs. non-
holonomic. Scleronomic means the constraint does not depend on time explicitly while
rheonomic signifies the opposite. Holonomic constraints depend only on generalized po-
sitions while nonholonomic ones involve velocities or, equivalently, position differentials.
In this thesis however we focus mainly on holonomic and scleronomic constraints.

Key in the understanding of constraints is the principle of virtual work from La-
grangian mechanics. In the case of equilibrium, the virtual displacements δq must be
compatible with the constraints, i.e. 0 = δc(q) = ∇c(q)T δq, meaning that they always
lie in the tangential plane of the constraint manifold. The principle of virtual work is
extended from statics to dynamics by the principle of d’Alembert [58].

6.2 Differential algebraic equations

The most general form of a index 3 DAE encountered in dynamics is:

Mẍ = fext + JTλ, (6.1)

c(x) = 0, (6.2)

where fext is the external force. An important property of the DAE is its index - a
measure of singularity or perturbation: add one to the number of times it takes to derive
the constraint function so that the unknown has the same derivative order as in the ODE
[25, 45].
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6.2.1 Mechanical engineering

Differential algebraic equations have been developed in the context of mechanisms where
many rigid parts are joined by various joints in a complex manner. Popular solvers include
DASSL [25], RADAU5 [45] or generalized coordinate partitioning [48] and orthogonaliza-
tion methods [63]. Index reduction is a penalty approach which converts the DAE into
an ODE [15]. This is basically a spring-damper regularization and it is used in modern
DAE solvers as a correction technique (now called Baumgarte stabilization) [8].

6.2.2 Molecular dynamics

In computational molecular dynamics (MD) often very strong bonds are replaced by
constraints. This is done in order to reduce the stiffness of the problem and speed up
the computation. The algorithm SHAKE dates back to the 70s and it is based on a
Verlet integrator and nonlinear equation solving [81]. It was later extended to Velocity
Verlet and phase space projection: RATTLE [3]. These are both related to the method
of projection for solving DAEs [46]:

minimize ‖δx‖2
M subject to c(xl+1) = 0, (6.3)

where δx = xl+1− x̃ is the difference between the new unknown position x and an initial
candidate position x̃ obtained through unconstrained integration.

6.2.3 Computer graphics

In computer graphics constraints were introduced by Baraff and Witkin [9, 98]. Building
from Stewart’s method and using influences from molecular dynamics and DAE theory,
Jakobsen introduced the first position based method in games [53]. Later Müller et al. [72]
further developed the method, switched to a Symplectic Euler integrator and gave it its
now popular name: position based dynamics (PBD). Goldenthal made it more academic
and presented it in a different form (decoupled from the Gauss-Seidel solver) called fast
projection [41, 40].

We tried to understand as much as possible where PBD really comes from and what
it really is and came up with two equivalent answers:
• a position-based (index 3) DAE solver using projection or
• a nonlinear velocity time stepping (index 2) DAE solver with stabilization.

6.3 Velocity time stepping

The VTS method is used mainly for contact and friction, but it can also handle bilateral
constraints [92, 33]. It is obtained by discretizing the equations of motion (6.1) using
a semi-implicit (or symplectic) Euler integrator as in [90]. The velocity based method
bears a lot of similarity to the impulse based method [68, 43] and therefore Catto called
his Gauss-Seidel solver Sequential Impulses [27].

6.4 Nonlinear minimization

We experimented with iterative solvers from the Conjugate Gradient (CG) family [78, 84]
to do projection. Most of them worked given enough iterations, but there were stability
issues when not using the Minimum Residual (MINRES) type of algorithms. We found
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out that the problem was not related to the system matrix but rather to the way the
residual evolved along the iterations. Our method of choice was in the end Conjugate
Residuals (CR) [82].

The implicit Euler integrator has also been shown to have a minimization structure
in Section 4.3. The formulation in (4.1) with constraints added gives us an objective
function close to the one used in projection:

minimize 1
2h2

∆xTM∆x + V (xl+1) subject to c(xl+1) = 0, (6.4)

where ∆x = xl+1 − xl − hvl. The main takeaway here is that projection is simply just
the implicit Euler integration of constraint forces.

Stating position projection as a dual nonlinear optimization problem is a premiere to
our knowledge and we think it is a very versatile form:

minimize h2

2
λTAλ+ λTc(ql+1), (6.5)

where A = JM−1JT . Note that the constraint Jacobian is considered here at the end of
the time step in an implicit manner: J = ∇c(ql+1).

6.5 Variational minimization structure

We now make the case that most DAE solvers can be recast as minimization problems.
To summarize, projection is a discretized way of expressing Hamilton’s principle and
expresses as a constrained minimization prolem both position and velocity based methods
for solving DAEs. In a nutshell, all the methods can be expressed as a minimization which
in turn can be recast to a projection on the constraint manifold or its tangent bundles.
We followed the derivation in [54] to show how the Newmark integrator can be recast as
a minimization problem.

6.6 Solvers

The two important classes of methods analyzed are relaxation solvers and Krylov subspace
methods, better known as the conjugate gradient family of algorithms. At a closer scrutiny
the two are quite similar as they both are line searches:

λk+1 = λk + αdk, (6.6)

and at the same time gradient descent methods as the direction d is usually the gradient
or something related [80].

6.6.1 Relaxation

Relaxation solvers are simple iterative methods for solving large sparse linear systems.
They are also called stationary as the recursion formula does not change or splitting
methods as they rely on splitting the system matrix in 2 or 3 components. They include
the Jacobi, Gauss-Seidel and Successive Over-Relaxation (SOR) methods.

6.6.2 Krylov subspace methods

These methods include the well known Conjugate Gradient (CG) algorithm and its vari-
ants [84]. We will now mention briefly the minimum residual methods that were initially
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developed for indefinite symmetric matrices. These methods try to minimize the quadratic
norm of the residual ‖r‖2 [78]. The minimum residual counterpart of CG is the Conjugate
Residuals (CR) algorithm. This is of importance because we found that the CR algorithm
is more stable than CG when applied to constraint projection and for small number of
iterations [36].

6.6.3 Accelerated Jacobi

Without giving all the details here, we obtained a version of Jacobi with increased con-
vergence (ω ≤ 1):

λk+1 = λk −
ω

Aii
rk − βkδλk, (6.7)

After looking more closely at the accelerated projected gradient descent (APGD) or Nes-
terov’s method in [67] we came to the conclusion that it can be reduced to the same form
as in (6.7). We decided to use the same step size as in Jacobi and adapt the following
formulas from [67]:

θk+1 = 1
2
(−θ2

k + θk

√
θ2
k + 4), θ0 = 1 (6.8)

βk+1 =
θk(1− θk)
θ2
k + θk+1

. (6.9)

6.7 Regularization

Regularization can be expressed as adding a small feedback term to the constraint equa-
tion:

c̃(x) = c(x) + ελ = 0. (6.10)

If we denote by κ = 1/ε then we can see that this is equivalent to having a potential
energy of the form κ

2
‖c(x)‖2 which is precisely the elastic spring energy with the stiffness

κ [57].
In [37] we showed that implicit Euler integration of elastic media is equivalent to

regularized projection. For this we used the minimization formulation in (4.1). The
potential term of the constraints Vc can be either a quadratic elastic energy or the Lagrange
multiplier potential energy of the constraints. We rewrite equation (4.1) as:

minimize 1
2h2

∆xTM∆x + Vc(x) + Vext(x
l), (6.11)

where Vc can be either κ
2
‖c(x)‖2 or −λT c̃(x).

6.8 Energy dissipation and damping

We have already mentioned that for preserving energy during the simulation it is best
to use symplectic integrators (Section 4.2). This is why in [37] we propose a projection
scheme based on the Newmark integrator that can be tuned.Another of our contributions
is to add damping in a physical and credible manner to the position projection formulation.
In general we can do this by using a Rayleigh dissipation function [57]:

ϕ(v) = 1
2
ċ(q)Rċ(q), (6.12)

where ċ(q) = DTv and R is a positive definite matrix (usually diagonal). Using the
dissipation potential in (6.12) yields a new regularization formula: c(q) + C−1Rċ(q) +
C−1λ = 0, which in turns gives a new KKT matrix and a new Schur complement: A =
h(h1 + C−1R)DTM−1D + C−1.
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6.9 Stability

Given that a part of the stiffness matrix is not implicitly taken into account, it is easy to
see why the regularized velocity time stepping scheme might manifest instabilities above
certain frequencies. This is mainly due to the linearization error - basically the second
order term in the Taylor series expansion of the constraint is missing. For the infinite
stiffness case we can still have residual error in the solver that can manifest itself as
compliance or possibly unstable linearization error.

6.10 Constraint based FEM

For the particular case of the geometrically linear finite element method (FEM) we use
the element energy in order to identify the constraint function: Ve = W ε̃TCε̃, where
W is the element volume, ε̃ is the element constant strain in Voigt notation and C is a
stress-strain relation matrix The constraint function is then:

c(x) =
√
W (x)ε̃(x). (6.13)

Algorithm 1 Pseudo-code for computing the internal forces inside a tetrahedron. Here a
block Gauss-Seidel approach is employed.

Input: tetrahedron (x0,x1,x2,x3)
Compute shape matrix Ds = [x1 − x0|x2 − x0|x3 − x0]
Compute deformation gradient F = DsD

−1
m

Compute Green strain ε from the matrix 1
2
(FTF− 13)

Compute strain Jacobian J
Compute local system matrix A = h2JMJT + C−1

Solve Aλ+ ε = 0
Output: internal forces f = JTλ = (f0, f1, f2, f3)

6.11 Unilateral constraints

We can consider projection as a QP with both equality and inequality constraints:

minimize 1
2h2
δxTMδx

subject to Ψ(xk+1) = 0,

Φ(xk+1) ≥ 0,

(6.14)

where the constraint function c was split into a bilateral part Ψ and a unilateral one Φ.
The most relevant example of a unilateral constraint is contact.
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Chapter 7

Nonsmooth dynamics

This chapter is about contact and friction essentially. The name nonsmooth dynamics is
given by the fact that both impacts and friction cause discontinuities in the velocity. And
this is the context where we are making our own contribution, namely that position based
methods can also treat contact and friction in the framework of nonsmooth dynamics.

7.1 Mathematical prelude

M
dv

dt
= fext + JTλ, (7.1)

0 ≤ Ψ(q) ⊥ λ ≥ 0. (7.2)

This set of equations is called a differential complementarity problem (DCP) [90] as it
combines a differential equation with complementarity.

The normal cone to a given set S at a point x ∈ S is the set: NS(x) = {p : ∀y ∈ S, (y−
x)Tp ≤ 0}. The dual of a cone K is the convex cone [24]: K∗ = {y : ∀x ∈ K,xTy ≥ 0}.
The negative normal cone is called the polar cone or the tangent cone: K◦ = −K∗ with
K = NS.

7.2 Continuous setting

In order to paint a clear picture of contact dynamics we illustrate in Figure 7.1 a particle
contact point with a surface. At this point one can identify a normal to the surface, ni,
and any two tangent vectors, si and ti, so that together they form an orthonormal frame.
The most general formulation of constrained dynamics with contact and friction is given
in continuous form by a DVI [92]:

M
dv

dt
=
∑
i∈GA

(γinD
i
n + γisD

i
s + γitD

i
t) +

∑
i∈GB

(γiB∇Ψi) + f ltot, (7.3)

dq

dt
= v, (7.4)

Ψi(q) = 0, i ∈ GB, (7.5)

0 ≤ Φi(q) ⊥ γin ≥ 0, i ∈ GA, (7.6)

(γis, γ
i
t) = arg min√

(γis)2+(γit)
2≤µiγin

(v)T (γisD
i
s + γitD

i
t). (7.7)
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Figure 7.1: Particle contact point with friction cone Υ given by θ = arctanµ and its polar
cone Υ◦ depicted below.

We give here directly a discretized form of the DVI:

M(vl+1 − vl) = h
∑
i∈GA

(γinD
i
n + γisD

i
s + γitD

i
t)

+ h
∑
i∈GB

(γiB∇Ψi) + hf ltot,
(7.8)

ql+1 = Λ(ql,vl+1, h), (7.9)

Ψi(ql+1) = 0, i ∈ GB, (7.10)

0 ≤ Φi(ql+1) ⊥ γin ≥ 0, i ∈ GA, (7.11)

(γis, γ
i
t) = arg min√

(γis)2+(γit)
2≤µiγin

(vl+1)T (γisD
i
s + γitD

i
t)., (7.12)

where Λ is an implicit Euler integration operator for the positions. The novelty in our ap-
proach is that we are using a full implicit Euler integrator instead of semi-implicit/symplectic
Euler [90, 6] and we keep the non-penetration condition at position level as a nonlinear
unilateral constraint.

7.3 Polyhedral friction cone

We can reduce the DVI continuous formulation to a series of solvable mixed LCPs by
choosing a set of tangent vectors {d1 . . .dp}:

Mv −Mvl − hf ltot − h
∑
i∈GB

(∇Ψi
kγ

i
B)−

h
∑
i∈GA

(γinD
i
n,k +

p∑
j=1

βijD
i
j,k) = 0,

(7.13)

i ∈ GA, 0 ≤ Φi(qk) + h(Di
n,k)

Tv ⊥ γin ≥ 0, (7.14)

0 ≤ λi + (Di
j,k)

Tv ⊥ βij ≥ 0, (7.15)

0 ≤ µiγin −
p∑
j=1

βij ⊥ λi ≥ 0, (7.16)

i ∈ GB,Ψi(qk) + h(∇Ψi
k)
Tv = 0, (7.17)
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where Dj is the generalized coordinates equivalent of dj, βj are the friction Lagrange
multipliers and λ is a Lagrange multiplier approximating the tangential slip velocity.

7.4 Smooth friction cone

In [4] the DVI is linearized and convexified so that it can be expressed in the end as a
quadratic minimization problem with conic constraints. We take this formulation and
extend it to the fully implicit and nonlinear case:

minimize W (v) = 1
2
vTMv − f̂Tv

subject to Φi(ql+1)− hµi‖viT‖ ≥ 0, i ∈ GA,
Ψi(ql+1) = 0, i ∈ GB,

(7.18)

where f̂ = Mvl + hf ltot and ‖viT‖ =
√

((Di
s)
Tv)2 + ((Di

t)
Tv)2 is the magnitude of the

tangential relative velocity at the contact point. Our approach for solving this problem
is to derive a new fixed point iteration that is equivalent to a CCP at every kth iteration:

Υ◦k 3 −(hDT
k v + bk) ⊥ γ ∈ Υk, (7.19)

where γ = (γA,γB) is the Lagrange multipliers vector and bk = (bk,A,bk,B) - the first
component corresponding to contacts bk,A = (Φ(qk) − hDT

n,kvk , 0 , 0) and the second to

bilateral constraints bk,B = Ψ(qk) − h∇ΨT
k vk. Υ is the direct sum of all friction and

bilateral cones, Υ◦ is the corresponding polar cone and D is the concatenation of all
constraint directions, i.e. Di

A = [Di
n|Di

s|Di
t] and Di

B ≡ ∇Ψi.

7.5 Position projection

It can be shown that the quadratic objective in (7.18) can be reformulated in terms of
displacements:

minimize W (δq) = 1
2h2
δqTM̄δq,

subject to − u ∈ Υ◦,
(7.20)

where M̄ = LTML and u(δq) = (uA,uB) with uA = hDT
k v+bk = (Φ(ql+1), hDT

s vl+1, hDT
t vl+1)

and uB = Ψ(ql+1). In this form we can easily recognize the projection method for solving
differential equations on manifolds (see equation (6.3)). The fixed point iteration in (7.19)
extends the projection method to unilateral constraints and friction, given that we use
the initial guess for velocity v0 = ṽ. If we use v0 = 0 instead and only one fixed point
iteration we obtain the velocity time stepping method with linearized constraints [5].

The dual form problem is obtained following the approach in [67]:

minimize 1
2
γTAγ + γT r

subject to γ ∈ Υ,
(7.21)

where A = h2DTM̄−1D with D evaluated in ql+1 and r = u. This is none more than the
dual of (7.20).

26



CHAPTER 7. NONSMOOTH DYNAMICS

7.6 Projected iterative solvers

We followed the example of projected relaxation methods and devised our own general
projected gradient descent template for solving unilateral constraints similar to (6.6) [35]:

λk+1 = proj(λk + αdk + β(λk − λk−1)), (7.22)

where the projection operator can be as simple as a clamp for nonnegative or box con-
straints [87] or more complex like a cone projection [92].

7.7 Rigid bodies

Contact only has been tackled in the past either by instantaneously considering it as
a bilateral constraint or through a crude complementarity approach. Friction on the
other hand has had no solid mathematical framework to rely on and we believe that our
nonlinear fixed point iteration is the first (using either an LCP or CCP discretization).
You can find our pseudo-code for frictional contact between rigid bodies in Algorithm 2.
Note that we identify the two bodies by the indices 1 and 2 and a contact pair is fully
determined by a world normal n and the closest points between the two bodies a1 and a2

- each expressed in their respective frame.

Algorithm 2 Pseudo-code for computing the normal and friction forces between 2 rigid
bodies in contact. Can be used with either a Jacobi or a Gauss-Seidel approach (ω ≥
1, β = 0).

Input: contact pair (n, a1, a2), β, old force γ, and increment δγ
p1 = R1a1,p2 = R2a2

Compute normal residual rn = n · (x1 + p1 − x2 − p2) (gap)
Compute normal diagonal term dn of matrix A
γn = clamp(γn − ω

h2dn
rn − βδγn, 0,∞), γT = 0

Compute relative velocity v12 = (v1 + ω1 × p1)− (v2 + ω2 × p2)
Compute tangential relative velocity vT = v12 − (n · v12)n
if vT 6= 0 then

Compute tangential residual rT = ‖vT‖ (slip speed)
Compute tangential direction τ = vT/vT
Compute tangential diagonal term dT
(γn, γT ) = project(γn, γT − ω

h2dT
rT − βδγT )

end if
Output: contact force γ = (γn, γT ), i.e. f = γnn + γTτ

7.8 Friction models

For an overview of friction models see [77] or the discussion in [57]. It is important to note
that some of these approximations are using an estimate of the normal impulse component
- the case of box or cylinder friction. This estimate can be a constant [27], coming from a
previous frame or from a previous solver iteration [76]. The case that running the normal
contact solver and friction solver one after the other is actually a staggered approach is
made in [17]. The most popular friction model in computer graphics and games is the
box LCP or the square pyramid one [33, 96].
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Chapter 8

Unified simulation framework

8.1 Nonlinear constrained dynamics

Our unified simulator (Figure 8.1) relies on the theoretical aspects presented in the pre-
vious chapters. It is in essence a position based dynamics solver with several extensions.
The most important result is that the problem can be formulated as a constrained mini-
mization. This permits us to use a range of algorithms suited for nonlinear optimization.

Algorithm 3 Nonlinear projected gradient descent constraint solver using a Jacobi ap-
proach.

Unconstrained step to q̃, ṽ
q0 = q̃,v0 = ṽ
for k = 0:kmax − 1 do

Compute c(qk) and Dk

Compute residual rk
Update Lagrange multipliers (see Section 7.6)
Apply generalized force fc = Dkδγk+1 using both position and velocity integrators

end for

(a) Rigid bunnies falling on a piece of cloth
with two way coupling.

(b) Flexible dragon falling on stairs and hit-
ting rigid boxes.

Figure 8.1: Two way coupling between rigid and flexible bodies.
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Figure 8.2: Evolution of cloth from initial state to steady state painted as L1 norm of
the constraint error for 30 iterations per frame using GS (blue), MINRES (red) and CR
(green).

8.2 Implementation and results

All of the algorithms were implemented in C++ in a unified manner such that all con-
straints were solved at the same time and in the same solver. For this we used a single
common list of bodies that could have each a maximum of 6 degrees of freedom. This
list was split into groups, each group having a different meaning (e.g. cloth, rigid body
system or FEM soft body) and different types of constraint lists. Some constraint types
were specific to only one group (e.g. link constraints for cloth), others were common
among several groups (e.g. contact constraints) and the rest were specially designed for
coupling between groups (e.g. rigid body vs. triangle).

In terms of constraint solving we used mainly two approaches: Gauss-Seidel and accel-
erated Jacobi. We further optimized the latter using OpenMP parallel for loop directives.
Our experiments have shown that the CR method converges better than GS for the same
number of iterations, thus making up for the extra computational cost. We illustrated
stability and convergence information in Figure 8.2.

We tested the accuracy of our improved Jacobi method on bilateral constraints only.
Our test scenario consisted of a 100×100 piece of cloth falling from a horizontal position
and hanging from two corners. You can see the evolution in time of the system for three
different solvers in Figure 8.3. Clearly our method performs better.

Collision detection was done using both Bullet [30] and our own triangle mesh tests.
We implemented our own code because we needed continuous collision detection when per-
forming tests versus cloth or for self-collisions. We accelerated these tests using OpenMP
loops and a variant of dynamic AABB trees. Collision detection is run right after the
unconstrained position step when non-penetration constraints are sure to be violated.
We do cloth-primitive and cloth-mesh intersection tests by testing all pairs of vertices
and triangles or other primitives (e.g. sphere) in a similar fashion to [72] and [26]. We
also employed continuous collision detection techniques using the ideas presented in [89]
based on swept spheres. This was done in order to catch tunneling artifacts although the
contacts are still solved at the end of the time step, which is kept fixed.

Many of the simulations for this thesis were done in real-time inside our own OpenGL
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Figure 8.3: Plot of constraint error (L1 norm) for PBD cloth simulation with different
solvers (frame number on the horizontal axis): Gauss-Seidel (blue), SOR (green) with
ω = 1.2, and improved Jacobi (red) with ω = 0.5, a = 1 and b = 0.6.

powered Windows application (see Figure 8.4). Others were done in an offline manner
and then exported as Alembic geometry caches to Autodesk Maya and rendered using
Pixar RenderMan. However, the simulator was written with real-time in mind and a lot
of the scenarios ran at interactive rates, some even at 60 Hz. Generally we used a time
step h = 16 ms, gravity g = −9.8m/s2 and 10 to 50 iterations or more for our iterative
solvers. For elastic bodies we used a Young’s modulus E = 0.5 GPa and a Poisson ratio
below 0.2. The masses of cloth and the soft bodies were raised up to around 10 kg in
order interact smoothly with rigid bodies of unit mass or less.
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Figure 8.4: Windows application written in MS Visual C++ using OpenGL.
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Chapter 9

Conclusions and future work

9.1 Conclusions

We did not answer all the questions or fulfill all the goals we set in the introduction. But
we did clarify a lot of aspects during this doctoral research. For instance, we know now
that position based dynamics is truly a physically correct method and there is no cheating
involved. It is also deeply connected to velocity time stepping methods used in rigid body
simulation: VTS is just a linearization of PBD. We also found out that both PBD and
VTS can be expressed as optimization problems and new solving strategies can be used.
Even in the case of frictional contact we no longer need to express the problem solely
as a LCP but we can turn it into a convex minimization. And this allows us a unifying
view of all constraints and a general formulation of PBD as a fully implicit and nonlinear
projection scheme.

9.2 Contributions

We will now give a brief list of the original contributions presented in this thesis together
with a reference to the section where they are presented and the article where they were
published (where applicable):
• a general formulation of position based dynamics as a minimization problem with

nonlinear constraints (Section 6.4) equivalent with implicit Euler integration;
• a nonlinear minimum residual and a conjugate residuals (CR) solver for the position

based dynamics optimization problem (Section 6.6.2) also published in [36];
• an improved Jacobi scheme (with two variants) based on an extra momentum term

that has better convergence than standard Jacobi, is comparable to Gauss-Seidel
and can be parallelized (Section 6.6.3);
• an equivalence result between the implicit integration of elastic potentials and posi-

tion based dynamics with soft constraints (or regularization - Section 6.7) published
in [37];
• an accurate finite element method expressed in terms of constraint solving (Section

6.10) based on two aforementioned equivalences: 1. position based dynamics is
equivalent to implicit integration and 2. elastic potentials are equivalent to regular-
ized constraints;
• an accurate frictional contact model for position based dynamics stemming from

nonsmooth dynamics (Chapter 7);
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9.3 Future work

There are many topics that we did not get enough time to study, investigate, understand
or implement. We would have liked to have a benchmark system made out of nonsmooth
dynamics methods not only from Stewart, Anit,escu, Negrut, , Tasora but also others,
e.g. the sweeping process, the nonsmooth contact dynamics (NSCD) method, variational
contact integrators and so on. We also wanted to extend our FEM support to fracture,
invertible elements, model reduction and other elasticity models, e.g. co-rotational or
neo-Hookean. We need to study more the relationship between the number of iterations
and the observed stiffness and behavior. We would also use more off the shelf optimization
solvers like Mosek, PATH or MATLAB.

Simulation-wise we want to spend more time on hair and fluids. For the implemen-
tation part there is of course a lot of work to do too. Our biggest remaining task is to
implement a full unified physics pipeline on the GPU (and replace OpenCL by CUDA).
Collision detection also needs a lot of work on many aspects: self-collision, midphase,
triangle meshes etc.
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