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ABSTRACT: 

In this thesis a novel rendering pipeline is presented, which can handle a large number of 

light paths in real-time, using innovative techniques that decouple the rendering process into 

several modular and memory efficient components. Several contributions are presented and 

compared to state of the art algorithms, which are used or can be used in the context of real-time 

rendering. This original rendering pipeline can render both high quality images in real-time and 

correct, photorealistic images offline. The contributions of the thesis are categorized into 

geometry rendering methods and illumination methods.  

The geometry rendering algorithms modify state of the art rasterization methods to better 

handle large scenes by decoupling non geometric bandwidth, originating from texture data, from 

geometric computations. This drastically reduces the bandwidth consumption and is 

implemented for both opaque and transparent objects, in novel algorithms named virtual deferred 

and virtual order independent transparency. These rendering methods are directly integrated into 

a virtual texturing system. Opaque rasterized objects are antialiasing with a novel antialiasing 

method for deferred rendering, which improves upon the state of the art sub geometric 

reconstruction antialiasing methods. Transparent objects are shaded and textured adaptively. 

Moreover, all geometric rendering is culled with a novel hierarchical method, which culls 

objects for more than a single frame. The culling algorithm uses GPU task generation to walk the 

scene tree and hierarchical impostors to lessen geometric aliasing. Other geometric rendering 

contributions include a distribution based variant of occupancy maps, which adaptively samples 

the occupancy, measurement metrics for deferred and decoupled algorithms, a variant of the 

marching cubes algorithm designed for massive datasets and a new geometry selection method.  

 This thesis introduces both exact and approximative illumination methods. The 

approximative methods decouple the low and high frequency transport of light, handling each 

type differently.  Conservative Inexact Voxelization is a new imperfect voxelization method, 

with a construction complexity much lower than the state of art methods, and benefits from 

deferred geometry information. This voxelization method is used to relax the visibility operator 

in the rendering equation, acting as a visibility determination structure for virtual lights based 

illumination. The visibility operator for tracing inside the introduced voxelization structure is 

perception adaptive, being almost accurate inside the visualization volume and coarse outside of 

it. 

 Novel algorithms are presented for rendering solutions which are only at the edge of 

interactivity as of today, but which will be used on consumer hardware for real-time rendering in 

the future. The correct rendering pipeline generates images with a bidirectional path tracer, 

which uses a novel type of importance sampling. The light flux importance sampling introduces 

a map, which can quickly link unproductive paths to light vertices generated by light tracing. It is 

a global sampling method which is much more exact than skeleton importance sampling, the 

only other global importance sampling method for path tracing. From a computational standpoint, 

light flux importance sampling is also cheaper. 

Keywords: real-time rendering, decoupled rendering, bandwidth reduction, complex scenes, 

global illumination 
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1. INTRODUCTION 

1.1. Real-time Rendering 

Computer graphics and vision is an established field in computer science. Its primary 

goal is the analysis, synthesis and manipulation of visual data, focusing on mathematical and 

computational aspects rather than aesthetics. It is used in a multitude of applications in areas 

such as medicine, surveillance, architectural design, recreational activities, video processing, and 

remote presence systems and data analysis.  

The main objective of computer vision, also known as visualization, is to present 

predefined data in a manner which emphasizes properties of interest, such as: trends in data 

mining, tissue appearance in medical applications or tensions in structural components in 

engineering stress simulations.  Computer graphics, commonly known as rendering, is primarily 

involved in the efficient generation of images without emphasizing content, with the ultimate 

goal of photorealism. Among its applications are special effects for movies, architectural 

visualizations and procedural generation.  

Real-time rendering is a specialized topic in the field of computer graphics. It attempts 

to recreate the same visual results as general computer graphics methods, but does so prioritizing 

interactivity, with the final purpose of maintaining the illusion of continuous virtual reality. 

Humans visually perceive their surroundings as a sequence of images which are unconsciously 

reconstructed by the brain into motion [Wat13] [Hum09] . In order for an image based process 

to properly create a convincing illusion of reality, the number of generated frames per second has 

to be sufficiently high. Because of this, real-time rendering algorithms usually generate more 

than 30 frames per second (FPS). The FPS rate is generally higher, usually greater than the 

refresh rate of the output monitor. Compared to the long processing durations of time unbounded 

rendering, real-time rendering has to produce photorealistic images on a much lower 

computational budget, therefore algorithm design, optimization and hardware utilization 

maximization represent key subjects in this specialized topic. Real-time rendering has a large 

number of practical applications, especially in performance critical fields such: aviation and 

military simulators, video games or previsualisations.  

Besides needing to render the scene a high number of times per second, real-time 

rendering must also be stable. If some of the rendered frames take much longer than the others to 

finish, then the illusion of continuous virtual reality is ruined, even if the average frame time 

stays within the expected budget.  

Massive scenes, also named multi-scale scenes contain many objects of unevenly 

spatially distributed objects, of varying sizes and properties. Such scenes are very common in 

rendering because they depict regular types of vistas, like the natural or urban views rendered in 

Figure 1. 
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Figure 1 Massive scenes.  These images show renderings of massive scenes, also called multi-scale scenes. These 

scenes contain a large number of unpredictably positioned objects. Rendering such scenes in real time is very 

difficult, especially if they contain a large number of dynamic objects.  The purpose of this thesis is to introduce new 

algorithms, which are better suited to rendering such scenes in real-time. The image on the right was rendered with 

Blender [Ble15]. 

Massive scenes contain a great variety of content, for example, the left image of Figure 1 

contains water in the foreground and the mountains with all the crevices in the background. The 

water ripple details are measured in millimeters, while the mountains are measured in kilometers. 

This is a common example for the great disparity in the scale of the objects. Massive scenes are 

usually so large that the assets can’t be loaded entirely into GPU memory. Out of core algorithms 

are required to constantly stream the assets pertaining to the objects and lights, which are 

implicated in the generation of the final image. This process is repeated per frame, independently 

of the chosen rendering pipeline. The streamed data can be represented in a compressed or not 

native format, thus it might need to be processed or reconstructed before rendering. 

Because of the extreme size of the represented scenes, their storage and representation 

into memory is an important subject. In rendering, objects can be represented through polygons 

and textures, voxels, bounding trees or analytically. Data is frequently transformed into 

rendering compatible data, such as triangles, sparse voxel structures or intersection trees. 

Because many important rendering algorithms use special data formats, data that does not match 

a certain representation has to be converted. This process is extremely costly and is mostly 

performed outside real-time rendering. It can be performed interactively [Che13] [Lau09] or 

even in real-time [Eis08], but with steep computational costs which would leave little resources 

for performing effective rendering. 

There are many types of base algorithms used in rendering, but few are truly applicable in 

real time rendering of multi-scale scenes. In general, rasterization is used for real time rendering 

of massive scenes. Hardware rasterization is used in all consumer graphic card rendering 

pipelines [Seg15]. It only solves the problem of camera and scene intersection, without covering 

lights-objects interactions, global illumination (GI), analytic anti-aliasing or analytic surface 

representation. Inspired by Reyes rendering [Coo87], micropolygon rendering [Tat10] [Eis10] is 

a special case of rasterization that adds analytic anti-aliasing and analytic surface representation 

capabilities to standard rasterization. Stochastic rasterization [Mcg10] enhances the basic 

rasterization pipeline with the abilities to handle motion and defocus blur. Both stochastic 

rasterization and micropolygon rendering dramatically increase the quality of rasterization 

rendering, but their costs are relatively steep for current consumer hardware.  

Even if real-time rasterization based algorithms are vastly inferior from a quality 

standpoint when compared to time unbounded global illumination techniques, the computational 
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cost of complete global illumination algorithms is still too high for consumer hardware. 

Solutions such as stochastic ray tracing [Bik07], path tracing [Bik13] [van11], beam tracing 

[Cra09], photon mapping [Mar13], progressive light-cuts [Dav12] or other many-light global 

illumination solutions [Dac14] are getting closer to real-time, but they do so with severe 

performance requirements. They also have increased costs in scenes with dynamic objects, 

caused by the long update times in intersection acceleration structures. 

The previously mentioned global illumination algorithms are separable. Programmable 

multisampled rasterization generates exactly the same lights-objects interactions as the set of first 

rays in ray tracing, the first beams of beam tracing or as the first set of path segments in path 

tracing. Because of this, the majority of high performance real-time rendering is performed at 

least partially with rasterization based techniques. The rasterization rendering stage is then 

followed by a global illumination stage, which interprets the results of the rasterization stage as a 

first step in the global illumination method.  

This decoupling permits different sampling and filtering rates in these stages, thus each 

stage possesses different aliasing levels. If the entire rendering process, containing both the 

rasterization stage and the GI stage, is considered a sampling process, by using different 

sampling rates for the different stages the entire process is effectively importance sampled. The 

human eye can easily detect even very low differences in spatial representations, because 

contours and edges are extremely important in visual perception [Sha73], therefore the aliasing 

from the rasterization stage is much more important to mitigate than the aliasing from the global 

illumination stage. This perception difference is a significant advantage, because rasterization 

algorithms are significantly less demanding than GI algorithms from a computational standpoint. 

Rendering the global illumination stage at a lower sampling rate can be done without 

dramatically decreasing the perceptual quality of the rendered image. 

 

1.2. Motivation and Objectives 

The main objective of this thesis is to introduce a novel rasterization based rendering 

pipeline for massive scenes, which minimizes storage and bandwidth consumption, provides 

stable runtime performance and decouples the majority of the involved algorithms.  

Because real-time rendering is a relatively novel research field and due to the tremendous 

growth in hardware capabilities in the last decade there are still many problems lacking 

acceptable answers and many algorithms that can be optimized or modified to efficiently run on 

the GPU. Even though the rendering equation is separable [Kaj86], rendering algorithms are 

usually monolithic and suffer from high coupling, therefore they can be hard to maintain and 

even harder to properly analyze. Finding new methods to decouple sub processes and sub stages 

of rendering methods can offer new insights into algorithm design and performance tradeoffs. 

High coupling and high maintenance costs represent one of the motivations of this thesis, and 

that is to find new ways to increase the degree of modularity between the many components 

involved in generating the final image in rendering. 

Increasing the speed of the rendering process is not sufficient if the variance in frame 

duration is too large. The frame rate stability of the rendering is just as important as its speed.  

Performance spikes are frequently caused by long operations with irregular occurring patterns 

such as data streaming and conversion. Developing faster data reconstruction algorithms offers 
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the incentive of decreased frame duration variance, by minimizing the costs of data conversion 

into rendering compatible formats. Stability is one of the most important properties of real-time 

rendering. If the frame time variance is sufficiently high, then the entire purpose of real-time 

rendering is unsatisfied. In order to maximize stability, the causes of the performance 

fluctuations have to be easy to detect. Furthermore, the causes have to be sufficiently decoupled 

in order for such a measuring process to be applicable. Among the objectives of this thesis is the 

introduction of measuring metrics for the rasterization based rendering techniques. 

Storage space, access efficiency and bandwidth consumption are in general the most 

performance critical aspects of real-time rendering. Since the processing power of GPUs is 

increasing at a rate higher than that of their memory, the importance of memory usage efficiency 

will continue to increase. Storage space is a serious problem especially with stochastic 

algorithms like those involved in OIT [Jan10] or stochastic rasterization [Mcg10], where a large 

number of samples is needed for the stochastic process to reach an acceptable error level. The 

same problem appears in global illumination algorithms [Bik07] [van11] and in many types of 

deep deferred rendering techniques [Mar14] [Bar11]. One objective of this thesis is to provide 

improved algorithms that minimize memory storage for opaque and transparent objects in 

rasterization rendering. 

Rasterization is almost always involved in the real-time rendering process, because of its 

cache oriented primitive intersection acceleration structure, a bidimensional grid called raster. 

Because of its nature, simple rasterization rendering is very limited in producing all light-object-

camera interactions, and usually represents only a part of an advanced rendering pipeline. 

Rendering opaque objects with rasterization can solve occlusion with the help of the z-buffer 

algorithm. The z-buffer algorithm has been improved since its introduction through [Gre93] 

[Joh05]. The A-buffer algorithm [Car84] was the first to consider globally handling multiple 

objects intersected per pixel, decoupling fragment ordering from fragment shading. Partially 

inspired by the A-buffer, the deferred rendering algorithms family [Dee88] [Ols11] [Ols12] is 

the dominant choice in rasterization based rendering of opaque objects. Deferred algorithms are 

so successful because they decouple light-object intersection processing from visibility 

determination, dramatically decreasing the computational costs of rendering.  

Decoupled algorithms [Rag11] [Lik12] [Bur13] are advanced types of deferred 

techniques, which further decouple the sub-stages of the rendering. Virtual texturing [Eph06] 

improves the performance of rendering by streaming only the obligatory information for the 

rendered frame. It does this by decoupling direct texture access and filtering through a system of 

virtual paging, inspired from operating systems paging solutions. Although there has been a 

wealth of research on the topics of rasterization based opaque object rendering and stage 

separation, there are still opportunities to further improve resource re-usage and to decouple 

the algorithms used in state of the art rendering pipelines.     

Real-time rendering is deployed to multiple platforms frequently, therefore hardware 

variation is usually expected. Because of this variation, not all deployment platforms offer the 

best performance with the same rendering algorithm. Furthermore, power variation on the same 

platform can have the same effect, especially in power critical environments. Measuring 

performance in real-time and consequently adapting the rendering path has proven to be a 

complicated task, because of the many different potential performance bottlenecks. There is a 

clear motivation for the definition of advanced metrics that would allow separate analysis of 
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these bottlenecks, and which would provide unbiased performance information on the rendering 

pipeline.   

Rendering can be a considered a large sampling process, in which the objects and lights 

of the scene are intersected with rays, paths, beams or pixels. The final image that is outputted on 

the screen represents the reconstruction of the sampled virtual reality. As all other 

reconstructions in sampling processes, rendering suffers from aliasing.  

Since the rendering process is generally composed of many sub-processes, there are 

many sources of aliasing, each with different solutions. Pure geometric anti-aliasing can be 

tackled through progressive representations, such as level of detail representations of the 

geometric assets and impostors, but this can easily lead to temporal aliasing, which happens 

during level of detail transitions. Pixel level anti-aliasing can be tackled by state of the art 

algorithms such as the ones presented in [Jim11]. Exact global solutions – applicable for the 

entire scene - exist, but only for voxel based rendering [Cra09]. Furthermore, voxel based 

solutions need very large amounts of memory for a low alias result. A global geometric anti-

aliasing solution for primitive based assets would greatly decrease aliasing in rendering. 

Correctly rendering transparent objects in rasterization is a difficult problem. The 

problem was first tackled in [Por84]. Exact methods [Car84] are very costly to implement in 

real time rasterization based rendering, therefore inexact algorithms [Liu09] [Sin09] [Jan10] 

represent the best solutions for this problem. Stochastic solutions [End10] [Sal11] have excellent 

results, but require a large number of samples to reach acceptable error levels or even specialized 

hardware [Sal14]. Solving this problem with lighter bandwidth consumption would greatly 

increase the performance of rasterization based real-time rendering of transparent objects. 

Tree traversal on the GPU [Lai10] [Ail12] is used in many global illumination algorithms, 

but is generally restricted to GPGPU methods. Tree traversal has critical applications in 

occlusion culling [Mat08] [Gut06] [Mat15], but the current tree traversal methods do not 

maximize GPU capabilities. In rendering, tree traversal isn’t as general as in other fields, 

therefore there is a lot of room left for the specialization of the tree structures. Providing at least 

partial GPU tree traversal techniques for rasterization based rendering would boost 

performance. 

 Global illumination (GI) for real-time rendering remains an unsolved problem. There 

are many algorithm classes that tackle the GI problem: photon based, many lights based, path 

based, ray based, cone based, ray-packet based, irradiance cache based and so on. Despite this 

multitude of solutions, their applications in real-time rendering are minor, therefore the need for 

fast, inexact, global illumination algorithms has not been satisfied. Porting and adapting 

scattering prone processes such as global illumination methods to GPGPU environments has 

proven to be a large area of research, with many opportunities for algorithm development.  

 Furthermore, this adaptation has led to the usage of tree data structures that trade 

balancing for spatial awareness. The area of real-time inexact global illumination is, at the 

moment, one of the most important and researched topics in rendering. 
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1.3. Contributions 

This thesis introduces a new rasterization based rendering pipeline, emphasizing 

decoupling and memory usage efficiency. This rendering pipeline decouples draw submission 

from state submission, visibility determination from texture fetching, texture fetching from 

shading, and post processing from texture fetching. It does this while also supporting a large 

number of light paths. The presented pipeline contains many novel contributions, ranging from 

improvements over previous algorithms to completely distinct rendering methods. Compared to 

the state of the art rasterization based rendering pipelines, the presented pipeline is significantly 

more efficient in solving high bandwidth rendering problems, such as those appearing in the 

rendering of massive scenes. 

A hierarchical impostor method is presented, which creates impostors for entire scene 

tree nodes. Depending on the camera position and orientation, these impostors are updated into a 

virtual texture based cache system. For performance considerations, high level nodes in the scene 

tree need to be pre-computed. The impostors contain depth, normals and color information, 

which can be used for high quality distant object rendering, in order to reduce geometric and 

texture aliasing, using the same principle as texture mipmaps. Like all other impostor techniques, 

this method drastically decreases processing costs, by greatly simplifying scene complexity.   

 

Compared to state of the art methods, this technique is integrated with the virtual 

texturing streaming mechanism and it operates at scene level and not at an object level, by 

maintaining an impostor per scene node. An impostor is either streamed or re-computed, 

depending on a view threshold defined by the distance to the camera and the angle of view. 

Geometric aliasing is largely solved using this type of impostors, and, compared to level of detail 

systems, impostors have a superior filtering mechanism, and therefore the flickering effects are 

minimized. The proposed solution also does not have the large storage requirements often found 

in state of the art voxel based techniques.  

 

The need for task generation during rasterization is tackled in this thesis with a special 

type of non-recursive task generator, which functions in parallel with the normal rasterization 

rendering process. By using the GPU hardware for geometry amplification to create geometry 

which isn’t rasterized but acts as tasks, the proposed method enables the generation of many light 

rendering tasks, in parallel with the rasterization process.  

 

This task generator is then particularized for culling, laying the foundation of a novel 

culling algorithm. This method uses the task generator to create tasks, which explore a scene 

hierarchy. At each level in the hierarchy the node is view frustum culled and if the node is visible, 

new tasks are generated for the children nodes. Compared to the state of the art method, the 

improved coherent hierarchical culling algorithm [Mat08], this method is less exact and explores 

more nodes in the hierarchy, but is completely autonomous from CPU control. The proposed 

method also utilizes the massive parallelism of modern GPUs. While the culling algorithm is not 

designed with occlusion impostors in mind, it can benefit from them, as it is easy to integrate 

with hierarchical-Z culling [Zha97] methods. Furthermore, the introduced culling algorithm uses 

a novel concept of culling objects for multiple frames. This is achieved by making the generally 

correct assumption that camera rotations are not instantaneous in 3D interactive applications. 

The camera orientation is then represented as a solid angle, and the maximum camera rotation 

speed is used to determine the smallest number of frames necessary for an object to reach the 
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view frustum. Thus, the new culling algorithm culls objects for a number of frames, which leads 

to lower overall computational effort. 

 

 Novel measurement metrics for deferred algorithms introduced in this thesis. Since the 

state of the art offers a very large number of deferred rendering variants, correct selection of the 

suitable method can sometimes be difficult, especially because real-time rendering software is 

usually deployed on a large number of varied platforms. The novel measurement metrics provide 

a clearer picture, by providing a means of comparison between the existing methods.   

 

Virtual deferred (VD) is a new type of deferred algorithm, which combines the 

mechanics of single geometry pass deferred rendering with those of virtual texturing, in order to 

obtain the best measurement metrics for high bandwidth high complexity rendering problems. 

Because of this, virtual deferred is especially suitable for complex scenes.  Virtual deferred uses 

virtual texturing to stream only the data required for rendering. Since the majority of rendering 

pipelines aimed at complex scenes have a streaming mechanism, the proposed method only 

seems to have an additional cost. The benefit of combining virtual texturing and deferred 

rendering into virtual deferred is that rendering with this algorithm minimizes the bandwidth cost 

for complex materials, while processing the geometry only once, improving on the poor 

bandwidth performance of single-geometry pass state of the art deferred algorithms. Furthermore, 

virtual deferred also lowers the allocated memory for the geometry buffer, decreasing storage 

requirements.  

 

With virtual deferred, both the bandwidth consumption and geometry buffer memory 

costs scale better than with state of the art single-geometry pass methods. Because of virtual 

deferred, the introduced rendering pipeline completely decouples texture fetching and shading 

bandwidth from visibility determination. The shading stage does not use rasterization, it is a 

completely GPGPU process. All the texture fetching is performed in a cached mode, through 

compute shader work tiles. If this stage is followed by an optional post-processing stage, the 

kernel participating pixel neighbors can benefit from the shading results stored in the work tile 

cache. 

 

Correctly rendering transparent objects is especially difficult for rasterization based real-

time rendering because the process requires ordering the fragments on a per-pixel level instead of 

just approximating the opacity function. While approximation methods can produce acceptable 

results for some types of rendering situations, there are times when handling transparency 

exactly is required. Virtual Order Independent Transparency (VOIT) modifies the state of the 

art GPU A-Buffer algorithm. Like virtual deferred, VOIT uses virtual texturing and is aimed at 

decreasing the bandwidth and allocated memory for scenes with many high-bandwidth objects. 

Compared to the state of the art, VOIT scales better in scenes with complex materials and many 

lights. 

 

Besides Virtual Order Independent Transparency, a fast approximate order 

independent transparency solution is provided, which modifies the state of the art occupancy 

maps method. This proposed technique improves occupancy maps with distributions, by keeping 

a depth distribution for each pixel. This depth distribution is used to adjust the depth occupancy 

map, creating more precision in the areas which contain objects on the depth axis. Because of 

this artificially increased resolution, the opacity function over depth is better approximated. In 
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contrast to the original occupancy maps algorithm, the proposed method is much better suited to 

non-uniform object distributions, such as those found in real-life scenes. 

 

A new selection algorithm is introduced, which optimally solves the problem of object 

selection in real-time rendering. The introduced algorithm is able to handle hardware instancing, 

high depth complexity scenes and alpha culling, either for a single pixel or for an entire screen 

area. The algorithm can handle the transient geometry created by hardware tessellation, making 

it easy to work with displaced geometry. The method can also correctly select fuzzy objects such 

as particle systems and other transparent objects, based on their visibility. This property is 

achieved by correctly performing transparent rendering, and taking into account alpha occlusion. 

 

Conservative Inexact Voxelization (CIV) is a new inexact voxelization algorithm, 

which lowers the complexity of the voxelization operation from the number of primitives in the 

scene to the number of objects. This imperfect result is obtained by quickly dicing the bounding 

boxes of the objects into cuboids, which are stored in a hierarchic voxel representation of the 

scene. A push-pull process is used to translate the opacity information across all layers of the 

hierarchic representation. Other already available data, such as directly visible geometric features 

stored in the depth buffer, or impostors, can be back projected inside the highest resolution level 

of the hierarchic representation.  

 

Conservative Inexact Voxelization is an inexact voxelization method, aimed at providing 

approximate but conservative information about the geometrical nature of a scene. It offers 

sufficiently precise information for different visibility determination operations. This property is 

used to alter the rendering equation, changing the exact visibility operator to an inexact but 

conservative visibility operator. This operator is then used in a modified instant radiosity 

method, which creates a large number of virtual lights through random walks in the voxel 

representation of the scene, starting from the scene lights. After a sufficient number of virtual 

lights is generated, the scene is illuminated with them, in a process analogous to deferred 

algorithms.  

 

Compared to the state of the art methods, this enables fast diffuse light transport without 

any precomputation or special cases for animated or moving objects. While this method only 

supports diffuse light transport, it can be used together with fast specular light transport 

algorithms such as screen space cone tracing. 

 

A new antialiasing algorithm is introduced which is compatible with deferred rendering. 

Decoupled sub-pixel reconstructed anti-aliasing (DSRAA) decouples visibility determination, 

the bandwidth of attribute samples and shading. Compared to the state of the art methods, it 

consumes the minimal amount of bandwidth required for accurate, non-morphological sub-pixel 

geometry reconstruction. Because the presented algorithm is not morphological, it does not 

suffer from strong temporal artifacts and it does not need temporal resampling to adjust the final 

result. The algorithm is most similar to sub pixel reconstructed anti aliasing (SRAA). Compared 

to the state of the art method, which uses a bilateral filter based approach for sub-geometric 

filtering, the presented technique uses a more accurate neighbor matching method.  

 

The path tracing algorithm family is barely at the edge of interactive rendering, and while 

it is still impractical for real-time rendering, due to the computational limits of consumer 

hardware, it has reached the point of relevancy. The thesis renders photorealistic images with a 
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bidirectional path tracer and introduces a contribution to the path tracing field: light flux 

importance sampling (LFIS). The thesis first presents a procedure, through which the 

Conservative Inexact Voxelization is used to amortize the cost of visibility determination 

operations, which are responsible for much of the rendering time in path tracing. Thus the 

presented technique decreases the overall cost of tracing rays. The second contribution is an 

innovative importance sampling mechanism, which is used to guide paths to high energy areas. 

By using these novel techniques, the final path traced image is obtained faster. 

 

Lastly, a new variation of the GPU marching cubes algorithm is introduced. It 

serializes the processing of a large dataset, enabling the computation of the marching cubes 

algorithm on very large datasets, which would otherwise be impractical on consumer hardware. 

The original dataset is cut into chunks, which are reconstructed serially and are then stitched.  

 

1.4. Thesis Overview 

The thesis is divided into 5 chapters: Introduction, State of the Art, Geometry Processing, 

Illumination and Conclusions. This chapter, Introduction, describes the particular field of the 

thesis, real-time rendering of very large and complex scenes. It then describes the motivation of 

the thesis and the objectives which catalyzed the presented research. The chapter then shortly 

presents the original contributions of the thesis and finishes with the thesis overview, this 

subchapter. 

The State of the Art chapter provides an ample and detailed description of the applicable 

or potentially applicable algorithms for real-time rendering. It starts with a short description of 

the evolution of GPUs and GPGPU computing, followed by a conceptual discussion of the 

choices and consequences of different types of data representations. Since the nature of this 

thesis implies a very large volume of rendering information, the chapter continues with the 

presentation of all the relevant acceleration structures used in rendering.  

The State of the Art chapter also presents high level rendering concepts and insights into 

the nature of the rendering process, from basic elements of radiometry to high level design 

problems such as solving rendering as large sorting process of visibility determination operation. 

The chapter ends with seven sub-chapters, which discuss the largest rendering algorithm families 

in a concise and encompassing manner: rasterization, image (screen) space methods, Reyes, ray 

tracing, path tracing, photon mapping and many light methods. 

The next two chapters, Geometry Processing and Illumination, present the research work 

and the resulting contributions. These chapters largely decouple geometry processing and 

illumination algorithms, in a manner similar to deferred algorithms. Furthermore, while the 

Geometry Processing chapter is based on rasterization rendering, the Illumination chapter is fully 

implementable as GPGPU. Through this decoupling, the thesis provides the framework for 

implementing a robust rendering pipeline.  

The Geometry Processing part of the pipeline performs geometry operations such as 

direct visibility determination, culling, asset definition and streaming, opaque and transparent 

rasterization rendering or indirect rendering. In this chapter the rendering asset format is defined, 

which is based on instances and modifiers. The streaming mechanism used by the proposed 

rendering pipeline is described, and new variation of the GPU marching cubes algorithm is 
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presented. The hierarchical impostor cache contribution is also described here. The entire 

streaming mechanism is based on virtual texturing and virtual meshes.  

The Geometry Processing Chapter continues with the description of a novel task 

generator, which is able to use the rasterization scheduler, and thus is able to function in parallel 

with rasterization algorithms. This task generator is then specialized for a new culling algorithm, 

which enables hierarchical culling for a very large number of objects, without CPU interference.  

The chapter continues with the analysis of existing rendering algorithms for opaque 

objects, in the context of rasterization, for which novel measurement methods are provided. It 

then presents virtual deferred, a novel type of deferred algorithm. Compared to state of the art 

deferred and decoupled algorithms, the virtual deferred method is designed for complex 

materials, such as those found in large, varied scenes.  

Virtual deferred principles are also adapted to transparent object rendering, giving rise to 

the virtual order independent transparency algorithm, which is a memory efficient variant of the 

A-Buffer. Besides virtual order independent transparency, the Geometry Processing chapter also 

presents a novel approximate transparency algorithm, which improves the state of the art 

occupancy maps with per pixel distributions. The chapter ends with a novel selection algorithm. 

Many of the outputs computed by algorithms in this chapter are used as inputs for the algorithms 

in the Illumination chapter. The relationship between the algorithms presented in both chapters is 

depicted in Figure 2. 

The Illumination Chapter contains two rendering paths, one that performs approximate 

global illumination, shading and post processing and one that computes correct global 

illumination. The chapter starts with the approximate path, with a presentation of how dominant 

lights are selected and how shadow maps are used to represent the visibility of each object found 

in the frustum of each light. This process is accelerated with the culling algorithm from the 

Geometry Processing chapter.  

A novel acceleration structure is then presented, the Conservative Inexact Voxelization 

algorithm, which can be used to quickly and conservatively query the scene geometry. This 

structure is used to relax the visibility operator in a modified instant radiosity framework, which 

is used to generate a large number of virtual lights.  

The chapter then presents how these virtual lights are stored together with the scene lights 

in a secondary lights acceleration structure. The chapter continues with the shading stage, where 

data is cached in compute shader tiles, and illumination is evaluated with the dominant lights, by 

using their shadow maps, and with the secondary lights stored in the acceleration structure, by 

intersecting them with the modified G-buffer produced in the Geometry Processing chapter and 

then using shadow rays inside the conservative inexact voxelization representation to query the 

visibility for each light. Screen space cone tracing is then used to approximate the specular light 

transport.  

The chapter also presents a novel decoupled sub pixel reconstructed anti-aliasing method, 

and ends with a short post processing module.  



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

19 

 

 

Figure 2 Proposed Rendering Architecture. Geometry Processing and Illumination are the two chapters of the thesis 

which describe the novel contributions, and they are also the two large stages of the proposed rendering pipeline. 

This image shows how the various algorithms described in this thesis are combined into a rendering pipeline. The 

contributions introduced by this thesis are colored in green. For architectural design reasons the Culling and 

Conservative Inexact Voxelization modules have been drawn twice. The proposed rendering pipeline decouples 

lighting and shading, which are implemented in the Illumination stage, from all the rasterization based algorithms 

and geometry streaming, which are implemented in the Geometry Processing stage. The Geometry processing stage 

includes contributions to opaque and transparent object rasterization, geometry selection or culling. The illumination 

stage contains two alternative rendering paths, one for approximate illumination and one for correct illumination. 

The approximate illumination path computes low frequency light transport and approximates high frequency light 

transport. It approximates the visibility operator through conservative inexact voxelization, a very fast imperfect 

voxelization method. The correct illumination path can be used to compute high quality visual reference results and 

it runs at very low frame rates on the GPU. It uses bidirectional path tracing, in which the Conservative Inexact 

Voxelization is used to approximately determine visibility before paying the cost for high quality visibility rays, 

amortizing their cost. The BDPT uses Light Flux Importance Sampling, which is a novel type of importance 

sampling that very quickly connects the light tracing and path tracing steps of the BDPT through high energy space 

exploration, indirectly importance sampling lights. The BDPT also uses state of the art algorithms such as adaptive 

sampling, multiple importance sampling, sample filtering, eye reprojection and radiance filtering. 
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The Illumination chapter also contains an alternative illumination path. While this 

alternative path can’t run in real-time on current consumer hardware and its GPU 

implementation is at the edge of interactive rendering, it can be used to produce visual reference 

results.  

The alternative path presents an adaptation of the bidirectional path tracing algorithm, 

which uses the Conservative Inexact Voxelization algorithm introduced for the approximate 

global illumination pipeline. The CIV is used to amortize the cost of visibility determination 

operations, which usually consume more than 90% of the rendering time. By first searching 

approximately and only then searching exactly, the bidirectional path tracer uses a visibility 

determination process with a lowered complexity. Because of this, the bidirectional path tracer 

produces visual results faster. The bidirectional path tracer uses a novel type of importance 

sampling, light flux importance sampling, which creates an imperfect map of the flux of light in 

the scene, similar to a flow map for fluids.  The light flux map is then used to guide paths 

towards vertices produced by the light tracing stage of the bidirectional path tracer. 

The thesis ends with the Conclusions chapter, where the impact of the newly introduced 

methods is reviewed. 
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2. STATE OF THE ART 

2.1. GPU Evolution 

Graphics Processing Units (GPU) are dedicated parallel processor architectures which 

were initially optimized for accelerating graphical computations. GPUs have evolved from the 

need to process an ever increasing number of vertices and fragments per frame, at least 30 

frames per second. Because of this extremely large number of operations which lack an explicit 

order, GPUs evolved into massively parallel fully programmable architectures which excel at 

executing a large number of floating point operations [McC11]. Initially, each type of graphical 

computation used specialized hardware [Cla82], but modern GPUs have unified architectures 

[NVI12] [Man13], where the same computational resources are used for all types of operations. 

The only exception is with extremely specialized, performance critical operations, such as 

texture fetching, Z-buffer visibility determination or hardware tessellation.  

The computational powers of GPUs have grown orders of magnitude higher than those of 

CPUs. This evolution prompted domains unrelated to rendering to start solving their 

computational problems on the GPU, giving rise to general purpose computation on graphics 

processing units (GPGPU) and greatly enhancing the field of computer graphics in the process. 

Real-time rendering transitioned from an exclusively rasterization based method to a composite 

process involving both rasterization and GPGPU. 

The original GPUs were modeled as a set of stages in a hardware graphics pipeline. The 

hardware graphics pipeline transforms vertices from a tridimensional space defined by the user 

into pixels in a bidimensional space on the screen, a process called rasterization. Throughout 

the last 20 years this pipeline has evolved from the initial design into a long pipeline with many 

highly specialized, programmable stages.  

These evolutions were made in steps, where new standards named Shader Models (SM) 

[Seg15] progressively supplemented the pipeline with new stages. The current Shader Model is 5 

and it specifies 13 rasterization graphics pipeline stages, out of which 5 are programmable. It 

also specifies a Compute Shader (CS) stage outside of the rasterization pipeline that can be used 

for GPGPU. This thesis is written with the OpenGL nomenclature, but also offers the Direct3D 

names for completeness. 

The hardware rasterization pipeline starts with the Input Assembler (IA), which takes the 

vertex data from memory and assembles with it tridimensional vertices. This is followed by the 

Vertex Shader (VS), which is a programmable stage where each vertex created by the IA is 

transformed. The transformed vertices are sent to the Primitive Assembler (PA) stage, where 

they are then combined with the topology, which is read from memory.  

PA outputs primitives to the next, optional, superstage that handles hardware tessellation. 

It contains 4 sub-stages, out of which 2 are programmable. The Tessellation Control Shader 

(TCS), also named Hull Shader in Direct3D, is a completely programmable stage that takes the 
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primitives outputted by the first PA stage and computes tessellation factors. These tessellation 

factors are then used by the Tessellator (T), which creates new vertices and topology. These new 

vertices are then transformed in the Tessellation Evaluation Shader (TES), also named Domain 

Shader (DS) in Direct3D. The transformed vertices and the topology created by T are then 

assembled in a second Primitive Assembler (PA) stage.  

The output from the last executed Primitive Assembler stage acts as input for the 

Geometry Shader (GS), which is another optional programmable stage, which processes each 

primitive. It is the only stage where primitive topology can be modified. The output from the GS 

can be optionally streamed into memory through the Transform Feedback (TF) stage, named 

Stream Output (SO) in Direct3D.  

The output from the GS is then sent to the Clip and Perspective Divide (C&PD) stage 

which culls primitives completely outside the visualization volume. The primitives that pass this 

stage are rasterized into fragments by the Rasterizer (R). The vertex attributes are interpolated by 

the rasterizer in perspective correct manner [Low02].  

The resulted fragments can be processed by a hierarchical variant of Z-buffer algorithm 

[Gre93] before or after the Fragment Shader (FS) stage, named Pixel Shader (PS) in Direct3D. 

Depending on several factors such as transparency rendering state settings, the Early Tests (ET) 

stage can discard fragments before they are shaded. The rasterization pipeline ends with the 

Output Merger (OM) stage where fragment tests are performed and the output is composited and 

written into the framebuffer.   

A short overview is provided in Figure 3. 

 

Figure 3 The hardware graphics pipeline in SM5.  The programmable stages are colored in green. The Compute 

Shader (CS) can be used to perform GPGPU work. The hardware graphics pipeline begins by assembling the input 

geometry and topology in the Input Assembly (IA) stage and then processes each vertex in the Vertex Shader (VS). 

The processed vertices are then combined with the topology in the first Primitive Assembly (PA). The next four 

stages implement hardware tessellation. The Tessellation Control Shader (TCS), also named Hull Shader (HS) 

determines the hardware tessellation parameters, and then the Tessellator (T) creates the new vertices and their 

topology. The Tessellation Evaluation Shader (TES), also named Domain Shader (DS) transforms the newly creates 

vertices and the next Primitive Assembly (PA) stages links the new vertices with the tessellator created topology, 

which are then converted and transformed by the Geometry Shader (GS). The GS output can then be streamed into 

memory buffers with the Transform Feedback (TF), also named Stream Output(SO). The GS output can also 

continue in the Clipping and Perspective Divide (C&PD) stage, and then be rasterized into fragments by the 

Rasterizer (R). The fragments are tested in the Early Tests (ET) stage and are then processed by the Fragment 

Shader (FS), also named Pixel Shader (PS). The processed fragments are then outputted to the framebuffer in the 

Output Merger (OM) stage. 
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When GPUs transitioned to the unified shader model, every shader program began 

running on the same type of resource, a very lightweight GPU thread. GPUs are dedicated to 

efficiently solving massively parallel coherent computational loads, like fluid simulation or 

linear systems. Because of this, each GPU thread uses vectorized instructions. Further widening 

the data, GPUs use a special type of SIMD-like instructions, called SIMT, single instruction 

multiple thread, where each thread in a thread group executes the same instruction. 

These threads are very cheap to create and destroy, have a small number of registers and 

have no heap in which to allocate local memory. Functional Units (FU) are the building block 

of hardware GPU architectures, and they contain one or more GPU threads. GPU cores are 

composed of many FUs along with a very lightweight thread scheduler and a small shared 

memory chip. Within a core, threads are grouped into warps (Nvidia), wavefronts (AMD-ATI) or 

groups (Intel) and they are run together on SIMT hardware. A Streaming Multiprocessor (SMP) 

contains many GPU cores, and the GPU has many SMPs. A simplified abstraction of GPU 

architecture is provided in Figure 4. 

 

Figure 4 Abstract modern GPU Architecture. The GPU contains many cores, each composed of a large group of 

Functional Units (FU), which in turn contain one or more GPU threads. Each GPU core contains a thread scheduler 

and a small amount of shared memory. 

 Since GPU architectures are Single Instruction Multiple Thread they have very high 

latency when threads encounter long instructions, for example a texture fetch which needs 400-

1000 cycles to complete, because all the threads in the active thread group have to wait after it. 

GPUs architecture attenuates these long waits by using latency hiding mechanisms. The most 

relevant latency hiding mechanism is lock step running, in which the same core is responsible for 

running more than a single work group of threads per core. When one group of threads 

encounters a long waiting instruction the core saves the state and switches to a new group, to not 

waste computational cycles. This concept is similar to the hyper-threading done by CPUs. 

 Because of the SIMT model and the limited amount of cache memory with which GPUs 

come, running branching code is very problematic, because all threads have to run both branches. 

When in-thread group branching occurs the code paths executed by the threads diverge. This is 

named code path divergence.  
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Even with latency hiding mechanisms like lock step execution and an increasing number 

of caching methods, latency is still limited by bandwidth. Therefore, bandwidth and not 

computational power is usually the greatest bottleneck for GPUs. 

Dynamic parallelism is a recent development of GPGPU programming models [NVI15] 

[KHR14], where GPU tasks can generate other GPU tasks themselves. This is unfortunately 

limited to a small number of consumer graphics cards. Current and newly introduced drawing 

APIs [NVI12] [Seg15] [Mic15] [AMD15] [Vul15] are also evolving to a more general, stage-

less and low level approach. 

There have been initiatives [Wal01] [Pur02] to create hardware for other rendering 

algorithms besides rasterization, but data coherency is not favorable. Also, many core 

architectures exhibit better efficiency per watt [NVI15]. This is an important economic reason 

for the success of many core architectures. 

 

2.2. Data Representation 

2.2.1. Raw Data 

Real-time rendering is a performance critical process, which works with a very large 

amount of data, therefore efficient data representation is vital. It is far from ideal to convert data 

from one format to another during rendering. Moreover, memory bandwidth and consumption 

are very often the performance bottleneck in many-core architectures; therefore the data 

representation of the assets used in real-time rendering has to exhibit excellent locality and size. 

Last but not least, data is streamed from the system memory into GPU memory, along with state 

information. When this takes place, it is usually accompanied by long synchronizations that lead 

to pipeline stalls. Thus, state transfers should be minimized. 

The assets displayed in real-time are usually only representations (not scans) of real-life 

objects. Therefore, the assets represent a virtual, low resolution, sampled version of the real 

objects. This sampled data has to be stored in some sort of data structures. In rendering, asset 

data can have representations based on curves, triangles, voxels, functions or points, depending 

on the type of application. Curves are commonly used in modeling applications like CADs, 

points are used in applications that reconstruct topology from a sampled set. Functions are very 

computationally heavy representations and frequently real-life objects can only be represented by 

a large number of functions, therefore they are not the most practical representations and are 

used for exceptional cases. Triangles and voxels have seen the most success in real-time 

rendering, although points are used in some important algorithms, where high frequency 

information is not very important [Rit08] or completely unknown [Kha06].  

The great difference between triangles and voxels is that triangles are a more analytical 

approach to data representation, with a much smaller representation error, and with a very low 

memory footprint. Voxels can represent real-life objects with the same error only by using a 

large number of samples, which causes them to be ineffective from a memory consumption 

standpoint. On the other hand voxels have excellent locality and have a regular topology which 
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makes it extremely easy to find neighbors, thus they are suited to a large number of mass parallel 

algorithms and architectures. A simple visual comparison is offered in Figure 5. 

 

Figure 5 Triangles and voxels comparison. The triangles need much fewer space samples to accurately represent the 

same object. On the other hand voxels don’t require graph-like structures for finding neighbors and are more cache 

friendly structures, thus they have a lot of applicability on SIMT architectures. Voxels also have an implicit LOD 

structure, while the computation of LODs is a difficult problem for triangular representations. In approximative 

intersection problems voxels can be just as good as triangles. In direct rendering problems the difference in the 

quality of the reconstruction of the original geometric signal is very large. 

2.2.2. Raw Data Compression 

Multi resolution scenes require large amounts of memory to represent a large number of 

objects and interaction media, and the majority of assets have to be compressed. The 

compression method must have very fast decompression complexity, while the compression 

complexity isn’t considered critical, as the majority of assets go through non real-time pre-

processing. Scene objects can be represented through meshes, a combination of meshes and 

textures or textures only. 

Algorithm BC1/ DXT1 BC2 /DXT3 BC3/DXT5 BC4 BC5 BC6 BC7 

Data Type RGB +1bit A RGB+4bit A RGBA G 2 x G RGB float RGB(A) 

Compression (byte/px) 0.5  1 1 0.5 1 1 1 

Palette Size 4 4 4RGB+8A 8 8 per channel 8-16 4-16 

Line Segments 1 1 1RGB+1A 1 1 per channel 1-2 1-3 

Table 1 Texture Block Compression. State of the art Block Compression (BC) algorithms use different strategies to 

compress texture data. The compression rate varies drastically due to the variety of encoded texture data: intensity 

gradient (G), RGB format, RGBA format, RGB and binary alpha representation or high dynamic range (HDR) RGB. 

Textures can be compressed with a large number of block algorithms. This is based on 

the assumption that colors vary slightly over small vicinities. Even if variable rate encoding 

produces the best results, real-time decompression considerations have made all block 

compression algorithms to be fixed rate encoded. DXTC/S3TC [Iou99] compression and Block 

Compression (BC) [Khr15] encode image information in 4x4 blocks. In each compression BC 

algorithms define a color vector between 2 endpoints, which represent the extents of the pixel 

values in color space. This color vector is named line segment. The original image pixel values 

are represented in a short binary representation over the line segment, which creates a small 

colorization palette. Greater palette sizes increase memory requirements and compression rate 
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but increase compression accuracy. BC6 and BC7 are complex algorithms and can use multiple 

segments and palettes. A comparison of BC algorithms is offered in Table 1. 

Generalized Triangle Meshes were introduced in [Dee95] and can be compressed through 

lossless algorithms, but the decompression costs are extremely high for real-time rendering 

[Hop96]. Mesh simplification [Coh98] can create low resolution representations, thus the 

algorithm can be considered a lossy compression method. 

Deferred Rendering [Dee88] is a very popular technique in real-time rendering, which 

stores frame data into a screen wide multi-layered buffer. While some of the stored data can be 

compressed in an application dependant manner through a decrease in the number of storing bits, 

normals need proper encoding. A short overview of existing methods is offered in [Pra15]. 

Normals can also be compressed with look up tables or as octahedron-normal vectors [Mey10]. 

In real-time rendering general compression is mostly applicable to streaming data. The 

majority of compression solutions are based on Lempel-Ziv (LZ) [Ziv77] inspired variants such 

as DEFLATE [Kat91]  for general zip or LZ4 [Col15], which offers extremely fast compression 

and decompression. LZ4 has the option of running in constant space, which makes it ideal for 

fast decompression of large volumes of data. 

2.2.3. Progressive Data Representations 

Rendering is itself a sampling process, which takes objects from tridimensional 

coordinates and transforms them into projections of bidimensional coordinates on a grid. 

Independently of the rendering algorithm, the display process samples the geometry and color of 

the objects of the scene and constructs a view of them on the output monitor. Sampling distant 

objects can be a very costly process, therefore prefiltering is preferred in rendering, and therefore 

objects are generally pre-filtered in progressive data representations to minimize the 

computations which are required for their distant rendering.  

Triangular based representations of objects are called meshes, and can have levels of 

detail (LOD) [Hop96] [Hop99], which are low sampled representations of the objects’ geometry. 

The samples are taken at different distances and decrease the geometric detail with the increase 

in object distance, in order to decrease aliasing caused by undersampling detailed meshes. They 

are chosen for rendering depending on quality metrics like screen projection size or distance to 

the near visualization plane. Triangular meshes can also be imperfectly approximated into 

textures [Los03], which have their own LOD mechanism. 

The images used as textures with the triangular based representations of meshes have 

mipmaps, which are hierarchical level of detail structures. While superior filtering methods like 

Summed Area Tables (SAT) or Elliptical Weighted Average (EWA) exist, the cheap bilinear, 

trilinear or anisotropic filtering methods implemented in hardware have provided sufficient 

quality for real-time rendering.  

Voxels have tridimensional mipmaps, which provide superior quality metrics compared 

to the tridimensional LODs. From the standpoint of scene sampling the voxel representation is 

much more efficient because of its mipmaps, which represent the object with a small number of 

pre-filtered samples, effectively sampling entire parts of objects with few memory reads. On the 

other hand, the reconstruction of mesh LODs is a complicated process. Another important aspect 
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of voxel use in real-time rendering is the fact that voxelized geometry is usually implemented as 

tridimensional textures, for which GPUs have specialized filtering hardware, which leads to very 

efficient queries. Furthermore, voxel based simplified representations of the scene are resolution 

independent, making memory consumption and rendering times both lower and predictable. 

Because of these properties, voxelization has many uses in computer graphics and has been 

thoroughly explored as a fast and inexact object representation. Voxelization can be sparse 

[Cra09], conservative [Cra14], based on imperfect shadow maps [Wym13], or it can computed 

through rasterization as a set of slice/opacity/occupancy maps [Eis06] [Eis08].  

Fractals are natural progressive representations and are easy, but expensive, to evaluate 

analytically. Fractals are often used to augment real data with quasi-random fine detail, named 

procedural noise.  Procedural noise was first used in computer graphics as Perlin noise [Per85], 

which interpolates random samples across a multidimensional grid. This method was later 

refined into Simplex Noise [Per01], which uses a simplex instead of grid and thus decreases 

complexity from       to      , where N is the number of dimensions. Techniques such as 

Wavelet noise [Coo05] and Gabor noise [Lag09] build upon the Perlin and Simplex noises by 

improving antialiasing in low frequency sampling patterns. 

Triangular representations of geometry can also be approximated through impostors, 

which are lightweight memory wise and computationally, but are useful only for far away 

objects. Impostors can be used to great effect in scenes with controlled movement. There are 

many types of impostors.  

Billboards [Ger88] are represented with a very small number of quads and can be 

aligned to always face the camera, but they can’t successfully represent surface detail or parallax 

effects. Correct rotationally invariant impostors can’t be obtained without some form of multi-

view representation. Billboard clouds [Dec03] can be used to attenuate artifacts approximating 

an object through many billboards, instead of one. Heightmaps, bump maps and normal maps 

can be applied to billboards to increase surface detail. Billboards have also been used in the 

implementation of approximate volumetric effects. The omni-directional relief impostors 

[And07] uses a form of iterative parallax mapping with billboard clouds, in order to better 

represent surface detail. 

True impostors [Ris06] introduces the idea of layered object representation to impostors. 

In this technique the original mesh is projected into a texture, where each channel holds a 

different depth sample, in a similar way to depth peeling. Therefore, a single texture can hold up 

to 4 different depth samples of a mesh, roughly approximating it. Then, the mesh is rendered as a 

simple impostor which performs a variant of ray-marching as shading. In the ray-marching stage 

the intersection between the view ray and the surface is much more accurate than intersecting a 

billboard cloud. 

3-view impostors [Har10] uses distance fields to quickly traverse a coarse volumetric 

representation of the mesh. The volumetric representation is stored in 3 min-max maps, taken 

from the 3 canonical axis views. Each map stores the minimum and the maximum depth value 

per view, along with a maximum step with which the ray can be advanced, similar to relaxed 

cone stepping [Pol07]. Rendering with 3-view impostors is done by bounding the impostor 

within a box and sphere tracing it. The distance advanced between samples is decided using 

queries from each view. 
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Volumetric billboards [Dec09] are voxel structures, which can be traced with any form 

of ray-marching or tracing. Compared to the previously discussed impostors they can handle 

level of detail and scattering with much better results. Bundling of different impostors has been 

explored in [Ume05] and [OHa02], but only in the context of large homogenous systems such as 

flocks of birds of clouds. 

Spheremaps and cubemaps are an important data structures in rendering because they 

are frequently used to sample or encode the environment of one or a group of objects. Because 

they are used for sampling, cubemaps offer a cheaper solution since they can be sampled 

uniformly, while the uniformly sampled spheremaps would suffer from distortion at the poles. 

Therefore, correct spheremaps would require extra computational effort to compute sample 

positions and minimize representation artifacts.  

Polycubemaps [Tar04] are a surface approximation technique based on cubemaps, 

where a surface is parameterized to a set of cubemaps, similar to an axis aligned bounding box 

(AABB) tree, which can then be displaced to reconstruct the surface. The advantage of this 

technique is that it has an inherent level of detail system because all the parameterized 

displacement is written into a single displacement texture, therefore all texture LOD algorithms 

are applicable. Other advantages of this structure are that it can represent concave surfaces and 

that the displacement texture can be streamed like any other texture through virtual texturing 

mechanisms [Eph06].  

Rasterized bounding volume hierarchies (RBVH) [Nov12] are impostor trees which 

inexactly describe the scene as bounding volume hierarchy of height fields, generalizing 

polycubemaps for rendering. RBVH represent geometry inexactly by finding sub-surfaces that 

are easy to express as parametric inside the geometry and then represent them as parameterized 

heightfields. When this is hard to achieve the RBVH can be transformed into a hybrid RBVH 

(HRBVH) which keeps the actual triangles and not heightfields at leaf level. A short comparison 

between complex impostors such as cubemaps, polycubemaps and RBVH is given in Figure 6. 

 

Figure 6 Complex Impostors. Cubemaps approximate an object by projecting it onto 6 planes. Polycubemaps take 

this concept further, by first creating a parametrization of the object onto an AABB tree structure and creating 

displacement maps for the AABB tree which can be used to inexactly reconstruct the original surface. Compared to 

cubemaps, polycubemaps can handle concave surfaces. Rasterized Bounding Volume Hierarchies (RBVH) map the 

surfaces on an object to heightfields, and create a tree hierarchy over them. RBVHs can be considered as a 

generalization of polycubemaps. Lower side of the image is from [Nov12]. Right upper side is from [Tar04]. 
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Comprehensive descriptions of massive scenes are done through storing all the 

information of a scene in hybrid hierarchies governed by scene managers. These representations 

are often application driven, and interoperability between such applications is difficult [Ber11].  

Instance based scene definition is a relatively novel concept, which has only been tried 

with families of objects [Bar08] and not with entire general scenes.  

Very detailed asset representations for distant or unimportant objects are not necessary, 

as the same visual result can be obtained with lower resolution variants of such assets. 

Streaming mechanisms such as virtual texturing [Eph06] and virtual meshes are used to load in 

memory only the most relevant data for rendering.  

2.2.3.1. Subgeometric Data 

An important part of scene description is that objects often exhibit minute detail. Scenes 

described entirely through voxels can be perfectly sampled through algorithms like [Cra09] but 

those that contain geometry information require a method to correctly represent subgeometric 

detail.  

Displacement mapping is the simplest form of subgeometric rendering. The original 

mesh is tessellated to a new resolution and the newly created vertices are displaced with a 

displacement map. This technique is very easy to implement in SM5 rasterization pipelines. 

The disadvantage of this method is that tessellating geometry increases geometric aliasing, which 

can be very difficult to efficiently solve without oversampling like Reyes based renderers. Hard 

to sample surfaces that exhibit geometric detail not represented in geometry can be difficult to 

properly render, because sampling geometric detail over the frequency of the geometric 

representation is not a straightforward problem. Such surfaces are also named wrinkled surfaces.  

Rendering wrinkled surfaces is performed through subgeometric algorithms, also known 

as surface algorithms, which transform information from the surface tangent space into 

tridimensional space and use it in shading. The tangents space computations can be bypassed 

with derivative maps [Mik10]. Various real-time algorithm have been used to adaptively 

tessellate surfaces with implicit displacement data, such as Phong Tessellation [Bou081], PN-

Patches [Vla01], Gregory Patches [Loo09], or Semi-Uniform Adaptive Tessellation [Dyk09]. 

Microfacet based reflectance models [Coo82] simulate wrinkled surfaces by 

incorporating the surface geometric variations into the shading model. Similar to microfacet 

based reflectance models, fractal surfaces can be evaluated analytically, which solves the 

problem of sampling. 

Wrinkled surfaces can be convincingly rendered with a small number of samples. Bump 

mapping [Bli78] treats wrinkled surfaces as a base geometric surface and a wrinkle function, 

which can be encoded in heightmap. The heightmap can then be evaluated multiple times in a 

vicinity of the surface sampling position. The multiple wrinkle function evaluations can be used 

to approximate the modified normal at the surface sampling point. Normal mapping [Coh98] is 

a variation of bump mapping, where the entire normal approximation algorithm is pre-processed, 

and its results are stored in a normal map, which is then queried during rendering. Compared to 

bump mapping, normal mapping requires less map sampling and has increased precision, but 

requires transforming the normal from the normal map space into tridimensional space. 
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Parallax mapping [Kan01], also known as offset mapping and virtual displacement 

mapping, modifies bump mapping to account for steep view angles, where the displacement is 

increased, simulating the effect of parallax.   

Iterative wrinkle surface methods provide realistic, high quality renderings, but are 

significantly more expensive than the previously presented techniques. Dynamic Parallax 

occlusion mapping (POM) [Bra04], also known as iterative parallax mapping, relief mapping 

and interval mapping, is an iterative approach to wrinkled surface rendering. The algorithm uses 

mipmapped queries within a binary search over the ray that intersects the surface, to quickly and 

accurately find the intersection point. Because of the tracing nature of the algorithm a significant 

number of samples is sometimes required, but the computations are ameliorated because the 

process is projected in two dimensions, tracing the ray directly over the wrinkled surface 

heightmap. The algorithm was improved with soft shadows, efficiently implemented through 

adaptive sampling [Tat06]. Parallax mapping can be offset limited [Pre06] to mitigate the 

unpleasant “texture swimming” effects that take place at grazing view angles.  

Relaxed cone stepping [Pol07] uses an expensive preprocessing step to compute the 

largest ray advance per pixel of the heightmap, making the tracing faster, but using a different 

type of map, named cone step map. A detailed analysis of wrinkled surface rendering is 

provided in [Mik08]. [Nog12] offers a comparative analysis. 

Iterative wrinkle surface methods can be accelerated with the secant surface 

intersection technique, which finds a more accurate intersection point without using binary 

search. Instead, it performs iterative ray-segment intersections between the surface intersecting 

ray and the segment determined by the upper sampled bound and the lower sampled bound, as 

described in [Ris07].  

Parallax mapping can be implemented in screen space, as shown in Screen space 

displacement mapping [Lob08] (SSDM). This technique projects the rendered normal onto the 

screen and then multiplies the projected normal with the displacement map value, creating a 

displacement vector. Then, a 3-4 level mipmap is created over the displaced vectors, over which 

each framebuffer pixel is displaced in an iterative process. 

While the previously presented techniques were concerned with correct surface 

representation, correct surface shading also requires adequate normal filtering. The same 

problem of subgeometric detail is now applied to the normal and not the surface. The problems 

of geometric detail aliasing can easily be seen in high frequency lighting effects such as high 

specular reflection variation caused by incorrectly filtered normal maps. This effect is named 

shimmering or sparkling. Simple but ineffective or incorrect solutions are adaptive sampling, 

temporal coherent resampling, using tone-down functions to ease-out the effect over distance or 

even caching supersampled lighting in a virtual textured solution, basically enhanced lightmaps. 

Linear Efficient Antialiased Normal (LEAN) [Ola10] Mapping is a filtering method 

which takes into account the problems of normal filtering. It permits normal map composition 

and offers correct results, but does so at a high storage cost, saving tangent space information per 

normal map. Cheap Linear Efficient Antialiased Normal (CLEAN) Mapping [Bak11] decreases 

the memory costs to half by sacrificing anisotropy support. A normal map specular aliasing 

solution is also explored in [Tok04].  
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2.2.4. Acceleration Structures 

Independently of the data representation chosen and of the type of rendering algorithm, 

the very large numbers of objects found in rendering massive scenes bring about the need for 

faster space sampling. This is achieved through acceleration structures that subdivide space, 

which are used to query the scene and its objects in without accessing the raw data. 

The rendered objects can be either static or dynamic in both form and topology.  Static 

form and static topology objects are the easiest to render, because their acceleration structures 

can be precomputed. Objects with dynamic form or topology need to have their acceleration 

structures rebuild. If   represents the number of samples (triangles/voxels/points/etc) in an object 

than completely building an acceleration structure can’t be performed in less than           

complexity. Consequently, the acceleration structures for detailed objects with dynamic form or 

topology are extremely costly to maintain, especially in real-time rendering, where the 

computational budget is very tight. 

 Rendering acceleration structures work by either partitioning the space that contains 

the objects or by partitioning the objects into sets. While the obvious, most efficient, choice is 

a hybrid representation, sometimes either one of the previously presented approaches can be 

more efficient. Acceleration structures can also be classified by their neighbor access efficiency, 

since this aspect is very important in heavy neighbor sampling problems like simulations (cloth, 

fluids, etc) or scattering effects. Neighbor access efficiency isn’t as important in real-time 

rendering as in these other computer graphics fields, because in general rendering samples space 

in predictable ray shaped patterns. Correct scattering effects are too costly to properly simulate in 

real-time rendering, therefore they are approximated with objects of uniform density, which can 

be better handled by implicit neighbor acceleration structures such as grids.  

 Another important aspect in acceleration structure design is construction direction: 

bottom up, top down or hybrid clustering. The temporal aspect of an acceleration structure can 

sometimes be very important, especially when it accelerates many dynamic objects. Temporal 

coherence friendly acceleration structures provide non-rigid support for short duration 

transitions, such as those found in object moving on a frame-to-frame basis.  

The simplest acceleration structures used in rendering are grids. For example, the raster 

is a bidimensional hierarchic grid, and it is used as an implicit acceleration structure in many 

deferred algorithms [Ols12]. There are also specialized variants of grids like perspective grids 

[Hun08], which deform the grid. Hierarchical grids are largely used in many space partitioning 

problems. Grid representations are unreliable due to their finite precision of representation, and 

thus grid algorithms are in general forced to oversample. On the other hand, grids exhibit 

excellent memory coherency and can be used to easily access neighbors. Hierarchical hash-

grids [Sch09] are hierarchies of grid-like structures that handle many objects of different sizes 

using hashed storage, keeping the grid      neighbor query and update complexities, while 

erasing the large memory requirements of grids, by storing only the buckets that contain data. 

1.5D and 2.5D grids, also known as multilevel intervals and multilevel maps, are special types 

of grids, where one or more dimensions are normally sampled and the extra dimension is very 

sparsely sampled. This acceleration structure is often used in inexact intersection determination 

[Har12] or in the representation of multi-layer large objects such as vegetation or terrains.  
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 Binary space partitioning into a hierarchical structure is done by adaptively subdividing 

space through arbitrary partitioning planes, which makes it very easy to surmount over empty 

space in grid-style space partitions. On the other hand such an object partitioning scheme is 

almost guaranteed to reference the same objects multiple times, increasing memory costs and 

especially memory management. Binary Space Partitioning Trees (BSP) [Fuc80] recursively 

subdivide the scene into convex sets of objects or triangles by using hyperplanes, and are then 

used with front-to-back or back-to-front rendering. Image space BSP is the projection of the BSP 

algorithm in 2D space. 

Image space pyramids [Had98] subdivide space equally among a number of N 

predefined children. Quadtrees and octrees are popular hierarchical space subdivision structures, 

similar to image space pyramids. They subdivide space by partitioning each non-empty space 

area into 4 or 8 equal subspaces. Their sparse variants, the sparse octree [Lai101] and the 

sparse quadtree [Sim12] are often used to increase the efficiency of data storage, for example in 

[Cra09]. They achieve this by minimizing the storage for empty space. In contrast to KD-trees 

[Moo91], quadtrees and octrees do not subdivide optimally and thus they are dramatically less 

balanced space partitioning structures. On the other hand quadtrees and octrees can be 

implemented over grids, which offer quadtrees      neighbor access complexity. 

Space partitioning schemes have problems in the accurate representation of small object 

which fall in unfavorable places for the space partitioning structure. For example, if an object or 

primitive falls at the border between two space partitioning nodes, even if it is very small in size 

it has to be stored either in the parent node or in both child nodes. Loose space partitioning can 

be used, in which the structure nodes have their collision bounding size doubled, which 

guarantees that any object will be stored in a node corresponding to its size. Loose, fuzzy or 

dynamic octrees and quadtrees are octrees and quadtrees that implement this principle. While 

this method greatly improves space partitioning management for dynamic scenes, it comes with 

increased processing costs caused by overlapping computations.  

Kd-trees [Ben75] [Moo91] are very similar to BSP trees in concept, but their 

partitioning planes are always perpendicular to one of the canonical k-dimensional axes. In 

contrast to octrees and quadtrees, the Kd-trees do not subdivide space in equal subspaces, but try 

to subdivide space in order to maintain a balanced tree. The implicit Kd-tree is a variant of Kd-

tree which is defined over a bidimensional grid. Min-max Kd-tree is another variant of Kd-tree, 

where each node in the tree contains the minimum and maximum extents of its children. 

Quadtrees and Octrees can be considered particular types of multiple plane splitted KD-trees. 

Kd-trees are usually constructed with a space partitioning heuristic. Surface area heuristic 

(SAH) [Wal06], is a space partitioning heuristic for Kd-trees, which utilizes a greedy heuristic 

function, in order to determine where to position the splitting hyperplane. The binned SAH (b-

SAH) [Dan10] uses a binning method to sample potential KD-tree splitting planes, decreasing 

the time to construct a SAH KD-tree. 

Partitioning object lists is a different approach to acceleration structure design. It 

combines clustering and top-down or bottom-up design to create object lists, which are then 

incorporated in a hierarchical structure. Since each object is referenced at most once, memory 

management is predictable and simpler. Furthermore, this dual approach permits optimizations 

for both high-level nodes, which are expected to contain general bounding data about the scene, 

and for the low-level nodes, which will normally contain objects. Because partitioning object 
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lists bundle objects or primitives together, they and are not as rigid as Kd-trees and grids, and 

they are favored for dynamic environments.  

The bounding volumes (BV) for the low-level clustered nodes can either be axis aligned 

bounding boxes (AABB), object oriented bounding boxes (OOBB), discrete oriented polytopes 

(DOP), maximum bounding rectangles (MBR), convex hulls, spheres or capsules. In rendering, 

the AABBs are the most popular type of bounding structure. 

Object trees are generalizations of balanced binary-trees. B-tree nodes are trees that have 

multiple children.  Object R-trees cluster groups of elements into k-dimensional rectangles, 

which represent the minimum bounding rectangle. Object Interval Trees is an ordered data 

structure that holds intervals, making it easy to query all intervals that overlap a certain point. 

Bounding volume hierarchies (BVH) are tree structures that wrap elements into 

bounding volumes, as shown in Figure 7. These volumes represent the trees’ leafs, which are 

then recursively wrapped to create the rest of the tree. BVH trees have a large number of 

applications in rendering intersection problems such as culling and in tracing global illumination 

algorithms. Like Kd-trees, BVHs can be optimized with SAH [Wal072], but they still suffer 

from overlapping which makes them slightly inferior to KD-trees in the traversal of large scenes. 

Early Split Culling (ESC) [Ern07] relaxes the requirement that each primitive must be only 

once referenced by a BVH node and produces smaller bounding boxes by splitting all 

inconvenient primitives, which lead to faster BVH traversal. Compared to ESC, the Edge 

Volume Heuristic (EVH) [Dam081] splits only very expensive primitives, and provides more 

stable and less optimized results compared to ESC. The SBVH [Sti09] [Pop09] uses spatial 

splits on primitives in order to minimize the overlapping between children nodes, but it remains 

an object list partitioning spatial subdivision structure because it splits space only at a per object 

level. It can be considered as a BVH built with a SAH function that penalizes overlapping, as 

described in [Pop09], and it has superior results compared to ESC and EVH.  

There are many simple variants of the BVH such as the popular AABB-BVH, known as 

an AABB tree or bounding box tree or hierarchical box trees, which use AABBs as BVs. 

Another simple variant is the quad-BVH (QBVH) [Dam08] which uses four BVHs bundled 

together and thus can easily be optimized for CPU SIMD. An AVX variant friendly of the BVH 

tree is a generalization of QBVH, the Multi Bounding Volume Hierarchies (MBVH) [Tsa09], 

which performs multiple intersection tests per tree node. MBVHs can be optimized for weak 

coherency problems by bundling different BVHs with a space partitioning heuristic. An 

interesting comparison between BVH and KD-trees for many-core architectures is given in 

[Vin14]. 

Spatial KD-trees, also named SKD-trees [Ooi87], are similar to KD-trees but have 2 

splitting planes per node in order to guarantee that each object is referenced just once, which can 

be either overlapping or disjoint. Because this is done through a splitting axis and a single value, 

which defines the two splitting planes relative to the parent bounding, the SKD-tree is more 

memory efficient than normal KD-trees. On the other hand, the overlapping caused by nodes 

makes SKD-trees inferior to KD-trees in traversal efficiency. Because of its properties the SKD-

tree is not a spatial subdivision structure but an object subdivision structure. The SKD-tree is 

also called a BoxTree [Zac02]. There is also a bitwise compressed variant of SKD-trees named 

Bounding Interval Hierarchy [Wäc06]. 
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The H-tree [Hav06] is a hybrid object subdivision structure that improves the empty 

space handling of the SKD-tree. The H-tree has both SKD-tree nodes and BV nodes, and during 

its construction always chooses the type of node based the projected better bounding. BV nodes 

are often used in a H-tree to accelerate empty space traversal. The AH-tree is a variant of the H-

tree that can be constructed in             for similar sized objects, with a worst case 

complexity of          for general objects. 

Bounding Interval Hierarchies (BIH) [Wäc06] is a low bandwidth bounding volume 

hierarchy. Similar to SKD-trees, BIH stores two splitting planes per node, therefore instead of 

storing the BV (e.g. AABB) for each child, like a normal BVH would, the BIH stores only two 

bounding boxes through shrewd bitwise codification. The nature of the BIH node and the 

clipping axis are encoded in binary. The nodes of a BIH contain three integer numbers. The first 

one contains the node type and clip axis encoding. The second and third integers store the 

clipping planes displacements, in the case of a normal node, and pointers to the children, in case 

of a leaf node. This structure makes the traversal of a BIH to be identical to that of a SKD-tree. 

Because the clipping axis and the clipping value can determine 3 subvolumes, the extra case of 

empty space has to be considered when intersecting the BIH with a ray, therefore, like SKD-trees 

the BIH theoretically has a slightly inferior traversal efficiency compared to that of the KD-tree. 

Conversely, due to its very small memory footprint, the BIH traversal is very close to that of 

KD-trees. BVHs can be constructed fast on the GPU [Lau09], which improves their usefulness 

for dynamic objects. Bottom up and top down construction of BVH is described in [Wal071]. 

Both space partitioning and object partitioning trees can be used as acceleration structures 

for tree traversal, which can be done with or without a stack. GPU implementations work better 

with stackless traversal, as memory allocation and cache coherency aren’t GPU strengths. [Fol05]  

and [Pop07] present stackless traversal strategies for the kd-tree space partitioning structure. 

Object partitioning tree traversal has also seen a lot of research recently: trail-restart traversal 

[Lai10], parent links [Hap11], multi-BVH restart-less bitmask traversal [Afr14] and ray-stream 

traversal [Bar14]. Stackless traversal is deeper analyzed in Chapter 4.2.1. Tree traversal without 

acceleration structures [Mor11] [Kel11] [Nab13] [Afr12] is a recent trend in ray tracing, in 

which the traversal dynamically constructs the acceleration structure during rendering. 

Tree traversal of dynamic objects is more complicated. While static objects need not 

have their spatial subdivision structures reconstructed, dynamic objects need proper handling. 

Dynamic structured objects, such as those perfectly defined by any kind of tree can be handled 

easily in ray intersection cases by inversely transforming the ray and then performing the 

intersection. While this method increases the ray-structure intersection cost, it does not force the 

reconstruction of the nodes. Unstructured dynamic objects, which can’t be perfectly represented 

through trees, are best handled in a separate subdivision acceleration structure. This tree can 

either be reconstructed per frame, or just partially, on demand, like in the method described in 

[Wal03].  

The AH-tree [Hav06] is an improvement over the H-tree, which decreases construction 

complexity from          to             for limited size objects, while retaining 

         for worst case scenarios. On the other hand, the AH-tree is inferior to the H-tree in 

traversal efficiency.   

Min-max variants of standard acceleration structures can be used as interval trees, which 

can be used in any heavy sampling process to quickly approximate space. Dictionaries and 
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spatial hash structures are often used in the construction of spatial subdivision structures, but 

they are rarely used in the rendering process. Other acceleration structures such as Voronoi 

diagrams, Layered Depth Images [Sha98] or Thick Layered Depth Images [Rad14] which are 

useful for fast neighbor determination and many screen space collision algorithms have rarely 

been used in real-time rendering. A comparison between acceleration structures commonly used 

in rendering is presented in Figure 7. 

 

Figure 7 Acceleration structures. In rendering, space sampling is accelerated, usually with one of the depicted 

acceleration structures. Acceleration structures can be classified into two types: space partitioners and objects list 

partitioners. Space partitioners subdivide space efficiently, but suffer from increased memory usage because the 

objects are referenced more than once. Grids are the simplest and most inefficient type of acceleration structure. 

Perspective grids importance sample nearby space and can are especially important in planetary and terrain 

rendering. Binary Space Partitioning (BSP) trees divide by general splitting planes. Quadtrees and octrees divide 

space in 4 or 8 equal parts, but only when necessary. KD-trees are BSPs limited to axis parallel splitting planes. 

Object list partitioners guarantee that each object is referenced only once, therefore have lower memory 

requirements, but suffer from overlapping and less efficient traversal. BVHs bundle objects together in a hierarchic 

tree, but suffer from overlapping. SKD-trees, also called BoxTrees, are KD-trees with two parallel splitting planes 

per node, which also differ from KD-trees by being object list based, because they guarantee that each object is 

referenced only once. H-trees are a hybrid between SKD-trees and BVH, using either bounding volumes or SKD 

nodes, whichever offers better space culling per node. Bounding Interval Hierarchies (BIH) is a SKD-tree which 

benefits from shrewd bit compression. 
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2.3. Rendering Concepts 

Rendering algorithms are just models that simulate light transport. While some rendering 

algorithms are more physically correct than other, no rendering algorithm is perfectly physically 

correct. The major reason for this is that many light transport phenomena are very hard to 

perceive for human beings, therefore investing a large budget of computational resources in to 

rendering them would be inefficient from a visual standpoint. Another reason is that perceptible 

light transport can depend on energy transport specific to effects usually not simulated in 

rendering, such as heat glowing or photosynthesis.   

Drawing is performed by sampling the scene through a rendering algorithm, which 

creates the final rendered image by accumulating light on the photo receptors of the virtual 

camera. The virtual camera is described as a collection of virtual photo sensors which capture 

light coming from the scene. These camera sensor-light interactions are then sampled and filtered 

to determine the pixel colors. The scene can be sampled through a number of different light 

transportation means, which include projections, rays, photons or paths, which are used to 

transport light from the light sources to the camera.  

These means can roughly or exactly simulate light-object direct and indirect interactions. 

The interaction between light and an object is defined through a material, which describes how 

the surface absorbs, transmits, reflects or emits light. The fundamental science used in rendering 

is radiometry, which studies optical radiation. Compared to photometry, it studies 

electromagnetic radiation beyond the human visible spectrum, which is represented by 

wavelengths between 360nm and 830nm. 

In an idealized light transportation problem in rendering, energy is transferred as wave 

from a given light source to the objects of the scene. The energy, called Radiant Energy, is 

measured in Joules (   ) and defines the amount of light produced by a surface in give amount of 

time. Since in rendering the purpose is to synthesize images and not to measure the scene energy, 

a more useful measuring instrument is Radiant Power, also named Radiant Flux,  . Radiant 

flux measures the flow of radiant energy transferred through a surface in a unit of time, thus it 

can be written as : 

   
  

  
 

Radiant Power is measured in Joules per second ( 
 

 
), equivalent to Watts    . 

Irradiance measures how much Radiant Energy is coming to, passing through or emerging from 

a surface, per unit of surface, per unit of time. It is measured in Watts per square meter (
 

  
), and 

can be defined as: 

   
  

  
 

   

     
 

Radiant Intensity, or Intensity, represents the angular density of Radiant Flux per unit 

solid, angle, measured in Watts per steradian (
 

  
), defined as: 

   
  

  
 

   

     
 



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

37 

 

Radiance is the area and angular density of radiant flux per unit projected area, per unit 

solid angle passing through, received at or emitted from a specified direction, on a point, on a 

surface. It is measured in Watts per square meter per steradian (
 

    
) and defined as: 

   
   

      
  

   

         
 

Since radiance is defined as a per direction function, it does not vary with distance. 

Radiance coming at a surface is called incident radiance, while radiance leaving a surface is 

called exitant radiance. 

Reflection between incident radiance and a surface is handled through bidirectional 

reflectance distribution functions (BRDF). The BRDF can be defined as: 

             
         

         
  

         

                
 

 In order to be physically realistic, a BRDF must be positive, must obey Helmholtz 

reversion-reciprocity principle and must conserve energy. Positivity means that a BRDF has to 

reflect some of the incoming radiance. The Helmholtz reverse-reciprocity principle states that if 

the direction of propagating light is reversed the same optical rules apply. Energy conservation 

states that a surface can’t reflect more than what it can receive. 

 Similar to the BRDF, the bidirectional transmittance distribution function (BTDF), 

models the transmission of light through a surface. The bidirectional scattering surface 

reflectance distribution function (BSSRDF) generalizes the BRDF and models the reflections 

that take place when light interacts with a scattering reflection only material. The bidirectional 

scattering distribution function (BSDF) is a further generalization of BTFD and BSSRDF.  

Such functions are not analytical, but can be approximated through lobes, which need to 

be measured with special instruments [Nga05]. For real-time rendering, these lobes can usually 

be simplified to mirror reflection, glossy reflection and diffuse reflection, and have been 

approximated by a large number of analytical and approximate models such as: Lambert 

[Edw03], Torrance-Sparrow [Tor67] Blinn and Blinn-Phong [Bli77],  Cook-Torrance [Coo82], 

Minnaert [Min41], Ward [War92], Schlick [Sch98], Oren-Nayar [Ore94], Heidrich-Seidel 

[Hei98], Ashikmin [Ash00], Kelemen-Kalos [Kel01], GGX [Wal07], Wrap [Slo11] or GTR 

[Bur12]. A survey of existing distributions and how to combine them is presented in [Sch11].  

The rendering process can be described as a recursive light transport equation, known as 

the rendering equation, as defined by Kayija in [Kaj86]: 

                                               
 

 

 In this equation the result          represents the outgoing radiance in   direction. It is 

the sum between the emitted radiance in that direction,          , and the incoming radiance on 

the entire hemisphere  ,         , weakened by the incident angle,     , and then reflected by 

the bidirectional reflectance distribution function,             . 
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While traveling through non-void media light suffers from scattering events, because the 

light’s photons interact with the particles from the media. In such media the light can be 

absorbed, emitted, in-scattered or out-scattered. The equation for non-homogenous media light 

propagation can be written as a sum of volumetric emission, absorbed in-scattering, out-

scattering (extinction) and absorption: 

                      

           
  

  
                 

                      
  
                  

  
       

            
               

  
    

               
  
     

The in-scattering and out-scattering are based on phase functions, which represent the 

probability distribution for scattering based on solid angle. They are similar to BSDF function, 

but are defined for scattering media. Some of the most used distributions are isotropic and 

Henyey-Greenstein [Hen41].  

           
 

   
 

                   
 

  

    

               
                               

The Henyey-Greenstein is an anisotropic distribution and is accurately approximated by 

Schlick [Sch93]: 

         
 

  

    

          
                

The light transports simulated in rendering are very diverse, and in order to be sampled 

efficiently they need specific sampling strategies.  

The Heckbert notation [Hec90] considers the entire path traversed by the photons, from 

the emitting light to the camera receptor, and it is used to easily differentiate between different 

types light transfers. It uses regular expressions for path labeling, thus all paths can be written 

like         , where   represents a light,   a specular reflection,   a diffuse reflection and   the 

eye (camera).  

For example    describes a path between a light and the eye while      describes a path 

between the eye and a light with two specular reflections, such as the paths that produce caustics.  

The glossy reflection   was added later, which represents a specular-like diffusion, which 

reflects light in a lobe, instead perfectly. Thus, a path can also be described as              
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2.4. Rendering algorithms 

A rendering algorithm simulates light transport by determining the interactions between 

lights, objects and the virtual camera photo sensors, represented as pixels. These rendering 

interactions can be simplified to simple, direct interactions. This follows the principle of global 

illumination, where all the objects light the other objects. The fundamental operation in 

determining the validity of direct interactions is visibility determination. This concept was first 

explored as a visibility determination problem [Sut74], where the visibility determination 

operation is considered the most basic and most important operation for rendering algorithms.  

Thus, rendering interaction can be expressed as an unordered set of visibility 

determination operations, and efficiently simulating the interactions is equivalent to efficiently 

computing the generated visibility operations, which is a visibility determination sorting 

problem. This in turn can be described as a searching problem. This aspect of rendering is 

thoroughly presented in [Hav14]. Consequently, correctly sorting and then solving the generated 

visibility operations is the most efficient method to simulate rendering interactions, as 

highlighted in [Sut74] and [Hav14] : “Sorting and searching usually takes more than 90% of the 

rendering time”. Different rendering problems are presented as searching problems in Table 2.  

Rendering Problem Query Domain Search Space Answers Domain 

Ray Shooting rays objects (intersection) points 

Hidden Surface Removal rays objects points 

Visibility Culling rays objects objects 

Photon Maps points points points 

Ray Maps points rays rays 

Irradiance Caching points spheres spheres 

Path Tracing paths objects (intersection) points 

Table 2 Rendering as sorting. Different rendering problems are depicted as search problems. Ray shooting 

algorithms like ray tracing search the scene objects with rays and produce intersection points. Hidden surface 

removal methods search visible points on objects by ray queries. Visibility culling uses rays to search the object 

space for visible objects. Photon maps use k-NN point queries into the point photon space, to determine which 

points affect a point directly visible from the camera. Ray maps use point queries into a ray-indexing structure to 

determine rays which are followed by photons. Irradiance caching uses points to search in the sphere space to 

determine which spheres are cached. Path tracing searches the object space with paths, determining intersection 

points. 

This sorting process is actually a scene sampling process, where the scene objects, lights 

and camera sensors are sought to be sampled in the most coherent order. These different types of 

coherencies can be observed in different fundamental rendering problems: scanline (e.g. raster, 

texturing), frame (e.g. temporal reprojection), object (e.g. back face culling, clipping culling), 

depth (e.g. z-buffer, DFS tracing), list-based (e.g. BFS tracing, raster), face and edge coherence 

(e.g. raster, BVH) or area coherence (e.g. photons, texturing). Rendering algorithms try to 

capitalize on most of these coherencies to improve operations ordering and early decisions (e.g. 

early-z, use of acceleration structures). Since different lighting effects are caused by different 

phenomena, the majority of rendering algorithms use multiple coherencies, in effect multiple 

importance sampling visibility operations. Therefore, rendering algorithms are interactions 

samplers, not solvers, even though they use the results of previous interactions when sampling 

for other interactions. The interactions are simulated in a physically plausible manner through the 

use of BRDFs, BDTFs BSSRDFs or BSDFs, which are beyond the scope of rendering algorithms. 
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Rendering algorithms are differentiated by the type of light paths they can simulate.  All 

rendering algorithms can handle direct light paths, which contain at most a single light-object 

interaction. These algorithms are named direct illumination algorithms. Another name for them 

is local illumination algorithms, because they require only local information in the rendering 

process. The best rendering quality is found in global illumination algorithms, which handle all 

types of light paths. Because such algorithms use scene wide information and light paths with 

many light-object interactions, they are also called indirect illumination algorithms.  

The ultimate goal of rendering algorithms is to efficiently create the necessary objects-

lights interactions required for generating photorealistic images. In some cases, rendering 

techniques can combine aspects from different rendering algorithm families, and can be 

equivalent from a result standpoint. Rasterization with customizable sampling points per pixel is 

equivalent to ray casting, with the exception that ray-casting also provides the intersections in a 

“front to back” order. Rasterization can provide the exact same order or produce the same 

stochastically expected result through the use of Order Independent Transparency (OIT) 

algorithms like [Bar11] [End10]. Even if the viewport is non-planar there are methods which 

make rasterization equivalent to ray casting [Dav121].  

Ray tracing samples space by shooting rays, path tracing samples space by using paths, 

cone and beam tracing sample space by shooting volume rays and photon mapping samples 

space by shooting and storing photons. Each of these space sampling strategies is aimed at 

solving the same problem, that of global illumination. Some of the space sampling strategies aim 

to optimize for the first intersection (rasterization), diffuse reflection (many lights methods), 

specular light transport (photon mapping), or for maximizing lights-objects interactions (path 

tracing). Because of these different aims, some rendering algorithms perform better than others, 

depending on the scene and the degree of the correctness of the transport of light. 

This space sampling process was first formally represented in the rendering equation, 

introduced by Kayija in [Kaj86]. It formalized the rendering problem as an order dependent, 

interaction determination and evaluation process. 

The most important properties of the rendering equation are that it is recursive and 

separable. Because it is separable, different algorithms can be used to evaluate its different parts, 

for example rasterization can be used for the emissive and direct light reflection components, 

while a more cache unfriendly but more efficient space sampling algorithm like path tracing can 

be used to compute the rest of the equation. This is the best approach to obtain good performance, 

because each stage of the rendering equation is handled by the most efficient algorithm for it.  

A rendering algorithm is said to be physically correct if it generates the lights-objects 

interactions necessary for the generation of a photorealistic image. Therefore physical 

correctness in rendering is not in a physics connotation but in a perception one. 

A rendering algorithm is called consistent if, with enough sampling, it produces a correct 

expected result. A rendering algorithm is called unbiased if it does not introduce any regular 

error in the radiance approximation. Biased algorithms do not necessarily produce wrong results, 

as they can converge with enough sampling to the correct result, if they are consistent. On the 

other hand biased algorithms introduce an error called bias, which can be perceived as a blur or 

as a loss of high frequency visual information. This is usually done to reduce the variance found 

in sampling hard to sample rendering problems, like caustics from point light sources.  
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One of the most important aspects of algorithm design is data handling. Most direct 

rendering algorithms use preprocessed data structures, which are rarely modified during 

rendering. The most common data structures that suffer modifications are tree structures like 

BVH, and even if their reconstruction has seen improvements in on-GPU generation [Lau09], 

they are still rarely used because of the tight computational budgets in real time rendering. 

Likewise, indirect rendering, where the rendered data is converted from one format to another, 

is rarely used in real-time rendering because of its costs. 

On a more fundamental level, data traversal patterns are by far the most important 

data-related performance topic in rendering algorithms. Because all rendering algorithms are 

sampling processes over the scene space and because GPU bandwidth is almost always the main 

bottleneck, the most coherent sampling process is expected to have the best performance. This is 

a major reason for the wide-spread adoption of the rasterization rendering algorithm. 

Rendering algorithms can also be distinguished by design. Top-down approaches 

integrate the most relevant majority of visual effects and need no other additional techniques to 

correctly synthesize the rendered images. Bottom up approaches need additional algorithms to 

provide good final results, but are much more scalable in computational cost. 

Based on how they implement and sort visibility determination operations, through 

various space sampling strategies, the many rendering techniques in computer graphics can be 

separated into algorithm families: rasterization, screen space techniques, Reyes, ray casting, ray 

tracing, path tracing, photon mapping and many light methods. While there is room for variation 

for the space sampling strategy used by a rendering family, the basic principles are usually the 

same. Some of these space sampling strategies are presented in Figure 8. 

 

Figure 8 Rendering algorithms. Rendering algorithms provide the interactions between objects, lights and screen, by 

using different sampling strategies, which exploit different visibility determination coherencies. Rasterization 

projects space onto the screen, solving visibility determination operations with a bidimensional grid. Screen space 

methods work in 2D, where neighbor sampling and mipmaps can be used to hierarchically determine approximate 

visibility. Ray casting uses rays to determine visibility of objects on the screen. Ray tracing uses rays recursively, 

sampling space beyond the first screen-object interaction. Path tracing considers the entire transport of light as paths, 

which leads to many importance sampling opportunities.  Many light and photon mapping methods transport light 

throughout the scene by creating many small lights, named virtual lights (VL), which simulate light transport and are 

then used as direct illumination sources. 
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Rasterization algorithms intersect each rendered primitive by projecting it onto the pixels 

of the screen. Their results can be used by screen space techniques to produce low quality 

approximations of global illuminations. Reyes [Coo87] rendering takes each primitive, splits it 

into smaller primitives which are then diced to micropolygons close to the size of a pixel. The 

micropolygon vertices are shaded and then sampled to create the final color for each pixel.  

Ray casting [App68] generates rays, going from the camera through each of the pixels of 

the screen, which are used to intersect the scene. The final pixel color is obtained through the 

accumulation of the color contributions from all the intersections. Ray casting is usually 

employed in rendering transparent objects and scientific visualizations [Wei06]. Ray tracing 

[Whi79] algorithms start like ray casting, with rays starting from the camera and going through 

the pixels of the screen, but differ from ray casting because they can generate new rays when the 

old intersect objects. Path tracing [Kaj86] takes the concept of ray tracing further, by linking the 

new rays with the old rays into paths.  

Photon mapping [Jen96] decouples lights-objects and camera-objects interactions by 

shooting a large number of photons from each light and simulating the light transport with them. 

After the photons are transported they are saved into a scene wide photon storage structure, a 

final gather stage is used in which rays shot from the camera through each pixel intersect the 

objects of the scene. At each intersection the lighting equation is evaluated, using the photons 

stored in that area.  

Many lights based methods, also known as virtual lights (VL), [Kel97] approximate 

correct global illumination by generating virtual lights at each light-object interaction. The 

virtual lights are then checked for potential interactions with the objects of the scene, recursively 

spawning new virtual lights. All virtual lights are used for direct illumination in a final gathering 

stage. 

 

2.5. Rasterization 

Of all rendering algorithms, rasterization simulates the smallest subset of light paths, 

sampling only            paths. On the other hand, it samples these paths with excellent data 

locality. Because of this, rasterization based renderers need to employ a large number of 

additional techniques to produce quality images, but, if implemented correctly, a rasterization 

based renderer can produce photorealistic results. The complexity of managing all the additional 

techniques makes rasterization renderers scalable, albeit difficult to maintain solutions. Thus, 

rasterization can be considered a bottom-up approach to rendering, compared to ray-tracing or 

path-tracing algorithms, which are top-down approaches. 

The scene sampling process is based on a primitive-pixel intersection operator, which 

loads each primitive in memory and intersects it in parallel with many pixels. Therefore, 

rasterization is a SIMD friendly algorithm, which can easily be implemented in graphics drivers, 

and this makes it the best method for determining direct visibility. While culling algorithms give 

it the same visibility determination complexity of                   , identical to other 

rendering algorithms like ray tracing or path tracing, rasterization exhibits the best general  

performance in rendering visible objects. The only unfavorable performance case happens when 

micropolygons are rasterized, because of low numbers of potential fragments, generating 

rasterization tasks with few threads. Level of detail algorithms can be used to mitigate the 
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number of sub-pixel sized primitives, by rendering primitives of a suitable size. The data 

locality in rasterization permits the algorithm to efficiently access memory for a large number of 

pixels or sub-pixels, making hardware anti-aliasing practical.  

Rasterization is also fully compatible with tile-based architectures, thus it is favored in 

energy deprived environments. Since the raster is a grid structure, tiles can easily be integrated 

within current hierarchical early rejection algorithms [Gre93] [Joh05] used in modern 

rasterization. The negative side of rasterization is that it generates only a small number of light-

object interactions, making it impossible to implement correct global illumination without further 

complexity. Rasterization provides the direct interactions between camera and objects without 

order, making it difficult to represent basic phenomena such as transparency or translucency. 

2.5.1. Visibility and Occlusion Culling 

Because rasterization projects objects onto the screen it provides potential object-screen 

interaction without order and without bounds, therefore extra work is usually performed for 

occluded objects and for objects outside the visualization volume. Since rasterization uses the Z-

buffer algorithm for opaque objects, it uses an implicit form of culling called depth rejection. 

Depth rejection ensures that each new fragment generated by a uniform distribution of objects 

has statistical chance of 
 

   
 to not be culled, where   is the number of previously existing 

fragments. For a large number   of fragments per pixel the number of fragments that will pass 

the culling test grows like the harmonic series to    
 

 

 
            [Coz09]. This 

complexity is further lowered with hierarchical depth rejection [Gre93] and guarantees the speed 

of rasterization, since the majority of computational costs is in fragment processing. Hardware 

vendors have brought many efficiency improvements to the Z-buffer algorithm like early 

rejection, double speed depth-only rendering or depth compression [Coz09].  

Thus, the rasterization Z-buffer algorithm has a linear geometry processing complexity 

and a (sub)logarithmic fragment processing complexity, both of which have close to optimal 

data access coherency. Even with this large number of optimizations, the Z-buffer algorithm can 

suffer from floating point precision artifacts, which can be countered with multiple depth frusta 

[Coz09], judicious minimum triangle separation and LODs. 

Culling algorithms cheaply determine visibility, with the purpose of minimizing this 

extra effort. Culling is itself a sampling process, as it samples the entire scene to find the best set 

of potentially visible objects which will be then sent to be rendered on the monitor. Because of 

occlusion, an exact match can’t be obtained without interleaving the culling algorithm with 

rendering [Mat15].Static culling methods like potentially visible sets (PVS) [Dur99], portals and 

anti-portals [Dur99] can be precomputed, or dynamically computed by amortizing the 

computation on multiple frames, and have all seen wide adoption.  

Hierarchical occlusion determination algorithms work by temporal information and 

visibility queries. Coherent Hierarchical Culling (CHC) [Bit04] uses information from the 

previous frames to test only a limited number of queries per frame. The algorithm was further 

refined in Near Optimal Hierarchical Culling (NOHC) [Gut06] and in CHC++ [Mat08] with 

statistical methods that bundle queries in order to minimize their costs. It was also adapted for 

ray tracing in CHC++RT [Mat15]. Culling algorithms have been particularized for special 

rasterization problems like shadow rendering in [Llo04] [Bit11]. 



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

44 

 

Fast inexact culling algorithms are usually based on easy to obtain rasterization 

information like the depth buffer and other common screen space data. Hierarchical Z Visibility 

[Gre93] is integrated in the rasterization hardware and it has also been adapted in a 

programmable version where occlusion determination is based on testing the visibility of 

extended screen space projected AABBs against the mipmaps of the depth buffer from the 

current or previous frame.  

 

Figure 9 Culling algorithms. Coherent Hierarchical Culling (CHC) variants are exact and test for visibility only 

what might vary from the previous frame. Hierarchical Z (HIZ) methods extend AABBs in screen space and Z-test 

the visibility in a hierarchical depth buffer. Compared to HIZ, N-buffer stores exponentially increasing maximum 

depth vicinities, therefore it switches the HIZ hierarchy of maps into a map of hierarchies. Portals use multiple view 

frustums to reduce the visible space. 

The concept of using the projections of occluders in a 2D occlusion process has also 

been tackled in Visibility Culling using Hierarchical Occlusion Maps [Zha97], where groups of 

low resolution LODs of occluders generate occlusion maps, which are then mipmapped and used 

like additional Z-buffers for visibility determination. Using multiple Z-buffers has also been 

explored in Triple Depth Culling [Mar11], where the depth maps are filled in alternating 

geometry passes. Instead of storing a hierarchy of maps N-buffers [Déc05] introduces a map of 

hierarchies, where each level of the N-buffer contains the maximum depth for an exponentially 

increasing vicinity. Hardware tessellation culling [Nie12] is a relatively novel field, currently 

with no significant applications in real-time rendering. [Bar12] contains a review of image space 

culling algorithms. There have also been culling hardware proposals [Has07], but as of now, 

none are officially used in consumer hardware. Some culling approaches are showed in Figure 9. 

2.5.2. Geometric Antialiasing 

Compared to algorithms that use rays or paths to synthesize the final image, rasterization 

does not have the option of analytic sampling per pixel. Therefore rasterization antialiasing has 

seen a large number of methods that try to minimize geometric aliasing, which is caused by the 

fixed sampling rate and pattern of the projected geometry. Super sampling antialiasing (SSAA), 

also called full scene anti-aliasing (FSAA) linearly increases the number of samples taken from 

the raster in order to create pixels. Multisampling antialiasing (MSAA) also does this, but it only 

oversampling the visibility attributes of the geometry.  

Fast Approximate antialiasing (FXAA) [Lot09] finds all edges in a post processing stage, 

and then blurs them, to non-uniformly reduce high frequency detail and the aliasing caused by it.  

Morphological antialiasing (MLAA) [Jim11] finds all edges in a post process, and then tries to 



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

45 

 

match sub-edge parts to hardcoded cases, which can then be anti aliased efficiently. MLAA is 

refined in Subpixel Morphological antialiasing (SMAA) [Jim12] with better diagonal lines 

support and a more accurate pattern matching mechanism. SMAA uses a precomputed texture to 

correctly handle diagonal patterns and a velocity-weighted temporal reprojection [Neh07] 

mechanism. The temporal reprojection is a case of amortized supersampling [Yan09], which is 

used to increase the number of samples for moving objects, which are very difficult to antialias.  

Subpixel reconstruction antialiasing (SRAA) [Cha11] is targeted at deferred renderers, 

and combines sub-pixel visibility through supersampled G-buffers with single-pixel shading. 

Subpixel reconstruction antialiasing (RSAA) [Res12] stores the results of geometric sampling as 

binary results in a mask, which are then resampled with optimally precomputed coefficients for 

each combination that can be stored in the mask. Aggregate G-buffer antialiasing (AGAA) 

[Cra15] decouples geometry sampling rate from shading sampling rate by aggregating all 

geometric contributions into an averaged set of surface descriptors (mean albedo, mean specular, 

mean roughness). The averaging is done through distance functions. 

Impostor [Ris06] [And07] [Har10] based algorithms can be rendered instead of real far 

away objects. This can drastically lower the geometric complexity of the objects and thus reduce 

geometric aliasing. 

2.5.3. Direct Illumination 

While culling algorithms lower the geometry processing complexity in rasterization, the 

shading complexity is usually the main performance bottleneck. A low, or even constant shading 

complexity can be achieved by deferred rendering [Dee88] [Sai90] algorithms, which are a 

special group of rasterization based-rendering algorithms. They compute only the relevant 

interactions between lights and objects, guaranteeing constant shading complexity. Without 

deferred algorithms, rasterization can’t make thr difference between potential and relevant light-

object interactions, and it is forced to evaluate almost all possible combinations, greatly wasting 

computational resources in a        complexity problem, where   is the number of lights and   

is the number of objects. Deferred rendering uses explicit or implicit acceleration structures to 

compute only the relevant light-object interactions, lowering the computational complexity to 

      . It does so by using screen-wide acceleration structures, which consume a large amount 

of GPU memory, named geometry buffers, or G-buffers.  

Deferred rendering algorithms can be either single-geometry pass or multi-geometry 

pass [Lee09]. In single geometry pass algorithms, deferred rendering algorithms process the 

objects of the scene once, while in multi-geometry pass variants they process the objects many 

times. There are also hybrid variants [van13] which try to balance geometry processing costs and 

fragment processing costs.  

Deep deferred shading (DDS) [Mar14], multisampled deferred [Thi09] and adaptive 

super-sampling deferred rendering [Hol13] come in single-pass and multi-pass variants and try 

to mitigate the large memory consumption problem anti-aliasing deferred rendering algorithms.  

Interleaved sampling [Kel011] can be applied to deferred rendering [Seg06] in order to 

minimize the number of shading operations. The initial geometry buffer is subdivided into a 

number of smaller buffers. Each of the small buffers contains interleaved information from the 

original G-buffer. Then, the lights are distributed over the sub-buffers and shading is performed 
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normally. Finally, a discontinuity sensitive buffer is used to correctly filter all the small lighting 

buffers into a final full-resolution lighting buffer, which is then applied to the color buffer to 

create the final image. The same technique was adapted for transparent objects in inferred 

rendering. 

Light indexed deferred rendering [Tre09] and list based light indexed deferred rendering 

[Lau12] solve the problem of low contribution light-object intersection by storing all light 

indices in a list and testing each interaction before evaluation. Tile based deferred rendering 

[Ols11], cluster based deferred rendering [Ols12] and Forward+ deferred rendering [Har12] take 

the concept of storing light index lists and improve upon it with hierarchic data structures like 

tiles, clusters, or pseudo-clusters defined through depth masks.  

Stream compaction for deferred rendering [Hob09] is an algorithm used to minimize the 

GPU code path divergence in setups with many materials. Deferred++ [Bur13] is a tile-based 

deferred rendering variant, where primitive indices and light indices are stored in tile-based lists. 

The shading process loads the objects and lights for each tile, minimizing bandwidth and 

memory requirements. In general, deferred rendering suffers from large memory costs and an 

inability to represent global illumination effects and correct transparency. An abstraction of 

deferred rendering is presented in Figure 10. 

 

Figure 10 Abstract deferred rendering. Deferred rendering algorithms decouple visibility determination and shading. 

They first determine the visible object(s) for each pixel. Afterwards they store the lights in an acceleration structure 

(here tiles). In the end the algorithm intersects each pixel’s visible object(s) with the relevant lights, providing all 

relevant light-object interactions. 

Decoupled rendering (DR) [Rag11] takes deferred concepts further by completely 

decoupling visibility samples and shading samples, through the use of a memoization cache. It 

creates a many-to-one relationship between visibility samples and shading samples, which 

dramatically improves efficiency in evaluating effects that require multiple shading samples per 

fragment such as depth of field or motion blur. For example, a moving surface from a primitive 

might be rasterized over a different number of pixels in a single time frame. This is very 

common since no frame is instantaneous and objects will move during the frame time, creating 

the visual effect of motion blur. The memoization cache is very expensive to implement, because 

it has large memory requirements and it has to synchronize a lot of GPU data. Furthermore, the 

algorithm requires special hardware in order to work at maximum efficiency.  This technique 
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was adapted to deferred rendering in decoupled deferred rendering [Lik12], where a modified 

memoization cache is used as compact geometry buffer.  Similar to decoupled deferred rendering, 

sort based deferred rendering for decoupled [Cla13] uses Morton-order encoded approximations 

of primitives instead of a modified memoization cache. The principle of decoupled sampling is 

described in Figure 11. 

 

Figure 11 Decoupled sampling. The same texture data is needed for multiple pixels during the period of a single 

frame, a common occurrence in scenes with fast moving objects. In order to correctly implement motion blur and 

not pay excessive bandwidth costs, decoupled sampling checks visibility samples separately from shading data and 

employs a single shading sample per pixel model. When it is first encountered, the shading sample is mapped in a 

memoization cache, and then referenced from the cache, in a process which applies dynamic programming 

principles to bandwidth rendering problems. Because the memoization cache is stored in cache memory, the access 

costs and bandwidth are greatly reduced. Source: [Rag11]. 

Volumetric lighting takes into account scattering effects caused by non-vacuum media. 

While it can be considered a form of indirect illumination, it is caused by direct illumination, and 

therefore it should not be considered as a form of GI. Volumetric lighting is especially useful in 

effects such as fog, light shafts (also known as god rays or crepuscular rays) among other effects, 

where it is usually combined with procedural noise in order to increase medium irregularity.  

Pure voxel based methods can be used to accurately implement volumetric lighting such as the 

algorithm presented in [Cra09]. On the other hand, such effects require a very large number of 

samples, which can quickly amount to an excessive consumption of bandwidth. 

 In a rasterization context, volumetric lighting can be cheaply approximated with 

geometric information from the lights, where a product between the viewing vector and normal 

vector can be used to decrease lighting near edges [Cha15]. Volumetric lighting can also be 

approximated in screen space, as a post process [Mit071]. Impostors have also been used in 

inexact representations of scattering processes, where the volumetric object is represented as an 

impostor cloud. Such representations lack convincing quality, because impostors do not interact 

with the environment. 

Volumetric lighting can be correctly implemented with shadow maps, by projecting the 

ray onto the volumetric light shadow map and marching the shadow map [Tot09]. This 

accumulates volumetric effects like absorption, emission, in-scattering and out-scattering by 

using the visibility data from the shadow map. Interleaved Sampling [Kel011] can be used to 

lower the complexity of marching a ray. It is based on the idea that neighboring pixels have 

similarly marched camera-surface rays; therefore, pixels in that vicinity can use samples from 

their neighbors. This is easily implementable in compute shaders or as post processing passes 

because the resulting scattering convolution kernel is separable. [Eng10] observers that 

scattering varies mostly in depth discontinuities and along epipolar lines and lowers the 
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complexity of ray marched scattering by interpolating epipolar samples. These samples are taken 

by marching rays from the screen space projected light position to epipolar positions on the edge 

of the screen space frustum. Extra attention is given to depth discontinuities. Epipolar 

rectification [Fus00] can be used in combination with a 1D min-max map to quickly evaluate 

volumetric lighting effects, as presented in [Che11] 

 A different implementation of scattering effects can be done with Polygonal Light 

Volumes [Bil10]. This method takes the shadow maps from scattering lights and displaces a pre-

defined grid over them, quickly creating accurate shadow volumes. 

 Subsurface Scattering (SSS) defines the light transport in special media like skin or 

marble, where photons enter and suffer multiple interior reflections before leaving the surface at 

a point different from the point of entry. Effects such as translucency or backlight lighting are 

caused by SSS. From a rendering standpoint, the surface-light interactions in SSS materials are 

different from normal materials. The interactions are described by BSSRDFs, which are 

generalized BRDFs with superior dimensionality. Because of the higher dimensionality SSS has 

long been considered a high cost effect, and has been only lately brought to a reasonable 

rendering complexity. BSSRDFs can be implemented with a light diffusion convolution kernel, 

which composes the surface with the light diffusion. For isotropic media, this convolution kernel 

is almost always a sum of Gaussian kernels.  

The light diffusion that takes place in SSS was first tackled in real-time in [Bor03], 

where instead of evaluating the convolution kernel, it was approximated in texture space, in the 

form of many blurred color texture maps, which were then composited through a simple 

weighted sum. Another algorithm [dEo07] uses Translucency Shadow Maps which are then 

blurred and summed, approximating the sum of Gaussians in real-time instead of using texture 

space for preprocessing like [Bor03]. Preprocessing can be used to approximate the thickness of 

a geometric object, in a manner similar to measuring an internal ambient occlusion. This 

precomputed thickness term was used to provide convincing results in [Bri11]. 

A novel approach towards SSS was offered in [Jim09], in which a screen space 

convolution kernel is used to approximate the real surface kernel. A depth-discontinuity aware 

filter is used to efficiently approximate the surface in screen space, in order to locally filter only 

fragments generated by the same objects. This method was extended to be separable for a sum of 

Gaussians in [Jim15]. 

2.5.4. Shadows 

Shadows can be implemented through proxy geometry as shadow volumes [Cro77], 

through rasterized images as shadow maps [Wil78] or through hybrid types of rendering 

algorithms like ray tracing over rasterized data. Because shadow maps are implemented through 

rasterization, they benefit from its data locality advantages, making shadow maps more efficient 

compared to other solutions. Therefore, shadow maps have seen a wide adoption in shadow 

rendering solutions for real-time applications, even if they are notoriously difficult to efficiently 

implement, since they are a sampling process heavily dependent on the configuration of objects 

and lights. Shadow maps have been thoroughly researched, which led to a large variety of 

existing techniques.  
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Perspective aliasing is due to the non-linear mapping between shadow map pixels and 

camera pixels. Precision warping methods, like perspective shadow maps (PSM) [Sta02], light 

space perspective shadow maps(LSPSM) [Wim04], trapezoidal shadow maps (TSM) [Mar04], 

and camera space shadow maps (CSSM) [Kol12] and logarithmic shadow maps (LSM) [Llo06] 

warp the light visualization frustum, increasing precision near the shadow caster or near the 

camera. They are a simple form of adaptive sampling, in that they don’t treat shadow map 

discontinuities or hard to sample cases in an analytical manner, they just warp the shadow map 

resolution for a good general case.  

Partitioned shadow maps, include cascaded shadow maps (CSM) [Dim07], parallel-split 

shadow maps (PSSM) [Zha06] and sample distribution shadow maps (SDSM) [Lau11], and 

separate the light visualization frustum into multiple frusta, distributing shadow map resolution 

to better match the camera view. Partitioning techniques are very similar to precision warping 

methods; they just use multiple maps instead of warping, and are thus less exposed to the large 

number of problems that plague perspective warping shadow maps. On the other hand, multiple 

frusta shadow maps variants require manual tuning and special filtering between partitions.   

Perspective aliasing can correctly only be solved through correct adaptive sampling. 

Adaptive Shadow Maps (ASM) [Fer01] store shadow samples in a hierarchic grid. The 

hierarchic grid is then sampled and filtered during rendering. ASM are memory intensive 

structures and require multiple rendering passes to completely fill.  High Quality Adaptive Soft 

Shadow Mapping (ASSM) [Gue07] is an adaptive sampling method that first computes a normal 

shadow map, which is then used to create a hierarchical shadow map. The hierarchical map 

stores minimum and maximum values of the normal shadow map in hierarchies represented with 

mipmaps. It is then used together with the contours of occluders to determine the difficult 

occlusion cases which take place at contours and depth discontinuities. These difficult occlusion 

cases are then importance filtered, which greatly increases precision. 

Rectilinear texture warping (RTW) [Ros12] augments shadow mapping by storing 

additional maps which describe space warping on both shadow map axes. While the method can 

produce results close to ray tracing, the bias of the distortion is not addressed. Moreover the 

method requires highly tessellated scenes. RTW works by computing the importance of each 

shadow map pixel and then by choosing the maximum importance value for each row and 

column, which are stored in max maps. The max maps are then warped into warping maps, 

which effectively provides adaptive sampling. The shadow map is used by projecting all vertices 

onto the conventional shadow map, and then using the warping maps to warp the vertex onto 

new coordinates.   

Shadow maps can also be used in analytical reconstruction methods, which offer 

superior results because they provide sub-pixel level accuracy. Reconstructable geometry 

shadow maps (RGSM) [Dai08] offer an alternative storage for the shadow map, by encoding the 

closest visible triangle instead of only its depth. This technique addresses both projective and 

perspective aliasing but has problems in working with dense geometry and requires large 

amounts of memory. Subpixel Shadow Mapping (SPSM) follows the geometry storage concept 

from RGSM but uses a compressed representation for the shadow map, storing the vertices of the 

closest triangle in each pixel of the encoded shadow map. It also stores depth derivates. Instead 

of performing a simple comparison using the shadow map, SPSM performs ray-triangle 

intersection for the shadows, and applies an analytical form of vicinity sampling called silhouette 

recovery.  Both RGSM and SPSM are not suited for scenes with high geometric complexity, 
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which would store more than one triangle per shadow map pixel. This would lead to a new type 

of aliasing, caused by a shadow map pixel stores an aliased triangle. 

Volumetric shadows are very hard to represent because they need more than one sample 

per pixel. Deep shadow maps [Lok00], multiple depth shadow maps [Pag04], deep opacity maps 

(DOM) [Yuk08], adaptive volumetric shadow maps [Sal10], opacity shadow maps (OSM) 

[Kim01] and Fourier opacity maps (FOM) [Jan10] keep more than one sample per pixel in the 

shadow map and are therefore able to represent volumetric effects. Adaptive Volumetric Shadow 

Maps (AVSM) [Sal101] applies the idea of adaptive storing of signals [Sal11] to shadow maps. 

 Epipolar rectification [Fus00] can be used in combination with a 1D min-max map to 

quickly evaluate volumetric shadows, as presented in [Che11]. The algorithm creates depth maps 

from light and camera views and then uses epipolar rectification to rectify the images. It then 

uses a 1D min-max to create prefix sums for height field intersection, which are then used in a 

render pass to quickly determine the amount of scattering. The algorithm is explained in Figure 

12. 

 

Figure 12 Volumetric shadow maps. Volumetric shadows can be implemented by taking depth images from light 

and camera views, which are then rectified through epipolar rectification.  A binary tree of the shadow map depths is 

stored as a min-max tree, in order to approximate the occlusion for each rectified camera view direction ray. The 

min-max tree is traversed during rendering to evaluate the light scattering. Image source: [Che11]. 

Shadow map filtering and sampling has also been thoroughly researched. Percentage-

closer soft shadows (PCSS) [Ran05], fast percentage closer shadow maps using temporal 

coherence [Sch13] and screen space percentage-closer soft shadows (SSPCSS) [Bag10] 

introduce efficient methods to shadow map filtering through simple kernels. Perception based 

shadow filtering can be used to approximate the penumbra, by altering the kernel size based on 

blocker depth and light size [Ran05]. Stochastic filtering methods such as exponential shadow 

maps (ESM) [Ann08] and variance shadow maps (VSM) [Don06] further decrease the number 

of necessary samples for correct filtering. Convolution shadow maps [Ann07] permit arbitrary 

convolution filters over shadow maps, through prefiltered mipmaps.  

Ray traced shadow maps [Sto15] can be implemented with conservative rasterization 

by storing triangle indices instead of depth in a different type of deep shadow map. In the 

shadow map pass the indices are stored with conservative rasterization, to guarantee each 

potentially intersected primitive is saved. In the rendering pass, the modified deep shadow map is 

ray marched and ray-primitive intersection tests are performed for each primitive index read in 

the marching sampling points.  
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Shadow maps techniques are usually combined, because many of the presented 

techniques only improve shadow maps for certain aspects: cascades and warping techniques 

importance sample the shadow map, variance and exponential methods improve depth 

comparisons, percentage closer filtering and screen space filtering improve shadow map samples 

filtering performance. Cascaded deep ray-traced shadow maps are an example of such a 

combined technique. 

Shadow maps suffer from performance problems because each light needs at least one 

shadow map, point lights usually needing more [Osm06] [Ger07]. Imperfect shadow maps 

[Rit08] introduced a real-time method for shadowing many lights, using depth image 

reconstruction to approximate many low-resolution shadow maps. Efficient virtual shadow maps 

for many lights [Ols14] can handle a large number of dynamic lights by using a cluster 

acceleration structure to determine the shadow casters and receivers for each light, and then by 

writing the result in an array of shadow cubemaps. 

2.5.5. Transparency  

Rasterization provides the interactions between camera and objects without order, 

therefore transparent and translucent effects, which depend on interaction order, are not easy to 

implement within it. Rendering of transparents in a rasterization context was first considered in 

[Por84], as a series of fuzzy object compositions, which were mixed with an over operator.  

There are many approximation methods, but they can’t offer correct results. Alpha to coverage 

[Tar10] is a stochastic method which determines the expected color in transparent rendering by 

representing the alpha as a number of samples which pass or fail, similar to hardware 

multisampling.  

Other methods [Mes07] [McG13] separate the order independent term from the order 

dependent term. Depth peeling and dual depth-peeling [Bav08] use clipping planes to divide 

the scene into multiple layers, which can then be used to correctly accumulate transparent 

fragments, at the extra cost of greatly increasing geometry processing.  

Correct transparent rendering within rasterization is achieved through A-Buffer variants 

like [Car84] [Bar11] [Mau12] which employ sorting strategies and consume large amounts of 

memory. Other correct results can be obtained through stochastic methods [End10], which use 

many samples per pixel to compute the accumulated expected value, and through adaptive 

methods [Sal11] [Sal14], which store high-fidelity approximations of combinations of multiple 

fragments, but require special hardware.  

Occupancy maps [Sin09] are a special type of transparency algorithm, because they can 

excellently approximate depth distributions through the use of per-pixel depth masks, like a 

bitwise depth peeling. Their only problem is that they can’t properly handle multiple objects per 

pixel. Fourier opacity maps [Jan10] take the depth distribution approximation concept further, 

by measuring the depth distribution in Fourier space and approximating it with a small number 

of components. Fourier opacity maps can’t handle high frequency detail. 

Refraction effects are usually handled in rasterization by multi-pass techniques, which 

use information from previous passes to convincingly fake these effects. Correct global 

illumination effects like reflections, refractions and shadows can be added to rasterization with 

other rendering passes, or other algorithms. Screen space reflections, cubemap reflections and 
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impostor based techniques can be used for reflections and refractions, but, for a high quality 

rendering, a superior algorithm is required. 

2.5.6. Motion 

Objects in motion are harder to render correctly, compared to static objects. In real life, 

when a photograph is taken, the camera shutter exposure time is responsible for storing light 

reflected by the photographed objects. When these objects move fast, they reflect light on a large 

number of photoreceptors inside the camera and produce effects such as motion blur (MB). The 

camera is also a lens based light sink, therefore the focal distance for which the camera is set 

controls the level of precision with which light is captured. Objects that are very far from the 

focal point suffer from lack of precision and blurring, in an effect named depth of field (DOF). 

 

Figure 13 Stochastic rasterization. It enables motion blur effects by temporally sampling the primitives. Instead of 

rasterizing many primitives and suffering from aliasing, Time Continuous Triangles (TCT) is used, which is a type 

of primitive which bounds all the temporal samples of a triangle, akin to a temporal convex hull. Source: [Mcg10]. 

Stochastic rasterization [Mcg10] [Ake07] is a variant of rasterization in which frames 

are not considered instantaneous. During the time required to render a single frame, the 

rasterized projections of dynamic objects can travel a very small distance in screen space 

coordinates. This effect is a close approximation to the real life motion blur. But in order to 

represent such an effect a very large number of temporal samples are required, which can easily 

lead to very long processing durations. Stochastic rasterization is able to represent this effect by 

using compact temporal geometric representations, which approximate multiple time samples for 

each rendered primitive. These continuous temporal primitives, called time continuous 

triangles, as presented in Figure 13. While time continuous triangles reduce computation, 

stochastic rasterization still has very high computational costs, and it is an interactive but not a 

real-time technique.  

Motion can also be efficiently implemented with post processing techniques. In [Gue14] 

motion blur is implemented through a tile-based approach, storing the largest, dominant velocity 

in a screen space region. Then the motion blurring is done in the direction of the local velocity, 

which is obtained by interpolating the dominant velocities from the closest tiles. Tile boundary 

discontinuities are treated by stochastically sampling the local velocity for pixels which lie at the 

boundary of a tile. Depth of Field techniques have a lot in common with motion blur, because 

they are based on the principles of quickly mixing multiple samples in a vicinity. The effect of 

the aperture shape, known in photography as “Bokeh” varies from geometric at small aperture to 
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circular at high aperture. Bokeh can be rendered through point-splatting techniques or impostors 

[Sou13] or more realistically through separable gather filters [McI12]    

2.6. Approximated and screen space methods 

Correct global illumination is extremely expensive to compute, thus many methods have 

been developed to inaccurately approximate it. One of the simplest and less accurate methods to 

approximate global illumination is to precompute incoming radiance for every object in the 

scene. This can be inexactly represented through an environment map, where each entry encodes 

the radiance for a direction relative to the object. Such a map is usually called a light probe or an 

environment probe, and was researched first as a texture based technique [Bli76] and then as 

cubemap [Bjo04]. The major disadvantage of such maps is that they fail to represent correct 

radiance for high frequency concave geometry. They are also incompatible with dynamic 

geometry. Parallax-projected cubemaps, or box-projected cubemaps, warp and combine the 

precomputed radiance stored in cubemaps to better sample transitioning areas between 

precomputed environments [Lag12]. 

Even with this approximation, correct evaluation of the incoming radiance for the 

primitives of the objects requires a costly integration process, which requires heavy sampling in 

the environment map. Spherical harmonics (SH) lighting [Ram01] [Now12] [Gre03] separates 

the illumination equation into a sum represented in the spherical harmonics bases, akin to Fourier 

analysis. The first 4 bases are plotted in Figure 14. Spherical harmonics lighting solves the 

problem of sampling large environments at the cost of losing high frequency detail and it 

requires a large pre-computation overhead.  

 

Figure 14 Spherical Harmonics. The image shows the how general functions can be represented in a compressed 

format through spherical harmonics. Light fields are functions that represent the irradiance of objects surroundings.  

Light fields can be encoded with spherical harmonics, and then they can be quickly reconstructed to perform 

environment illumination, like in the right side of the image. Source: [Gre03]. 

 While this method only samples          light paths, used with rasterization it can 

sample                 paths, and therefore can augment rasterization with one bounce diffuse 

or glossy global illumination. This method has been used in many real-time applications but 

usually with static scenes.  The cost of pre-computing is usually amortized by doing this work 

across multiple frames. On the other hand this approach introduces a noticeable delay. 

Furthermore, this method does not include multiple light bounces, making its result far from the 

ground truth in many less than ideal cases. Spherical harmonics are also used as a form of 

compression for many light fields in other rendering algorithms. 
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 Light Propagation Volumes (LPV) [Kap09] use a tridimensional grid to transport light 

in the scene. The scene is voxelized as a pre-process in a normal, sparse or cascaded grid, each 

element of the grid representing the estimated opacity of the scene in that vicinity. Light is 

injected into the grid and then propagated in iterative steps. Because it is a grid propagation 

process, LPV can be used for volumetric lighting. Since it uses opacity and not real geometry, 

there is a big difference between the reference rendering and the one obtained with LPV. 

Furthermore, since opacity does not represent the high frequency geometry data, LPV is only 

suitable for diffuse global illumination, and suffers from light bleeding artifacts. LPV and 

rasterization can simulate some of the              paths in the rendered scene. 

 Precompute Radiance Transfer and Local Radiance Transfer have been used together in a 

method named Deferred Radiance Transfer Volumes [Gil12]. This method starts by placing 

probes in the scene and storing the probe configuration in a tridimensional grid acceleration 

structure stored in a volume texture. At runtime the algorithm relights the probes, by amortizing 

the computational cost over time and storing the new results into the volume texture. The 

effective shading just loads the adequate lighting data to evaluate the illumination, and it is 

completely decoupled from the computational process.  

2.6.1. Screen Space Ambient Occlusion 

 Screen space ambient occlusion algorithms attempt to approximate light occlusion caused 

by neighboring objects, creating a darkening effect by approximating ambient occlusion [Zhu98].  

 Ambient occlusion (AO) approximates the occlusion caused by     paths, and together 

with rasterization and many light methods it can represent           paths. AO is defined as a 

visibility function which measures the direct ambient light that can reach a position, coarsely 

approximating global light transfer: 

         
 

 
                    
 

 

where d is the distance to the nearest occluder from point   in the   direction, and   is the fall-

off function. While the ambient occlusion term is a correct approximation for occlusion in a 

direct lighting setup, it is based on a coarse approximation of global light transfer and global 

occlusion, and is therefore not physically correct.  

 Although screen space information is not sufficient for correct occlusion determination, 

screen space ambient occlusion algorithms have proven to be practical and very fast image 

enhancers, even if they are just an approximation of AO, which is a coarse approximation itself. 

They can be considered as perception enhancing algorithms. 

Screen Space Ambient Occlusion (SSAO) [Mit07] is the first algorithm to approximate 

ambient occlusion in screen space. It uses the depth buffer of the scene as an approximation of 

the existing geometry, working with it as if it were a heightfield. Each pixel’s screen space 

vicinity is sampled for occlusion. If the sample is found under the heightfield it is considered 

occluded, otherwise it is visible. The results are then averaged and a part of the     in the 

rendering equation is thus cheaply approximated. While the technique was far from exact, it 

paved the way for other screen space occlusion techniques.  
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Horizon based Ambient Occlusion (HBAO) [Bav081] traces rays on the screen space 

heightfield to find the angle of free horizon, an idea similar to relaxed cone step mapping 

(RCSM) [Dru06]. These angles are then averaged to produce the occlusion factor, albeit at a 

steep sampling cost.  

Volumetric obscurance (VOSS) [Loo10] is a variant of screen space occlusion 

algorithm where the occlusion factor is computed through measuring the visible volume in the 

pixel vicinity.  

The Alchemy Screen Space Obscurance Algorithm (ASSOA) [McG11] creates 

samples on a disk and then projects them on the pixel vicinity. The     term is evaluated for all 

the projected occlusion samples and the final obscurance is obtained through averaging.  

Scalable Ambient Obscurance (SAO) [Mcg12] improves on ASSOA by sampling in a 

hierarchical depth buffer, greatly improving cache efficiency.  

Multi-view Ambient Occlusion with Importance Sampling (MVAOIS) [Var13] uses a 

weighting scheme to sample the screen space and available shadow maps in order to solve AO 

problems where SS geometry information is not sufficient.  

Line-Sweep Ambient Obscurance (LSAO) [Tim13] uses line scans with a stack 

mechanism to determine the greatest occluder, and it is further refined in Far-Field Ambient 

Occlusion (FFAO) [Tim131], where a high quality approximation of obscurance is computed 

through prefix sums of line scan results, which significantly amortize the complexity of the 

sampling process. Sampling strategies for screen space occlusion algorithms can be observed in 

Figure 15. 

 

 

Figure 15 SSAO sampling. The image shows space sampling strategies used by state of the art screen space ambient 

occlusion algorithms: random (SSAO), horizon angle based (HBAO), volumetric (VOSS),     based (ASSOA), 

scalable sample based (SOA), or shadow map augmented (MVAOIS). 
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2.6.2. Image Based Lighting 

Image Based Lighting (IBL) is a family of techniques that use image space algorithms to 

approximate tridimensional illumination effects. IBL trades correct evaluation of light-object 

interactions for the coherent evaluation of the approximations of these interactions. Because IBL 

methods are cheap and coherent they are well suited for real-time applications.  

Screen space global illumination (SSGI) methods are a special type of GI algorithms 

because they use only screen space information. Because they work with incomplete information 

they are inherently flawed, but they can be effective in representing some effects like front 

specular reflections and occlusion. Furthermore, their execution speed is very fast compared to 

other GI solutions, because they run on data with excellent locality, in image space. At their core 

they are image processing algorithms, but they run on images with enhanced information, like 

depth, material type and so on. They can also benefit from temporal reprojection and coherence 

methods [Sch10]. 

Screen space directional occlusion (SSDO) [Rit09] approximates direct lighting in a 

small vicinity of a pixel by correctly checking occlusion for each light and not using a visibility 

approximation for all sources like AO. SSDO also computes local indirect radiance transfers by 

doing a single indirect bounce between the tested samples. The algorithm can also be used for 

screen space shadows, albeit it can only work for special, local, geometry cases. 

Bent normals [Lan02] can be used in highly occluded vicinities to better model the 

interaction between light and the occluded surface. They are basically a form of importance 

sampling the illumination at the geometry surface level, by bending the normal to a direction that 

maximizes received light. Screen space bent cones (SSBC) [Rit11] uses bent cones, an 

improved concept of bent normals, which also take the variance of the unoccluded direction into 

account. Lighting is then evaluated by sampling the bent cont for visibility for each light. 

Screen space can also be used as a ray tracing and marching space, albeit without 

complete tridimensional information screen space tracing is reduced to a very small subset of the 

scene paths:        for the normal method,          for the distributed variants and ,            

for hybrids. Together with rasterization, screen space tracing can sample              paths, or 

even            paths, if the tracing is hybrid. Compared to ambient occlusion, ray tracing does 

not approximate direct light visibility but actually measures it, so screen space ray tracing 

approximates a correct light transport. Furthermore, screen space tracing can have access to 

shadow results from rasterization and to other data stored in G-buffers.  

Image space gathering [Rob09] uses a parameter search and gather process to determine 

samples which could be ray traced in screen space, to determine reflection and to smooth 

shadows.  

In [Sol10] screen space ray tracing (SSRT) is augmented with mipmapped buffers of 

the screen space to accelerate ray diffuse light sampling. Because the screen space sampling is 

done through mipmaps, a very large number of samples can be filtered instantaneously; therefore 

the 2D ray intersection costs are dramatically lowered. Furthermore, the same filtering can be 

used to approximate large screen space areas and coarsely approximate diffuse reflections, 

making it able to sample a small number of            scene paths together with rasterization.   
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This technique is further refined in Screen Space Cone Tracing (SSCT) [Her14] [Ulu14] 

by cone tracing in screen space over a mipmaps hierarchy of the depth buffer. Basically, SSCT is 

a 2D adaptation of [Cra09].  

Screen space local reflections (SSLR) [Mcg14] analyzes screen space ray tracing from 

ray accuracy standpoint, pointing out that screen space does not contain sufficient information to 

correctly define rays for all possible tracing cases. It increases the accuracy of rays with a digital 

differential analyzer line rasterization algorithm modified for perspective-correct interpolation. 

Screen space Photon Mapping (SSPM) [McG09] coarsely approximates the shooting 

and gathering stages from photon mapping by doing them in screen space as photon volumes, 

using the same concept of screen space volumes used  in SSCT.  

The obvious problem with screen space global illumination methods is that they work on 

approximated data, reconstructing tridimensional environments from bidimensional 

representations. Some methods use multiple image spaces to better approximate the scene 

geometry. Deep Geometry Buffers [Mar14] can be used to store layers of parallel screen space 

representations, similar to the depth peeling [Bav08].  

More correct hybrid approaches combine other types of rendering with image based 

lighting, like [Gan14]. In [Gan14] many G-buffers are used which represent image space 

representations for all objects and lights not present on the screen. The screen is ray traced over a 

BVH hierarchy and the rays interact with the IBL representations just as they would do with 

normal geometry.    Such deep/many IBL methods provide more geometric information and 

make tridimensional reconstructions better, albeit at a significant cost in used memory. The 

tridimensional reconstructions greatly increase the number of light paths that can be simulated.  

Some of the most relevant state of the art Screen Space Global Illumination methods are 

presented in Figure 16. 

 

Figure 16 SSGI. Screen Space Directional Occlusion (SSDO) searches each direction to a light in screen space for 

occluders. The image presents an unbounded version of SSDO, the algorithm usually works on a screen space 

vicinity. Screen Space Local Reflection (SSLR) continues the ray defined by the sampling point and the camera into 

its projected direction in screen space. Screen Space Cone Tracing (SSCT) differs from SSLR by tracing cones over 

a hierarchical depth map. Because of this it can be used to represent glossy specular light transport. 
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2.7. Reyes 

The Reyes [Coo87] rendering algorithm was created as an alternative for rasterization 

that could easily handle highly detailed models, such as those used in offline rendering. Such 

models would create extremely small primitives which would then produce extreme aliasing in 

rasterization, because of the loss of data caused by the z-tests. Moreover, any multisampling 

technique would need a very large number of samples to correctly filter the many resulting 

fragments. Furthermore, Reyes is also aimed at better integrating parametric surfaces and 

displacement mapping in the rendering process. Because of these traits, the Reyes algorithm has 

been very popular in the movie industry, where very detailed meshes are the norm. An industry 

standard that implements Reyes is Pixar’s Renderman [PIX15].  

The Reyes algorithm can be considered a special case of rasterization, where a complex 

importance sampling mechanism is used to sample the difficult case of very small polygons, 

called in Reyes micropolygons. Therefore, Reyes shares many common traits with rasterization, 

such as being a bottom-up approach, not being physically correct, not implementing global 

illumination and representing only            without other rendering methods. 

The Reyes algorithm has five stages: bounding, splitting, dicing, shading and sampling. 

In the bounding stage the original primitive is bounded by a convex hull which is then projected 

in screen space. This is done to approximate the size of the primitive. In the splitting stage the 

bounded primitive is divided into new, smaller primitives. The bounding and splitting phases are 

performed iteratively, until the newly divided primitives are smaller than a certain threshold. 

When the newly generated primitives pass the splitting threshold, they enter the dice 

stage, where they are subdivided into pixel-sized polygons named micropolygons. This operation 

is named dicing. After the micropolygons are created they enter the shading stage, where only 

their vertices are illuminated and shaded. 

The final stage of the Reyes algorithm is the sampling stage. In it each pixel accumulates 

samples from the suitable lit and shaded micropolygon vertices. The final color of the pixel is 

computed through a weighted average. Because of this sampling process, images rendered with 

Reyes suffer from very low geometric aliasing. The entire pipeline is described in Figure 17. 

 

Figure 17 Reyes. The algorithm takes each primitive and iteratively bounds it in screen space and then splits it until 

a certain size in pixels is reached for each splitted primitive. Then, each splitted primitive is diced into a microgrid, 

which generates many polygons smaller than a pixel and which can be displacement mapped. In the final stages, the 

algorithm shades each vertex from the micropolygons, and obtains the final colors by averaging the samples found 

in each pixel.   
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The Reyes algorithm has also been adapted to modern hardware as either a rasterization 

process, augmented with the tessellation capabilities of Shader Model 5 [Tat10] or as a pure 

GPGPU technique [Pat08].  

 

2.8. Ray tracing 

Ray tracing takes a different space sampling approach than projection based algorithms 

like rasterization and Reyes. Instead of projecting primitives, ray tracing intersects them with 

rays. All algorithm variants and refinements trace the rays through the scene with the help of 

acceleration structures such as BVH or Kd-tree. While ray tracing is much better at finding 

relevant light-object interactions between objects and lights than rasterization, unsophisticated 

ray tracing is not based on physically correct principles, because it considers all reflections as 

specular.  Ray tracing produces sufficiently convincing results for photorealistic rendering of 

simple objects, but it isn’t suitable for the representation of caustics, subsurface scattering, and 

fluorescence and other advanced rendering effects or light paths. Ray tracing is a top-down 

rendering solution. Ray tracing needs a large number of samples for smooth rendering and has 

significant difficulties in sampling point lights.  

The first ray tracing method was proposed in [App68], where the camera spawned rays 

that intersected the scene without suffering from reflection effects. This algorithm is nowadays 

called ray casting (RC), or volume ray casting (VRC) if the rays can pass through transparent 

primitives. It can represent             paths, and consequently has the same results as 

multisample rasterization, the only difference being that ray casting sorts the camera-objects 

interactions while rasterization uses the Z-buffer. 

The early variants of recursive ray tracing continued the ray casting process, by 

reflecting the rays against the surface of each intersected primitive. The original rays are named 

primary rays, while the rest of the generated rays are named secondary rays. The reflections in 

recursive ray tracing are specular, the light suffers no diffusion, therefore the paths sampled are 

    . Forward ray tracing (FRT), also known as light ray tracing (LRT), traces rays from the 

light and onto the scene. The camera acts as a ray collector, sampling the rays that are reflected 

from the scene towards it. Because of this, a large number of rays from the scene lights are 

necessary, therefore forward ray tracing is a very inefficient algorithm. Because it achieves 

results through brute force, bare FRT is extremely inefficient. 

Backwards ray tracing (BRT), also known as camera ray tracing (CRT), traces rays 

from the camera to the scene. Its core idea is to simulate the reversed trajectories of photons in 

the scene, but it does so by tracing rays reflected in specular fashion, therefore it can only trace 

     paths. It can also be considered an early form of importance sampling, as it eliminates the 

simulation of rays which will not interact with the camera, and thus have no visual contribution. 

While it is a much more efficient variant of ray tracing, it has problems sampling effects caused 

by light concentration, such as caustics.  

Both LRT and BRT consider lights as points and all reflections as perfectly specular, 

therefore they are not physically correct and can’t handle fuzzy phenomena. Their use as 

rendering algorithms is severely deficient for photorealistic rendering, but they are useful as 

scene sampling strategies, which are often used to importance sample interactions between lights 

and objects in advanced rendering algorithms. Shooting and gathering are recognized terms in 
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computer graphics nomenclature for sampling the scene from the lights and sampling the scene 

from the camera. LRT and BRT are many times used together in advanced ray tracing, path 

tracing, photon mapping and many lights algorithms.  

Whitted ray tracing (WRT) [Whi79] is considered the classic form of the recursive ray 

tracing algorithm. Instead of just reflecting the ray at any intersection, Whitted ray tracing 

generates three new rays: the reflected ray, the refracted ray and one or more shadow rays, 

effectively forming a tree of secondary rays per primary ray. The reflected ray behaves 

identically to the reflected rays in forward or backwards ray tracing. The refracted ray is 

generated when the intersected surface can transmit light, and the shadow rays are traced towards 

each light in the scene. Because of the extra rays generated at ray-surface interaction, Whitted 

ray tracing needs much fewer overall rays to sample the scene, as compared to simple LRT and 

BRT, because the shadow rays are much more efficient in sampling direct light contribution. 

While Whitted ray tracing samples the light-objects interactions much better than simple 

recursive ray tracing, sampling                paths. It still can’t support global diffuse 

reflections, soft shadowing or other more advanced rendering effects. 

Heckbert ray tracing (HRT) [Hec90] is a type of hybrid ray tracing. It separates surface 

interaction into diffuse and specular types. The specular component is evaluated with backwards 

ray tracing, while the diffuse component is stored in adaptive radiosity textures, which can be 

sampled by all BRT rays, therefore it can sample                  paths. The adaptive radiosity 

textures are computed with a forward ray tracing based method, before BRT is used to synthesize 

the final image.  

[Vea95] further analyzes ray tracing as a light-object interaction sampling process, and 

proposes an importance sampling technique which connects the ray trees created by backwards 

ray tracing with the trees created by forward ray tracing. The resulted algorithm, bidirectional 

ray tracing (BDRT), can sample light concentration effects like forward ray tracing and needs a 

reduced number of camera rays, similar to backwards ray tracing. This importance sampling 

approach is very similar to the approach used in bidirectional path tracing [Laf96]. 

Distributed ray tracing (DRT) [Coo84], also named distribution ray tracing, uses 

multiple rays over multiple sampling spaces (lens, spatial, temporal, BRDF) to augment ray 

tracing. DRT can handle fuzzy phenomena such as soft shadows, motion blur, depth of field, 

antialiasing or diffuse reflections. It does so by averaging multiple reflection, refraction and 

shadow rays, which can sample spatial interactions, material interaction and motion during the 

rendered frame much better than single rays. It can thus sample            paths. Because it is 

essentially an application of Monte Carlo principles to ray tracing, the algorithm is also called 

stochastic ray tracing. 

Similar to DRT, Monte Carlo Ray Tracing (MCRT) [Dut93] is a ray tracing algorithm 

that uses stochastic principles. MCRT is a type of light ray tracing which uses multiple rays per 

ray-surface intersection to accumulate radiance in the camera pixels. While distributed ray 

tracing traces ray from the camera to the scene, MCRT traces rays from the light to scene, and, 

on each ray-surface intersection it chooses a random camera pixel. The algorithm traces a ray 

between the intersection point and the chosen pixel, and if the ray is unoccluded, it computes the 

radiance leaving the intersection point on the constructed ray and it accumulates this radiance in 

the chosen pixel. Compared to light ray tracing, MCRT importance samples the potential ray 

paths by stochastically following only the ray paths that will have a visual contribution. This 
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algorithm stems from the same sampling concepts that are represented as light paths in path 

tracing [Kaj86]. 

In order for ray tracing algorithms to correctly render textured objects, the textured 

surface is usually super sampled in the image plane and then filtered. Differential ray tracing 

[Ige99], uses the length of the traced ray to approximate the derivative of the ray with respect to 

the intersected surface. In doing so, differential ray tracing super samples the texture locally, in 

image space. Therefore the sampling process can be precomputed with the help of texture 

mipmaps, drastically lowering the number of samples taken during rendering. 

Ray tracing can be accelerated through various approaches: faster intersection tests with 

performant acceleration structures, tighter bounds given by preprocessing, fewer rays by early 

terminating rays and generating them adaptively and by using generalized rays such as cone rays, 

beam rays, sphere rays or pencil rays. 

Ray tracing can be accelerated through adaptive progressive refinement methods 

[Pai89], in which the rendered image is created progressively. This has the advantage of 

producing rough visual results faster, which can be valuable when rendering durations are very 

long. The final synthesized image is still indistinguishable from a normally ray traced image, 

because the samples used in the adaptive refinement ray tracing process are chosen to produce 

the same expected result. 

While the primary rays in ray tracing sample space in a coherent manner, the majority of 

the traced rays are of the secondary type. Secondary rays sample space in a camera and scene 

dependent manner, therefore they exhibit a high degree of data incoherency which can’t be 

improved without extensive preprocessing.  

Packet ray tracing (PRT) [Bou07] [Ove08] is based on the idea of combining groups of 

similar rays into a packet, also called a bundle. The packet is then intersected with the 

acceleration tree, with the benefits of loading an acceleration structure node per packet and not 

per ray. When the divergence of rays inside a packet reaches a certain threshold the packet is 

deconstructed and the original rays are reordered into smaller packets. Large packets are 

especially efficient for nodes high in the tree hierarchy, because packets intersecting these nodes 

have very low divergence.  

A different approach to coherent tracing of secondary rays is to globally reorder the 

rays [Pha97] [Nav07] [Ail10]. The acceleration structure is partitioned into treelets, which 

consist of a small number of acceleration structure nodes bundled together. Each time rays from 

a packet intersects a treelet, the rays are added to that queue of that treelet. When the ray queue 

for a treelet has grown to a sufficient threshold, all the rays in it are intersected with the treelet. 

Thus, at the cost of one incoherent intersection test per packet, N coherent test per packet are 

done, where N is the number of nodes in the treelet. 

Another strategy for packet ray tracing is to use hybrid or wide acceleration structures 

such as MBVH. The MBVH needs to load more data per ray-node intersection test because each 

MBVH node contains the data of multiple BVH nodes. The advance of this method is that the 

MBVH traversal has more coherent access patterns. The best results are usually obtained through 

hybrid strategies, where the acceleration structure is wide at the bottom and the top nodes are 

intersected with large packets.  
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The traversal can be further refined with ray reordering [Bou08], which analyzes the 

results of the intersection tests at packet level. If the results show a large degree of divergence 

the original packet is destroyed and the rays are recovered and stored in a cache. When the cache 

grows sufficiently large, the recovered rays are packaged into newly packets, with the idea that 

the worst coherence for the new packets will be superior to that of the old dismantled ones. 

The fundamental idea behind packet ray tracing is to sample a larger amount of space in a 

coherent manner. The same idea is differently exploited by Beam tracing [Hec84] and Cone 

tracing [Ama84], which are ray tracing variants in which space sampling is done through beams 

(pyramid frusta) or cones. Beams and cones are rays with volume and are much more efficient in 

sampling easy to intersect forms. Cone tracing has been successfully adapted [Cra09] to modern 

hardware and is a viable solution for real-time applications, albeit one in which the memory 

requirements are extremely steep, and which suffers from serious limitations when rendering 

dynamic, interactive or skeletally animated objects. Furthermore, the adaptation is based on a 

voxel representation and it thus suffers from data representation inefficiency, therefore the large 

memory requirements are necessary. Beams can be processed through paraxial approximation 

theory to form pencils, which can be used for tracing, as described in [Shi87].  

Sphere tracing [Har96] uses ray-marched spheres on the ray to determine intersecting 

objects in the vicinity of the ray. From a spacing sampling strategy it transforms the space 

volume tested for intersections by the cone tracing algorithm into a set of smaller, spherical 

volumes, which test approximately the same overall space. The advantage of sphere tracing is 

that testing sphere intersection is much cheaper than cone intersection, but the large number of 

spheres involved makes it less efficient than modern cone tracing.  

Divide and Conquer Ray Tracing [Mor11] [Kel11], also named Incoherent Ray 

Tracing, is a variant of the ray tracing algorithm that uses no preprocessed acceleration structure. 

Instead, this algorithm partitions the scene primitives during traversal, making it ideal for 

dynamic scenes. The traversal function first subdivides the primitives into sets, usually with a 

fast spatial function. It then traverses the scene by testing the intersecting rays against the 

bounding volume of each set of triangles. The rays that intersect the bounding volume along with 

the enclosed primitives are then processed in a new instance of the function, usually in a depth-

first-search way to increase data access coherency.   

The efficient CPU vectorization of this algorithm is explored in [Afr12]. The algorithm is 

further improved in [Nab13] with the help of sampling rays, which are traced before space 

partitioning. The sampling rays are intersected against all the available triangles, and the results 

are used to statistically determine the best space partitioning distribution that can be used to split 

the triangles into multiple sets. This technique is basically a lower complexity SAH-like 

implementation for the memory less, implicit acceleration structure created during DACRT’s 

traversal. While this technique does not dynamically allocate the scene acceleration structure, it 

still uses a large amount of stack storage, therefore, its GPU implementation might be memory 

limited, compared to the CPU one. 

Space sampling strategies for different ray tracing algorithms are presented in Figure 18. 
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Figure 18 Ray tracing. Variants of ray tracing use different space sampling strategies. Ray casting (RC) casts rays 

from the camera to the scene objects without recursion, thus stopping at the first intersection. Forward Ray Tracing 

(FRT) shoots rays from the camera towards the scene, the rays are traced through multiple ray-surface interactions 

and the camera acts as a radiance collector. Backwards Ray Tracing (BRT) casts rays from the camera and traces the 

rays until they interact with lights. Whitted Ray Tracing (WRT) is a type of BRT that importance samples the scene 

lights at each ray-object interaction while also adding reflection and refraction rays. Heckbert Ray Tracing (HRT) 

uses FRT on the scene together with a radiance storing structure, which is then sampled by a BRT pass. 

Bidirectional Ray Tracing (BDRT) connects rays shot by the lights with rays casted by the camera. Distributed ray 

tracing (DRT) spawns many rays at each object-ray interaction. Monte Carlo Ray Tracing (MCRT) is a modified 

Forward Ray tracing algorithm that shoots rays from each light-object interaction towards the camera. Packet Ray 

Tracing (PRT) creates packets from many similarly directed rays and traces them together, obtaining better data 

access coherency. PRT can be improved with different strategies like global reordering, hybrid acceleration 

structures or local ray reordering. 

While ray tracing is a valid solution for photorealistic rendering, it needs a large number 

of samples per pixel to obtain an acceptable image quality, making full resolution ray tracing 

solution prohibitive for real-time massive applications. Ray tracing difficultly samples highly 

specular paths like      , and is therefore unsuited for rendering caustics. Ray tracing can be 

anti-aliased if implemented over a deferred renderer [Chi12], by using the same mechanics as 

sub-pixel reconstruction anti aliasing [Cha11], but filtering rays instead fragments. 
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2.9. Path tracing 

2.9.1. Essentials 

Path tracing (PT) [Kaj86] is a rendering family which has a lot in common with ray 

tracing. Path tracing uses a space sampling strategy similar to ray tracing, therefore it can also 

produce photorealistic results and is a top down rendering method.  Instead of sampling space 

through a tree of reflected and refracted rays, path tracing considers a single path through that 

tree, and uses this path as a sampling mechanism. In path tracing, each path is composed of many 

path segments, which are determined through visibility operations implemented with traced rays. 

The path segments link light-object-camera interactions. Path tracing uses paths as a sampling 

space, which can be particularly productive with the correct importance sampling mechanisms. 

Path tracing is a backwards algorithm, tracing paths from the camera and into the scene. 

Path tracing is constructed under three principles: the principle of global illumination, 

the principle of equivalence and the principle of direction. The principle of global illumination 

states that all the objects in the scene will contribute at least a modicum of illumination to all the 

other objects. The principle of equivalence states that there is no difference between illumination 

coming from lights and illumination coming from other scene surfaces. The principle of direction 

states that illumination coming from surfaces must scatter in a direction that is some function of 

the incoming illumination. Thus, path tracing does not need direct illumination calculations and 

direct shadow rays, but solves the illumination as a large integral, the rendering equation, 

which respects the three aforementioned principles. In the original form, as presented in [Kaj86]: 

                                               
 

 

The rendering equation can be written in multidimensional form, as it used nowadays, 

which can handle different wavelength surface interactions, motion blur and depth of field and 

takes into account pixel photo sensors: 

                   
     

                                
  

                         
 

     

Where       is the weight of the photo sensor and          
     

  . The equation 

can be further expanded to account for volumetric light transfer, where it becomes volumetric 

path tracing. 

2.9.2. Multidimensional integrals and Path Tracing 

Exactly solving such an iterative multidimensional equation presents an impractically 

large computational effort, therefore stochastic methods are used, as in other computational 

heavy fields such as heat transfer or computational economics. Monte Carlo (MC) integration is 

a very popular integration method, especially for many dimensional problems, because it 

transforms local sampling on each dimension into global sampling, greatly lowering the 

computational complexity. The result of Monte Carlo integration is an expected value, which 

rapidly converges to the correctly computed value with a sufficient number of samples. The 

difference between the correctly computed result and the Monte Carlo approximated result is 
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measured through variance. A Monte Carlo integration result is said to be converged when the 

variance is lower than a required threshold, but the process converges at relatively slow  
 

  
 rate, 

where   is the number of samples. For a uniformly sampled  -dimensional domain  , the 

expected value can be computed through Monte Carlo integration with   samples, like this: 

                   
 

                                         
        

  

 
       

 
              

 

   
 

Since variance is all the stands between an acceptable and an unacceptable result, 

minimizing variance maximizes the computational effort. Since the majority of computationally 

heavy problems is not pure random in nature, judiciously choosing samples for Monte Carlo 

resumes to finding the best problem specific sample positions, a procedure named importance 

sampling. Importance sampling does not uniformly sample the problem space, but uses 

mechanisms such as probability distribution functions to better guide sampling, modifying the 

integration process to: 

        
 

 
 

             

            

 

   
 

With sampling in mind, the rendering equation can be written in a simple, operator form, 

which underlines its recursive nature: 

                                          

 

   

 

The   operator is a matrix that contains all the object-object reflection interactions. The 

final result is a Neumann expansion. The sum is thus evaluated through averaging many paths 

through the matrix powers. The paths are Monte Carlo integrated Markov chains (MCMC), 

since each path is represented through a set of interactions, where each of them depends only on 

the previous. The paths are random walks, and a sufficient number of them can approximate the 

entire path space. 

In a rendering meaning, path tracing solves global illumination by averaging many scene 

paths, which act as global samples, instead of local samples as used in other rendering 

algorithms. These global samples are Markov chains because each light-object interaction 

depends only on the previous interaction. Monte Carlo importance sampling is performed by 

taking into account the type of light-object interaction. Path tracing rapidly computes an average 

of many Markov Chains, with which it can reliably approximate the scene sampling space. The 

rendering equation can thus be written in a new recursive form: 

                  
                         

         
 

          is the probability distribution function for sampling that path segment and it 

depends on the surface, type of path, type of light if directly lit, type of contact and contact angle. 
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There are various strategies for creating these     functions, many of which are described in the 

next section. 

With this recursive form, path tracing is easy to implement and it also permits many 

importance sampling functions, which can be further tailored by surface properties and light 

positions. Many samples per pixel are averaged at the end to complete the Monte Carlo 

integration process. Without a termination condition a path would be infinite, therefore paths 

have a maximum length after which they end. Another method of early termination is the 

Russian Roulette (RR) [Pha10], which stochastically terminates paths.  Russian Roulette uses a 

termination probability  . If the path is not terminated, the path is further explored with a 

probability of    , and the integrand is over-evaluated with a weight of 
 

   
, to effectively 

account for the skipped samples.   

Because there are other optics principles not respected by original [Kaj86] path tracing, 

the original algorithm has problems sampling such effects. The original algorithm samples space 

through rays, which work under the principle of direction. Because of this, surface radiance 

accumulation is hard to sample, therefore representing sharp caustics with path tracing is 

inefficient. Because the original algorithm respects the principle of direction, subsurface 

scattering isn’t supported, along with iridescence, chromatic aberration and fluorescence. 

Furthermore, similar to ray tracing, path tracing has problems with hard to sample lights like 

point lights. All of these problems are relaxed with improved versions of the path tracing, which 

provide better sampling for such difficult cases. 

2.9.3. Improved Sampling 

The quality of path traced image depends only on the level of convergence, and thus on 

variance. Generating better samples to reduce variance can be done in various modes: geometric 

aliasing is handled through pixel sampling, direct lighting can be importance sampled and 

multiple importance sampling, and so on. 

Pseudorandom low-discrepancy sequences can greatly reduce geometric alias. 

Sequences such as stratified, Sobol, van der Corput, Halton or Hammersly guarantee lower 

variance then pure random sampling. Some of these sequences are presented in [Pha10]. Using 

such sequences instead of pure random sequences leads to quasi Monte Carlo integration [Szi00]. 

Adaptive sampling is a different kind of strategy, where additional samples are provided 

in cases of need. A simple strategy [Pha10] is to test the differences between the pixel samples 

and to progressively generate more samples until the contrast is under a certain threshold. A 

more advanced algorithm is presented in [Dam09]. The algorithm takes a global hierarchical 

approach to adaptive sampling by considering the path traced image as a hierarchy of converged 

blocks of varying size: from the size of the entire image to a small tile. The method starts with 

the entire image and adaptively generates new samples for each block until it is converged. 

When a block is converged the process repeats itself for all its sub-blocks. 

Importance sampling (IS) is used to direct the random walk towards areas in the scene 

with more radiance potential, in order to speed up the rendering convergence. This can be 

implemented through direct lighting, especially for small or point lights. It can also be used to 

modify the probability distribution function for each light-object interaction, depending on the 
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type of interaction, for example specular interactions can sample very elongated lobes. Superior 

algorithms like [Vea97] [Leh13] use different types of importance sampling to efficiently 

resample entire path spaces.  

Evaluating direct lighting can be improved with splitting [Pha10]. At a pixel sample level 

this distributes the entire samples among visibility samples and lighting samples, importance 

sampling direct illumination. While this can be useful in unbalanced scenes, correct distribution 

of the entire sample set requires significant preprocessing.   

Naively combining more importance sampling mechanisms is difficult, because more 

often than not this will lead to an increase in variance, hampering and not helping the 

convergence rate. For example, a light-object reflection can be sampled both by the light BRDF 

and for direct lighting. If the BRDF is highly specular, than sampling by it is a better strategy. 

On the other hand if the light is very small, directly sampling it is a better strategy. Generally, 

importance sampling with multiple strategies is the superior approach. Multiple Importance 

Sampling (MIS) [Vea97] is a multi sampling model under which more sampling strategies can 

be used together without increasing overall variance. [Vea97] proposed two heuristic functions: 

balance and power. Resampled Importance Sampling (RIS) [Tal05] can be used to further 

reduce variance. Volumetric sampling can also be improved with equiangular sampling [Kul12] 

and Woodcock tracking. 

Bidirectional path tracing (BDPT) [Laf93] uses multiple space sampling strategies, 

tracing paths from both the lights and the camera, which are then used as sub-paths in a fused 

path. The paths are linked in a manner that preserves the Markov Chain property of detailed 

balance. A spatial hierarchical hash grid [Sch09] can be used to accelerate the process of linking 

sub-paths, as it is used in a Vertex Connection Merging (VCM) [Geo12]. Path tracing and 

Bidirectional Path Tracing can both be implemented through rasterization, like in [Tok12]. 

2.9.4. Path Space Algorithms 

Metropolis Light Tracing (MLT) [Vea97] applies the Metropolis-Hastings sampling 

method to path tracing and bidirectional path tracing. Compared to the previous algorithms, 

MLT considers the entire path as a set of samples. New paths are created by proposing mutations 

to the existing path, based on a mutation strategy. If the mutation is accepted a new path is 

created and sampled. Because of this strategy, MLT introduces a start-up bias and a correlation 

between samples, which is not found in classical Monte Carlo integration. Because correlation 

between samples increases variance and consequently convergence time, the mutation strategy 

has to keep the correlation low 

While both MLT and (bidirectional) path tracing start from a global space sampling 

strategy, MLT evolves the paths in local space. MLT can first globally explore all the paths and 

then locally explore the promising path changes, it can quickly find and sample the most relevant 

paths in the scene. Moreover, when an important path is found, MLT also samples paths that are 

similar with it, increasing the chance of finding other important paths. Compared to standard 

path tracing and bidirectional path tracing, this makes MLT very efficient in difficult to sample 

scenes, like those containing caustics, small geometry holes or many glossy surfaces.  

The mutation strategy is the most difficult part of the MLT algorithm, because it has to 

account for very different light paths which are sampled through different strategies. [Vea97] 
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recognized this problem and proposed a mutation strategies for many light path types. On the 

other hand [Vea97] did not provide a method to determine which mutation strategy to use, 

making the algorithm dependent on scene dependent parameter tuning.  

Primary Sample Space MLT (PSSMLT) [Kel02] executes the mutations in a space of 

uniformly distributed numbers called primary sample space. This is based on the idea that any 

path generation is a mapping between the primary sample space and the path space, therefore the 

primary sample space is an uneven distribution which allocates more volume to more important 

regions, which in turn generates more samples in important path space regions. Therefore 

PSSMLT creates small mutations on paths that show a lot of potential by collecting significant 

amounts of radiance and large mutations to unproductive paths, based on the idea that the 

unproductive path is exploring a path space with less radiance potential. 

 Energy Redistribution Path Tracing (ERPT) [Cli05] combines the advantages of path 

tracing and Metropolis [Vea97], enabling path tracing to sample important paths. Path tracing 

generates completely new paths for each of the pixel samples, without using information from 

the previously evaluated samples, thus not using already available information. ERPT defines an 

energy flow in path space, where each path node holds a small amount of energy. Then, ERPT 

seeks to generate new paths that would sample areas that contain high energy. It basically 

redistributes energy from high energy nodes to nodes in newly generated paths that explore the 

same vicinity, and would thus have a high potential for energy accumulation. ERPT defines a 

mutation strategy based on the energy of the nodes. Consequently, new paths do not completely 

create different paths but mutate already existing paths, based on the energy of the nodes. This 

enables ERPT to quickly sample the space of light transport paths, without introducing a start-up 

bias like MLT. 

Manifold Exploration [Jak12] is a special path sampling mechanism created to explore 

difficult specular paths. It does this by using available geometric information to define a 

manifold space on one or multiple path segments, which can then be explored. It permits a 

productive exploration of complicated specular paths like          . The algorithm can be 

applied to both path tracing (MEPT) and MLT (MEMLT). 

Gradient Domain MLT [Leh13] improves difficult path exploration by reasoning that 

the most difficult to sample general paths lie at edges in the final image. The algorithm defines 

the gradient domain based on the edges determined from a coarse rendering of the scene.  It then 

sends additional pixel samples in the pixels contained by this domain. 

Multiplexed MLT [Hac14] combines the Markov Chain light transport path generation 

process with multiple importance sampling (MIS) principles. Thus the Markov Chain as light 

path does not only explore the space of light transport paths, but it also explores different 

sampling strategies for each path. 
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2.9.5. Accelerated Tracing 

Even with the large number of optimizations, path tracing variants are still extremely 

heavy computational algorithms, because of the extremely large light transport path spaces that 

they sample. 

Because of the vastness of the explored path space the most efficient way to sample 

various contributions is to importance sample for each of them. In contrast with bidirectional 

sampling, importance sampling, multiple importance sampling and resampling importance 

sampling, which seek to better sample space near paths, relaxation techniques seek to ease 

connecting subpaths. Vertex Connection Merging (VCM) [Geo12] relaxes the constraints of 

path connection by seeking for connectable paths in a vicinity. This method actually reformulates 

photon mapping in Veach’s [Vea98] path framework, enabling photon mapping and path tracing 

to coexist in a single mathematical framework. Therefore the method benefits from the photon 

mapping capability to sample     paths, while still functioning like a PT method with regards to 

variance and convergence. Therefore VCM converges in 
 

  
 instead 

 

  
  like SPPM. At first the 

lights emit photons which are traced with photon mapping algorithms and are deposited in the 

hierarchical hash-grid [Sch09]. The algorithm tries to connect each photon to the eye through 

either direct connection or through merging the photon, expressed as a light vertex, with a 

camera vertex in the proximity. The operations of connection and merging are linked with MIS.  

Path space regularization [Kap13] introduces a path framework in which multiple sub-

paths can be linked through interaction mollification, essentially following the same idea as 

VCM, but without using photon mapping. 

Sorted Deferred Shading for Path tracing [Eis13] does not evaluate the ray batches used 

for visibility determination operations in path tracing until they are sorted in coherent batches, 

similar to the packet techniques [Bou07] from ray tracing. The novel aspect of sorted deferred 

shading for PT is the fact that it sorts ray hit point before shading, deferring the shading. Because 

the number of ray hits is very large this method incoherently streams and then sorts ray-

batches by material in order to coherently stream textures. As production rendering textures 

occupy much more storage space than ray hits, the tradeoff brings with itself significantly 

lowered streaming costs. 

There has been a lot of interest recently for interactive path tracing, but so far no 

algorithm can lower the variance fast enough on consumer hardware, although there are some 

promising implementations, such as the Brigade renderer [Bik13]. Eye reprojection [Hen11] 

can be used to provide additional radiance to the current image. It works by taking each 

interaction along the traced path and projecting the interaction contact point on the image film, 

thus reprojecting towards the eye. Each eye reprojection adds to the image film a reflection of 

the surface contact incoming radiance, effectively obtaining very cheap samples, which increase 

convergence rate. Streaming path tracing [van11] is a GPU specialized PT variant, which uses 

the potential equation along with a recursive form of MIS. It functions by generating a large 

number of paths and then bundling them into batches, which run on GPU streaming processors. 

Since streaming processors are very performance sensitive to incoherency, the batches are kept 

coherent through stream compaction, which eliminates the finished paths from the batches, and 

then compacts the remaining paths into new coherent batches.  
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Instant Bidirectional Path Tracing [Bog13] uses two different GPU passes for light 

path tracing and normal path tracing. It then creates paths using the previously computed 

subpaths. The resulting paths can be explicit, if they are connected, or implicit, if a light path 

touches the camera or a normal path touches a light.  

Noise removal techniques try to lower the variance by using either unbiased or biased 

means. The simplest and biased solution is to use a form of blurring augmented with geometric 

information, like a bilateral filter. An unbiased solution is to filter only light that went through a 

path with more consecutive diffuse reflections [Jen95]. A pair of consecutive diffuse 

interactions produces a large amount of diffusion, and filtering this result would not create 

visible bias. Other filtering methods include temporal light field reconstruction [Leh11], 

where a costly reconstruction process is used, and radiance filtering [Sch12]. In contrast to 

image filtering techniques, radiance filtering uses radiance samples from neighboring pixels. The 

algorithm stores the last intersected surface for each radiance sample. When filtering, it re-

reflects the radiance by the BSDF of the last intersected surface, towards the center of the 

filtering kernel (the filtered pixel). By doing this, extra free contributing samples are obtained, 

which improves the convergence rate of the rendering.  

Noise removal techniques decouple scene complexity from light transport complexity. A 

different type of noise removal algorithm is based on the idea that the primary hit points, those 

that are directly visible to the camera, are in general illuminated by the same radiance coming 

from the path that would continue from that vicinity. Therefore, a single path is completely 

traced per pixel, while a large number of direct rays are shot in the vicinity of the pixel. Each 

direct ray is then connected to the traced path, with regards to connection angle and direct 

visibility, basically reconstructing uncomputed paths. 

A relatively novel method for path tracing acceleration is using scene skeletonizations as 

importance sampling [Bir12] [Cha13], which uses scene geometry skeletons to aid path tracing 

explore complicated scenes, where traditional algorithms find it difficult to sample important 

light paths. The algorithm uses a coarse tridimensional voxelization of the scene, which is then 

inverted and skeletonized. The skeleton is then used to compute importance vectors, which will 

direct light transport to the most efficient light transport space in the entire scene. The lights of 

the scene and the camera are also given importance in the skeleton creation. A skeleton sample 

point contains information about the distance and direction that is expected to be the most 

productive to explore, for a path arriving at the vicinity of the skeleton sample point. Thus, 

scenes with complicated light transport setups, like those containing slightly opened doors, long 

corridors or holes, become much easier to explore. Compared to the local importance sampling 

solutions found in Monte Carlo path tracing, skeleton based importance can be seen as a global 

importance sampling method. Instead of looking for good mutations which explore important 

light paths, skeleton based path tracing looks for efficient connections between the most 

important features of the scene – linked together by the skeleton – and the rest of the objects. 

The skeleton contains additional information, like the distance and direction of the closest 

surface, and this information can be used to improve path tracing by shooting in hard to sample 

areas, like two room which are only connected by a barely open door. 

Some of the most relevant path tracing methods are presented in Figure 19. 
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Figure 19 Path tracing. Path tracing (PT) explores the object-lights interactions by following many paths through 

the scene. Importance Sampling (IS) can be used to improve the light path space exploration, for example by 

directly sampling lights at each contact. Bidirectional PT (BDPT) is a form of importance sampling that links paths 

from the lights and from the camera, making difficult paths easier to sample. Metropolis Light Transport (MLT) 

mutates previous productive paths with different strategies. Primary Space Sampling MLT (PSSMLT) improves on 

MLT by using large mutations, when a path is unproductive, while keeping the small mutations to explore 

productive paths. Energy Redistribution PT (ERPT) mutates the energy-rich nodes of previously traced paths. 

Manifold Exploration PT (MEPT) can efficiently explore specular subpaths. Regularization mollifies subpath 

connections, enabling the linkage of close light and camera path nodes. Vertex Connection Merging (VCM) unifies 

path tracing and photon mapping. It first shoots photons, which are stored in a spatial acceleration structure. In a 

second pass, it traces paths, which are linked to the photons by either merging or connection. Streaming PT groups 

paths into groups, which are compacted when the group divergence reaches a threshold. Eye reprojection projects 

each path node onto the camera, creating free radiance samples. Radiance filtering uses information from neighbors. 
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2.10. Photon mapping 

Photon mapping (PM) [Jen96] algorithms are based on the idea of light diffusion, 

approximating light transport through photon transportation. Photon Mapping considers photons 

as small packets of energy, which are described by position, direction and power. Compared to 

path tracing [Kaj86] the algorithm is biased, in that many different renderings will not converge, 

but it is also consistent, meaning that more photons will increase accuracy. More advanced 

variants of photon mapping, which combine shooting photons with measuring procedures relax 

the biasing [Hac09]. Photon mapping has been used to render photorealistic images and is a top 

down approach. Photon mapping trades the noisy artifacts found in path tracing for bias induced 

structured artifacts. 

Compared to ray tracing, photon mapping methods were created to better sample 

complicated light paths like     (reflexion of caustics) which would otherwise require a very 

large number of samples to render properly with PT and RT algorithms.  While photon mapping 

can be considered a many lights approach to rendering, it differs from many lights methods. The 

difference is that instead of spawning new direct illumination approximate virtual lights, photon 

mapping actually traces photons. Compared to many lights methods, photon mapping a number 

of photons is orders of magnitude larger than the number virtual lights, therefore the algorithm 

degrades gracefully by blurring radiance and not by eliminating lights.  

Photon mapping [Jen96] works in two steps. In the first step a photon map is created by 

tracing (shooting) photons from the scene lights, which are then stored in an acceleration 

structure. This acceleration structure can be either surface based, storing photons on the surfaces 

of the objects of the scene, or volumetric, storing photons in space partitioning structure like a 

kd-tree. The latter type is used when the simulation of volumetric effects is intended. In the 

second step, called final gather, the camera-objects interactions are determined through an 

algorithm like ray tracing or rasterization and the illumination is solved using the light 

transported in the first step.  Usually there is more than a single photon map, one for diffuse 

surface interaction and one for pure specular interactions. A study on the acceleration structure 

and reconstruction filters that can be used to implement photon mapping in real-time is given in 

[Mar13]. Photon maps can be extended to ray maps [Hav05], which index the rays that are 

followed by the photons which would normally be stored in the photon maps. 

Bidirectional Photon Mapping (BDPM) [Vor11] combines path tracing and photon 

mapping. It first uses a photon map to store the photons traced with photon mapping. It then uses 

a path tracing algorithm to determine the surface interactions which bring radiance to the camera. 

For each vertex in each path the photon map is queried for photons and radiance is accumulated 

at the vertex. This algorithm is extremely similar to VCM [Geo12]. 

Progressive photon mapping (PPM) [Hac08] reverses the order of PM passes. In the 

first stage it does a ray tracing pass, to determine all the surfaces which are visible to the camera, 

named surface hits. These camera-object interactions are stored in a list. In the second stage PPM 

uses a progressive method to collect photons. Over many passes photons are shot from the lights 

and they are accumulated on the surfaces visible from the camera. A special metric is used to 

determine the radius of the surface hit. With each new photon pass, each surface hit is updated 

with new photons and has its surface reduced, based on a progressive radiance estimate.  
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The key idea behind PPM is that it averages the results of many photon maps in order 

to ensure that the surface hit local radiance converges to the correct result, making PPM unbiased. 

Another very important aspect of PPM is that it erases the enormous memory requirements 

needed to implement PM with convincing results. Only the key photons, those that directly 

impact the visual result, are stored. Furthermore, progressive photon mapping passes permit 

tracing a relatively low number of photons per pass, making streaming not necessary. PPM can 

be improved with adaptive sampling, as done in Adaptive Progressive Photon Mapping [Kap131] 

or through blue noise based reconstruction, as in [Spe13]. 

Stochastic progressive photon mapping (SPPM) [Hac09] improves PPM by computing 

the radiance in a region, and not in a single point as PPM. This makes SPPM useful for region 

effects such as depth of field and antialiasing. Instead of using only progressive photon passes 

like PPM, SPPM uses a progressive cycle, in which distributed ray tracing and photon tracing 

passes follow each other. The distributed ray tracing step generates new randomly distributed 

surface hits that can be seen from the camera. The photon passes work exactly like in PPM. By 

doing this SPPM ensures that the region effects are uniformly sampled, instead of just 

accumulating radiance for the single surface hit samples generated by one ray tracing pass.  

Volumetric effects can be rendered with photon mapping algorithms by using a volume 

(volumetric) photon map [Jen98]. This map stores only the photons that interact with 

participating media. Implementing volumetric effects with volume photon maps is 

computationally expensive, because the acceleration structure that stores the photons has to be 

queried many times, in order to evaluate in-scattering done on the traced distance. Ranged 

queries in the photon acceleration structure are used, in order to find all the relevant photons for 

the marched distance. If the distance is sampled in small steps, there will be overlapping in the 

sampling of the photon acceleration structure, and the same photons will be found multiple times. 

If the distance is sample in large steps, some important photons will be missed. 

Photon beams (PB) [Jar08] permit finding all the photons that influence a marched 

distance over a ray in a single query. Photon beams are not cylindrical, but have an adaptive 

form, modeled by the photons that interact with the marched ray. Implementing photon beams 

starts with a variant of photon mapping algorithm that stores all the photons in a balanced kd-tree. 

Then, each photon stored in this acceleration structure is given a radius, effectively creating 

photon disks. A second acceleration structure is created over the photon disks. This second 

acceleration structure is an object partitioning structure like a BVH, compared to the space (and 

points) partitioning structure used for photons. Photon beam tracing then marches a ray by 

querying photon disks in the second acceleration structure, through cheap intersection tests. Thus, 

instead of using many ranged queries in a photon acceleration structure, the photon beam tracing 

uses only intersection tests with the photon disks, greatly lowering the search complexity. The 

cost of creating the second acceleration structure is minor, as it is performed only once for the 

entire scene. The performance improvement offered by lower search complexity impacts 

rendering time much more, due to the very large number of search operations.  

Progressive photon beams (PPB) [Jar11] improves photon beams, like PPM improves 

PM. By averaging many photon beam passes, each with a progressively decreasing photon disk 

size, PPM guarantees convergence, and is therefore unbiased. 

Photon mapping algorithms are presented in Figure 20. 
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Figure 20 Photon Mapping. Photon mapping algorithms use photons to simulate light transport in the scene. Photon 

mapping (PM) traces photons from the light sources and stores then in a balanced kd-tree, called photon map. In a 

second pass the final image is synthesized by using a ray tracing pass, which illuminates with the radiance stored in 

the photons queried from the kd-tree. Bidirectional Photon Mapping (BDPM) combines normal photon mapping 

with path tracing. The radiance collected by the path is obtained by querying the photon map in the vicinity of each 

path node. Progressive Photon Mapping (PPM) reduces the large memory costs of photon mapping by tracing the 

photons in many progressive passes around camera-surface hits, which shrink with each pass. Stochastic Progressive 

Photon Mapping (SPPM) makes PPM unbiased, by using a cycle of photon mapping and distributed ray tracing 

algorithms. On each iteration photon mapping is performed like in PPM, but the radiance is used for illumination by 

a different random ray, generated by DRT. Photon beams (PB) decreases the large number of samples needed to 

perform volumetric photon mapping, by creating an additional acceleration structure which stores photons as objects 

with size, called photon disks. Progressive Photon Beams (PPB) computes radiance by intersecting random DRT 

generated camera paths with progressively smaller beams, obtained by shrinking the photon disks from PB. 

 

2.11. Many lights methods 

A different approach to solving global illumination can be implemented through 

approximated radiance transport. While photon mapping transports a very large number of tiny 

radiance quantities through photons, many lights methods transport a relatively small number of 

large radiance quantities. The key idea behind many lights is that global illumination can be 

approximated with direct illumination from many small lights, created at the contact of light 

from with object surfaces. These lights are called virtual lights [Kel97]. While the resulting 

method is biased, it can be extended to handle diffuse reflections [Dac05] and many shadow 

maps [Rit08] techniques can be used to augment the final rendering, but it can’t solve specular 

reflections and difficult caustics paths like    . Advanced many lights methods mollify the bias 

introduced by virtual lights [Nov11] and improve the distribution and scalability of the virtual 

lights. Similar to rasterization, many light methods are more of a bottom up approach to 

rendering, and, like rasterization, they are also one of the most active fields of research for real-

time rendering. Many light methods can be categorized into virtual lights generation, 

illumination with virtual lights and scalability improvements, as presented in [Dac14]. 
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Like photon mapping methods, many light methods trade the noisy variance related 

artifacts found in ray tracing and path tracing for structured artifacts. Compared to photon 

mapping they do not model light transport as shooting photons from the light but by spawning 

new lights at light-surface interaction. While photon mapping considers photons as incoming 

light, many light methods consider virtual lights as outgoing light. 

Many light methods have a common history with radiosity, which is a finite element 

method, in which all the surfaces are diced into surface patches, which are linked by a geometric 

term. The geometric term, also called a form factor, approximates the inter-visibility operation 

and BRDF reflection between to surface patches and it was originally defined for Lambertian 

[Edw03] surfaces. With this form factor radiosity is globally exchanged between all the surface 

patches of the scene, effectively simulating diffuse light transport. The hemicube generalizes the 

form factor, allowing arbitrary scenes with internal occlusion. Because solving all the light 

transports between surface patches is a large computational task, radiosity is usually 

implemented over low resolution meshes, and the results are generally cached. Because of this, 

radiosity isn’t well suited for dynamic environments or for use as a single global illumination 

solution for photorealistic images. 

Instant radiosity (IR) [Kel97] introduced the concept of (many) virtual point lights 

(VPL), as direct illumination sources spawned by simulated light transport. The method’s name 

implies that this is a variant of radiosity, based on the idea that virtual lights transport radiance 

between them in a similar manner to the inter surface patch transports in radiosity. In reality, 

virtual lights are generated with random walks, and thus can be considered elements in light 

paths, where one end of the path is a real light and all the other nodes are only linked to their 

parents and children. Thus, instant radiosity differs fundamentally from the finite element 

approach to global illumination, because virtual lights are only linked to their parents and their 

children, and not with virtual lights from other light paths. Therefore, instant radiosity creates a 

path of virtual lights, where light transport has nothing in common with the original radiosity 

algorihtm. Furthermore, this can be extended through other methods to virtual light trees. 

Instant radiosity has much more in common with photon mapping, because virtual lights 

are better conceptually perceived as supersized photons. Instead of shooting photons, instant 

radiosity shoots large bundles of photons, which generate virtual lights, which in term shoot 

large bundles of photons, which recursively generate other new virtual lights.  

2.11.1. Generating Virtual Lights 

The efficient generation of virtual lights can lead to a large decrease in rendering time. 

Only the virtual lights that interact with the objects which are visible from the camera have any 

visual contribution. The task of efficiently generating virtual lights is to determine the best 

virtual lights that lead to the most interactions with directly visible objects. 

 A naïve generation of virtual lights can be done by performing random walks from the 

scene lights, as it was performed in [Kel97]. This strategy explores the entire scene and will 

generate a new virtual light at each light-surface interaction, constructing many light paths. 

Another variant is to use a distributed ray tracing to generate a tree of virtual lights.  

Creating many virtual lights can be performed in a single rasterization pass, by using 

Reflective Shadow Maps (RSM) [Dac05]. This method uses a buffer similar to the G-buffer 
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[Ols11] in deferred rendering, but at a much lower resolution. The buffer stores information 

about the world position, world normal and the outgoing unshaded color. Furthermore, each 

entry in this buffer generates a virtual point light, which uses the position, direction and color 

provided by the entry in the RSM. The process can be repeated for each light but without a 

bandwidth reduction technique like [Rit08] the rasterization costs greatly increase. 

A relatively simple way to generate better VPLs is to use Russian Roulette on the VPLs 

generated by instant radiosity, based on the approximate impact on the entire screen, as done in 

the rejection of unimportant VPLs method [Geo10]. The method can be initialized with a 

small number of pilot VPLs. The disadvantage of the created VPL distribution is that it is not 

good for interreflections. 

Bidirectional Instant Radiosity (BIR) [Seg061] uses a bidirectional approach towards 

VPL generation, connecting subpaths from the camera and from the scene lights, in a manner 

similar to bidirectional path tracing [Laf93]. The advantage of this method is that it rejects all the 

lights which are not in the second place in the light paths, coming from the camera. Therefore, 

the generated VPLs will all generate visible indirect illumination. 

Metropolis Instant Radiosity (MIR) [Seg07] is a modification of Bidirectional Instant 

Radiosity, which first generates naïve light paths, as they are generated by the random walks in 

[Kel97]. It then mutates the paths with the Metropolis-Hastings algorithm, in order to direct them 

towards the camera. A large proportion of the mutations change the position of the VPL second 

from the camera. For illumination, the algorithm considers only the VPLs in the generated light 

paths, which are either first or second from the camera, similar to BIR. By doing so, MIR 

generates only VPLs that are directly responsible for camera visible indirect illumination. 

Furthermore, by using Metropolis-Hastings, this VPL generation scheme is guaranteed to 

efficiently transport light even in hard to sample scenes, mutating paths like MLT [Vea97]. 

Local Virtual Lights [Dav10] compensates the specular light transport, as it is not 

accurately modeled by virtual light methods. It splits light transport into global and local 

components. For the local specular component it generates local virtual lights, which are used to 

better approximate glossy reflections. VPL generation strategies are presented in Figure 21. 

Another method which improves specular light transport in many light methods is based on rich 

VPLs [Sim15]. 

In order to lower the computational effort in dynamic scenes temporal and spatial 

caching can be used, which are based on the idea of either spatial or temporal coherence 

between frames. The simplest form of caching can be implemented through Irradiance Caching 

[War88], but this stores only the integrated radiance at a surface patch, and has no angle 

information, therefore it can’t be used in scenes with specular features. Radiance caching [Kři07] 

stores angle information and permits glossy light transport, but does so at greatly increased 

memory costs. These caching strategies can be translated to work with virtual lights. Instant 

Caching [Deb09] reutilizes computations from virtual lights, based on spatial and temporal 

coherence. Importance Caching [Geo121] implements a variation of multiple importance 

sampling in order to determine the cached light information that will be used in illumination 

evaluation. 
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Figure 21 Virtual Light Generation. There are many strategies for the generation of virtual lights. Virtual point 

Light (VPL) rejection approximates the entire screen as a single pixel and computes the potential energy for each 

random walk-generated VPL, rejecting VPLs with low potential contributions. Bidirectional Instant Radiosity (BIR) 

connects subpaths from the light and from the camera, generating VPLs at the 1
st
 and 2

nd
 vertices from the camera, 

thus ensuring that all the generated VPLs are guaranteed to impact the visual result. Metropolis Instant Radiosity 

(MIR) improves BIR by mutating the BIR paths in the vicinity of the 2
nd

 vertex from the camera, generating more 

important VPLs. Local VPLs can be used in combination with any of the previous strategies. Local VPLs is aimed at 

improving specular light transport and it does this by generating many VPLs local to the 1
st
 vertices from the camera, 

which are directly visible from the surfaces directly visible to the camera. It then computes the total illumination as a 

sum of diffuse illumination computed with global VPLs and a specular component computed with the local VPLs. 

2.11.2. Illumination with Virtual Lights 

Lighting with virtual lights follows the same general principles as the rendering equation, 

where light is transported through a random walk, only that the many light random walk does not 

transport tiny radiance quantities but large quantities, which then spawn virtual lights. The 

equation for virtual light illumination is: 
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This equation can be written in a recursive form, given the fact that VPL energy is 

transferred over random walk generated paths, thus the radiance can be approximated with: 

                         
     

 

 

          
 

      
  

        
       

        

Where      
        represents the flux reflected to the current VPL on the specified 

direction, from the previously walked VPLs in the VPL light path. A great problem with this 

equation is that the geometry term          is a source of singularities, which manifest 

themselves as structured artifacts of maximum radiance. These singularities are sometimes called 

radiance splotches, or radiance stains in rendering.  

There are two major approaches in limiting geometry term induced illumination 

singularities: bounding the geometry term and the redistribution of the VPL energy over an 

area or volume. Bounding the geometry term is basically a clamp operation, and is therefore easy 

to implement. On the other hand bounding the geometry term implies a loss of radiance, which 

manifests itself as synthesized images with less energy, thus darkened results. In order to 

compensate for the lost radiance a residual light transport term is defined as: 

                                  
 

                       

The entire energy of a path is the sum between the normal clamped radiance and the 

residual radiance. Bias compensation was introduced in [Kol04]. This method stochastically 

tests if the energy computed at a shading point is under-estimated, by randomly shooting a ray in 

the bounding vicinity. If the ray hits a surface, lighting is evaluated with nearby VPLs and the 

energy is compensated with the resulting radiance. But the compensating radiance is itself 

computed with clamping, therefore the method repeats the process of randomly shooting a ray, 

until it does not hit a surface. The method statistically recovers all the missing radiance, but is 

very expensive and can degenerate to path tracing.  

The bias compensation method is improved in Local Virtual Lights [Dav10], where the 

random ray shooting is not a recursive process, and it is shot only once. If there is a point of 

contact inside the bounding vicinity, then that point is itself transformed into a virtual light, 

called local virtual light. The local virtual light receives radiance from all the nearby existing 

virtual lights, called global lights, and is then used in the illumination of not only the shading 

point (pixel), but in the illumination of an entire vicinity around the shading point. Thus, the 

algorithm is much faster than [Kol04], but it is also less correct as it represents an approximation. 

Screen space bias compensation [Nov11] is a fast method to compute the bias 

compensation term. It works as a post processing filter, which computes the bias in an iterative 

manner, as a sum of residuals. The method uses only the information available in the vicinity of 

the shading point. The method also uses the observation that there rarely is occlusion in this 

vicinity. The method is further refined for participating media in [Eng12]. 

 While the bias compensation methods try to recover lost energy due to bounding, 

redistribution of energy methods spatially spread the radiance, in order to avoid singularities. 
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 Virtual spherical lights (VSL) [Haš09] distribute the energy of the virtual point light 

over an entire sphere, basically inflating the VPL. Thus, the light is not transferred from the VPL 

to the shading point on a point-to-point basis, but is evaluated through an integral over the solid 

angle subtended by the VSL. This method correctly computes the radiance in the shading point, 

without losing energy, but by the evaluation of the integral for every shading point makes it 

computationally heavy. 

 Virtual Ray Lights (VRL) [Nov121] improves illumination with virtual lights in 

participating media by using rays instead of points. Instead of storing the entire radiance in a 

single VPL, VRLs distribute the radiance over an entire ray. [Nov121] provides importance 

sampling mechanisms, in order to simplify computations. VRLs are further improved in 

Progressive Virtual Beam Lights (VBL) [Nov122], where the rays have volume. This leads to 

improved scattering, as each VBL distributes energy over an entire volume. 

 Virtual Area Lights (VAL) [Don09] [Pru12] cluster virtual lights, in order to minimize 

the number of shadow maps that have to be computed. They are usually represented with easy to 

sample forms, such as disks. Virtual light types are presented in Figure 22. 

 

Figure 22 Virtual Light Types. Correctly illuminating with virtual lights requires a very large number of them, 

hence the many lights name. Virtual Point Lights (VPL) are the simplest type of virtual light, but are also the most 

problematic, suffering from singularity and scalability, as effects of sampling space with points. For this reason, 

there are many types of non-point virtual lights. Virtual Area Lights (VAL) are obtained by clustering many close 

VPLs, and usually take an easy to integrate form like a disk. Virtual Spherical Lights (VSL) inflate VPLs, 

distributing their energy over an entire volume, making them more expensive to evaluate but also not singularity 

prone. Virtual ray lights (VRL) are virtual lights that improve scalability in participating media rendering, by 

distributing the virtual light radiance over an entire path segment. Virtual Beam Lights (VBL) are extensions to 

VRLs, which provide additional radiance distribution, over the entire volume of each beam. Local VPLs are 

generated near specular objects, to better approximate glossy light transfer. 

 Shadowing virtual lights requires very fast visibility determination operations, because of 

the large number of virtual lights generated with instant radiosity algorithms. Because of this, 

full geometry processing for the entire scene is usually too expensive, either rasterization for 

normal shadow mapping or visibility determination through rays. Instead, approximate visibility 
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determination is computed through either point based methods or through level of detail 

methods.  

Point based methods solve the problem of visibility by approximating geometric 

information through points. As points are not surfaces, the bandwidth processing is greatly 

reduced. Imperfect Shadow Maps (ISM) [Rit08] are shadow maps constructed over sparse 

scene geometry, represented through points clouds. After the ISM is filled with rasterized points, 

it uses a push-pull process in order to fill out the rest of the empty entries in the shadow map, 

which is implemented with mipmaps. ISMs can be implemented with a hierarchical point based 

rendering system like Qsplat [Rus00], or the one implemented in [Rit091]. 

 Level of detail [Hol11] based approaches decrease the number of computations for the 

many shadow maps needed by many light methods.  Another method to implement a large 

number of shadow maps is through virtual clustered shadow maps [Ols141]. A different form of 

level of detail can be implemented by tracing rays through an approximate voxelization of the 

scene. 

2.11.3. Scalability 

Rendering with a large number of many lights is a difficult computational endeavor, thus 

research in this area has proposed a large number of solutions. The purpose of this research was 

to lower the illumination complexity from a linear cost in generated VPLs. 

A relatively simple solution is to distribute the lighting effort over regions, and then to 

compose the illumination results. This can be achieved through interleaved sampling [Kel011], 

in a manner similar to interleaved deferred [Seg06]. The same principle was also the basis for 

Incremental Instant Radiosity [Lai07]. 

Lightcuts [Wal05] converts all the existing lights to VPLs. It then takes all the generated 

VPLs and constructs an acceleration structure over them, dividing them into a tree of clusters. 

Each cluster is approximated by a cut, which is a set of nodes which partitions the lights into 

clusters. This partitioning is based on the insurance that each cluster remains under a certain 

error threshold. Thus, this method guarantees that the important lights will always be used in the 

illumination process. Multidimensional Lightcuts [Wal061] improves the Lightcuts method by 

taking into account pixel level effects such as depth of field, motion blur and participating media. 

It does this by creating a separate tree structure defined through cuts for sampling points inside a 

pixel, called gather points. Similar to Lightcuts, Multidimensional Lightcuts works only with 

VPLs. Bidirectional principles are applied to Lightcuts in [Wal12], improving glossy reflection 

and subsurface scattering support. Progressive Lightcuts [Dav12] provides better clamping and 

drastically reduces the memory costs of the original algorithm 

Matrix row-column sampling [Haš07] is an alternative to lightcuts. It interprets the 

general problem of illumination with many lights as a virtual light pixel global intersection test, 

which can be written in matrix form, where a row for each pixel and a column for each virtual 

light. Therefore, the problem of illumination reduces to the problem of computing the sum of 

contributions, on each column. The algorithm is based on the observation that the resulting 

matrix is very structured and is close to low-rank, thus only a small subset of elements can be 

computed to approximate the final result, therefore computation will be performed only for a 

small number of columns. In order to accelerate the computation the algorithm makes shrewd 
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use of shadow mapping. Each column-row intersection is equivalent to determining the visibility 

of many pixels by a single light. Likewise, each row-column intersection is equivalent to 

determining the visibility of a all the lights from a pixel. Both of these one-to-many visibility 

problems can be efficiently solved through shadow mapping. The key of the algorithm is in how 

the columns are selected for computation. The algorithm randomly selects a small number of 

rows in the matrix and creates a new matrix with reduced columns, which basically reduces the 

size of the illuminated image, similar to mipmapping, and results in a disproportionately wide 

matrix. The reduced columns are then partitioned into clusters, based on the norm of the multi-

dimensional vector, which represents each reduced column. In the end, a column and its weight 

are chosen from each cluster, based on the multidimensional vector norm metric. The entire un-

reduced columns are computed, and the entire matrix is thus approximated through the weighted 

composition of a small number of columns. 

Other clustering strategies are based on grouping many VPLs into congregated lights, 

like virtual area lights [Don09] [Pru12].  
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3. GEOMETRY PROCESSING 

This chapter describes a part of the proposed rendering pipeline which exclusively deals 

with direct visibility determination, computed with rasterization. The modules and algorithms 

presented in this chapter are succinctly depicted in Figure 23; the green modules represent thesis 

contributions.  

 

Figure 23 Geometry Processing Overview. The geometry processing pipeline includes asset definitions, streaming 

mechanisms and rendering paths for opaque and transparent objects. The outputs of this pipeline are then used by 

the Illumination pipeline. The green modules contain thesis contributions: modifier based assets, an altered 

marching cubes algorithm for very large datasets, scene-wide hierarchical impostors, task generation within the 

rasterization scheduler and a culling mechanism that uses it, distribution opacity/occupancy maps and virtual order 

independent transparency for approximate and exact transparent objects rasterization, virtual deferred for opaque 

rasterization and a novel geometry selection algorithm. 

The geometry processing part of the proposed pipeline contains asset definitions, which 

are based on the concept of modifiers and instances, which help in the succinct description of 

very large scenes which use common rendering data. The asset definition also contains the pre-

computed acceleration structures needed for rendering such as bounding volume hierarchy trees 

or sub-geometric detail maps. 

 A comprehensive streaming mechanism is presented, based on virtual texturing, virtual 

meshes and a novel hierarchical impostors cache method, which is implemented through virtual 

texturing. The hierarchical impostors cache method creates impostors for entire scene nodes and 

this makes it very useful in rendering effort scaling and as an anti aliasing solution. The 

streaming modules contain a novel adaptation of the marching cubes GPGPU algorithm, 

which is able to handle very large datasets. The streamed data is introduced in the geometry 

processing part of the rendering pipeline through the scene update module. 
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The geometry processing algorithms described in this chapter use the streamed data to 

produce outputs for the illumination stage. The active scene lights are extracted from the scene 

update module. This chapter presents a task generation method that works within the 

rasterization scheduler. This method is then modified, and used as a component of an innovative 

hierarchical culling algorithm, which neither suffer from CPU dependence nor requires special 

geometry impostors. The culling module also employs a new approach to culling, by using 

multiple frame tests, which cull objects over a number of frames. Because of this, the presented 

culling method is less computationally expensive than the state of the art.  

Draw lists contain the objects which are not culled by the culling module. The geometry 

processing pipeline contains several rasterization based rendering paths, which are followed by 

the geometry of the objects contained by the draw lists. The rendering paths apply standard state 

of the art rendering techniques such as displacement mapping, sub-geometric rendering or 

geometric anti-aliasing.  

Virtual deferred is a new opaque rendering deferred method. In contrast with the state 

of the art methods it not only decouples the visibility determination and shading components, but 

also minimizes allocated memory and bandwidth consumption, by guaranteeing minimal non-

geometric bandwidth and material-independent allocated memory costs. While virtual deferred 

contains a decoupled shading part, only the geometry processing side of the algorithm is 

presented in this chapter, the other part is presented in the Illumination chapter. Virtual Deferred 

can be minimally modified to render antialiased images, by using the decoupled sub pixel 

reconstructed antialiasing method presented in the Illumination chapter. 

Virtual OIT applies the principles used in virtual deferred to the problem of transparent 

geometry rendering. Compared to state of the art methods it can compute exact order 

independent transparency while only using a fraction of the allocated memory and bandwidth. As 

with virtual deferred, the shading side of the algorithm is not presented in this chapter, but in the 

Illumination chapter.  

Distribution opacity maps modify the state of the art occupancy maps with per-pixel 

distributions, making them much more adaptable to real-life scene depth distributions. Because 

of this increased depth precision, distribution opacity maps are more memory efficient than 

occupancy maps in approximating order independent transparency. The downside of this method 

is that it has to reprocess the entire geometry in order to compute shading.  

The pipeline also contains a novel geometry selection algorithm. Compared to the state 

of the art methods, the introduced algorithm handles all types of selection cases, such as multiple 

objects per pixel, area selections or even occlusion from fuzzy objects. 

The geometry processing pipeline creates the inputs for the Illumination pipeline. The 

modified linked lists, produced by the Virtual OIT algorithm, and the modified G-Buffer, 

produced by the virtual deferred algorithm, are used together with the scene lights and the 

bounding boxes of the scene to compute approximate global illumination. The Illumination 

pipeline can also handle correct global illumination, but this requires extra data structures such as 

bounding interval hierarchies, which are needed for the acceleration of rays used for correct 

visibility determination.  
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3.1. Asset Definition 

Massive scenes contain a very large amount of detail and a very large number of objects, 

but these objects generally use common assets. The necessary properties for realistic rendering 

can be divided into positional and structural properties such as transformation trees, animations 

and morphing and aspect properties such as BxDFs, sub-geometric information and so on. 

Usually, the positional and structural properties of an object contain its structure, the position and 

orientation of an object, either in absolute or in relative coordinates, the skeletal animation 

properties, the morphing animation and the trajectory properties. The structure of the objects is 

either defined through triangles or through voxels. These properties also define how light is 

scattered by the object, how the object moves and whether the form of the object is explicitly or 

implicitly defined. Explicit forms are defined as meshes or as voxel hierarchies, while implicit 

forms are obtained indirectly from voxel hierarchies or analytic definitions. 

The aspect properties define whether and how the object emits light, the type of light 

absorption and transmission of light, usually quantified in as a BRDF, BSDF, BTDF, BSSRDF 

or a combination of the above. This information is usually encoded in maps, which are linked to 

objects through texturing. Common maps used in rendering are color maps, which describe the 

diffuse response on the surface of objects, emissive maps, used for the representation of light 

emission, ambient occlusion maps, used to represent sub-geometric visibility, specular power, 

specular color maps and gloss maps, used to measure the response to specular light interaction, 

thickness maps and alpha occlusion, used to measure transmission through object, derivative 

maps, normal maps and displacement maps, used to cheaply represent sub-geometric detail. 

In order to construct a state of the art rendering pipeline all the assets have to be easily 

accessible and combinable by the GPU. While this is straightforward for aspect properties, 

usually bundled as materials, it is not as easy for structural and positional properties. The 

positional and structural properties are traditionally streamed from the CPU, but, for extremely 

large scenes with a very large number of objects, this introduces a data transfer bottleneck, 

especially when the fast combination of such properties is wanted. 

This fast combination necessity is addressed in this thesis. All scene objects are defined 

as a combination of base, unique, objects, and are identified through instances particularized 

through spatial and aspectual modifiers. The objects are defined geometrically through triangles, 

as voxels are more suited for the approximation of structures than for their correct and detailed 

rendering, due to the very large implied memory requirements. Because of this instance-modifier 

mechanism, many other geometry influencing aspects of rendering can easily be integrated, such 

as morphing and skeletal animation. A minor novel aspect of scene representation is introduced 

in this thesis, GPU object trajectories, which are used to completely represent the dynamics of a 

scene on the GPU.  A trajectory is defined through trajectory points, which are stored as object 

modifiers, and expressed as a set of values describing next position, next orientation, duration 

and next trajectory point, which can all be stored in 8 bytes. Because the majority of modifiers 

can be expressed within the same space, this enables a renderer to use a pool allocator over the 

modifiers, making their streaming and management easier. The same pool allocator strategy can 

also be applied over the virtual meshes and virtual textures, further simplifying streaming. 

Geometry rendering can be performed without CPU control through indirect rendering. 

The algorithms presented in this thesis use a scheme based on a hierarchy of level of details, 

backed by a hierarchy based impostor tree. 
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Figure 24 Rendering assets. This image depicts various rendering assets that are used in the rendering process. The 

upper side of the image contains different types of modifiers and raw assets which can be combined to completely 

describe a rendering object. The central side of the image depicts various aspect modifiers as maps. The lower side 

of the image presents two utilizations of modifiers: trajectories and morphing. 

Because of the large amount of renderable data, hierarchic acceleration structures are 

necessary. Bounding Volume hierarchies are most suitable for real-time rendering since they are 

among the easiest to balance, without duplicating geometry. While low-level sub-trees can be 

computed on demand, large sub-trees require pre-processing. Because of this, rendering 

applications maintain more than one scene tree, generally one for static objects, one for lights 

and one for dynamic objects. 

 

3.2. Streaming 

In order to perform all the required rendering operations, all the necessary modifiers need 

be streamed. All map-based information can be easily controlled through a memory paging 

system like virtual texturing. This includes texture maps, cubemaps and impostors, which are all 

cut into template sizes and stored and queried through the virtual texturing mechanism. 

Geometric information can use the geometric correspondent to virtual texturing, called virtual 

meshes, where meshes and their level of details are cut into template sizes and drawn indirectly. 

Streaming is a highly expensive process, since hard disk reads are very expensive 

operations. This thesis uses zip and LZ4 [Col15] in order to compress the assets offline and then 

be able to quickly in-place decompress them in real-time. Texture compression algorithms such 

as block compression methods [Iou99] are employed by consumer hardware, and they reduce 

bandwidth without perceptible artifacts.  
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3.2.1. Virtual Data 

Virtual data is based on the principles of paging, which is a memory management system 

that breaks down data into blocks of the same size, called pages, with the size of a page usually 

being a power of 2. These pages are then linked to page frames, which are directly mapped to 

physical memory. Virtual meshes and virtual texturing are streaming mechanisms which break 

meshes and textures into page-size elements. The page-sized elements are then streamed and 

queried using a simple paging system, such as the one depicted in Figure 25. 

 

 

Figure 25 Paging System. The logical address contains a page number and a page offset. The page number is 

queried in the Paging Table, which maps the page number to a frame mapped to real physical memory. The original 

offset is then used together with the frame number to exactly determine the physical address at which the data is 

stored. 

Virtual data applications use page replacement algorithms to maintain the most useful 

pages. There are different strategies such as demand paging, in which a page is loaded exactly 

after request, anticipatory paging, in which the cache preloads pages based on certain metrics, 

free page queue, in which a list of all the free cache pages is held and used when a cache fault is 

encountered, page stealing, in which pages that haven’t been recently used are added to a free 

page queue, and pre-cleaning, which guarantees cache data coherency. 

Virtual texturing applies the virtual data principle to textures and their mipmap levels. 

Texturing is not a straightforward process, because it involves filtering operations. In the case of 

trilinear anisotropic filtering, the consumer hardware texturing method selects the two most 

relevant mipmaps, which are filtered with bilinear anisotropic samples. The obtained results are 

then filtered linearly, through interpolation based on the distance between mipmaps. Therefore 

virtual texturing has to account for this peculiar sampling pattern.  

An abstract virtual texturing system is presented in Figure 26. 
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Figure 26 Virtual texturing. Virtual texturing is a page system based mechanism which enables the use of extremely 

large textures. In the top part of the image the colors encode the mipmap levels used from the rendered textures. It is 

obvious that loading all the assets at their full resolution would only waste GPU bandwidth. The same rendering 

results can be obtained by just loading the required mipmap levels. The same principle applies to all textures and 

pieces of textures. Virtual texturing is explained in the lower part of the image. Virtual texturing partitions the 

textures and their mipmaps into small memory pages, which are streamed on the GPU in a texture named physical 

texture. A virtual texture access is redirected through a page texture, which contains the mapping from the memory 

page to the physical texture, where the texture access is finally solved. 

Virtual texturing applications usually border the pages used by their paging systems, in 

order to prevent artifacts generated by wrong sample usage. The border size can be relaxed by a 

relatively recent consumer hardware innovation, hardware virtual texturing, which simplifies the 
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management and addressing of virtual texture data. There are many types of variations of virtual 

texturing, which typically change the paging system, for example with a particular streaming 

order [Tai09], with a different address translation mechanism [Gar08], or with lightmaps baking 

[Mit08].  

Virtual systems are not sufficient for the large amounts of texture data used in the real-

time rendering of massive scenes. Block compression is usually utilized together with virtual 

texturing, to minimize the bandwidth of the rendering application. 

Virtual meshes are the application of the virtual data principle to geometric meshes. 

Each mesh is partitioned into sub-meshes, whose number of vertices can’t surpass a certain 

threshold. This process is applied to all meshes and their level of details. Depending on the 

rendering configuration the virtual meshes mechanism streams the pages of the required level of 

details and rendering is performed with the virtual meshes. 

There are many benefits to virtual data in rendering: uncomplicated streaming and data 

management, low memory and bandwidth consumption, predictable rendering performance and 

frame rate stability. 

3.2.2. Indirect Rendering 

Indirect rendering is the rendering process in which the assets are not stored in a directly 

renderable state, and thus they must suffer a transformation into a renderable format. Indirect 

rendering is to not be confused with indirect drawing, sometimes also called indirect rendering, 

which is the process where the rendering hardware generates future rendering commands in a 

command buffer, which is then executed, without CPU interference.  

In general, indirect rendering is used in real-time rendering for point clouds or voxel 

representations, which are at first reconstructed into triangle meshes and then rendered normally. 

This process is named surface reconstruction, and it is the inverse operation of pointification, for 

point clouds, and voxelization, for volume representations. The surface reconstruction problem 

has been thoroughly studied, with four general approaches: explicit reconstruction, local implicit 

reconstruction, global implicit reconstruction and isosurface extraction and regularization. 

Explicit reconstruction is based on adaptive triangulations of set of points, and it has strong 

guarantees but is sensitive to noise, often needing external pre-processing or human control. 

Local implicit reconstruction approximates the surface by using a low-frequency approximation 

functions locally, making this method resilient to noise. Global implicit reconstruction is a class 

of methods that first tries to match the entire sample set with a high level low frequency function. 

Isosurface extraction and regularization extracts the tridimensional contour from a dataset by 

locally sampling and reconstructing the surface. A comprehensive state of the art is provided in 

[Cuc09].  

Isosurface extraction is particularly important in rendering and in scientific visualization 

because it is easily parallelizable and it is very robust to noise when provided with a large 

number of samples. The greatest weakness of isosurface extraction algorithms are the large 

memory requirements. This situation is common with very large and precise datasets, as are 

those used in medical visualization, such as the one presented in Figure 27.  
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Figure 27 Surface Reconstruction. This image depicts the input and the output of a surface reconstruction algorithm. 

In the left side of the image, the input is represented by a large number of slices, which in this case describe the 

scanned body of patient. The output of the reconstruction algorithm is the rendered surface on the right. 

 A growing need of medical application is responsivity, with new applications putting 

more value into interactivity. Interactive dataset tridimensional reconstruction has many uses in 

medicine and the CPU marching cubes [Lor87], a popular solution to surface reconstruction, has 

been adapted for GPU usage.  

 One problem of this adaptation is that it is limited to the total amount of GPU memory 

available to the graphics card. It is common for datasets in excess of 1024x1024x1024 to be 

needed in interactive reconstruction, which represents 52 gigabytes of effective GPU data, 

without counting the space needed to store the reconstructed surface. This amount of memory 

makes GPGPU Marching cubes impractical on consumer hardware.    

A novel adaptation of the GPGPU marching cubes algorithm is presented, which 

minimizes memory consumption, making it possible to reconstruct very large datasets in real-

time.  The presented algorithm is based on the “Real time reconstruction of volumes from very 

large datasets using CUDA” article [Pet11]. The proposed algorithm divides the data volume 

into maximum capacity sub-volumes, also called chunks, which are serially reconstructed on the 

GPU. This method requires less memory than the standards GPGPU marching cubes and can 

also cull entire chunks from sparse volumes, making the global reconstruction cost cheaper. 

Another useful property is that only the relevant parts of the dataset have to be reconstructed, 

therefore when only a part of the volume is changing, the cost of reconstruction is adaptive 

instead of constant.  

The size of the chunks can be easily modified, but care must be taken to avoid inefficient 

chunk overlapping. In the proposed scheme, the overlap is that of one 1 pixel at the boundaries 

of the partitioning axis. This is done to reconstruct the surface in a watertight manner. The 

presented algorithm has two stages: the preprocessing stage and the reconstruction stage. The 

preprocessing stage analyzes the volume, partitions it into chunks and decides whether a chunk 

contains useful information. The reconstruction stage of the algorithm reconstructs the chunk and 

synchronizes the outputted sub-mesh into the global mesh.  

The algorithm is described in the following pseudocode: 
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(ONCE) PREPROCESSING STEP (dataset)  

edgetable texture, triangletable texture ←  create textures to store the Marching Cubes tables  on the GPU 

bestoccupancy← 0 

chunksize← 0 

FOR size in 4-max chunksize range  

 occupancy ← compute GPU occupancy based on GPU RAM and dataset size 

 IF occupancy > bestoccupancy 

  chunksize ← size 

  bestoccupancy← occupancy 

FOR chunk in dataset 

 culled ← true 

 FOR voxel in chunk 

  IF voxel is set 

   culled← true 

   BREAK 

 IF culled 

  mark chunk as unimportant 

RECONSTRUCTION STEP (dataset) 

geometrylist ← Ø 

FOR chunk in dataset 

 IF chunk not unimportant 

  reconstruct ← false 

  FOR voxel in chunk 

   IF neighborhood of voxel close to isovalue 

    reconstruct ← true 

  IF reconstruct 

   geometry ← run GPGPU Marching cubes on chunk  

   geometrylist ←geometrylist    geometry 

FOR geometry in geometrylist 

 render geometry 

The chunked reconstruction method is also depicted in Figure 28. 

  

Figure 28 Chunked Marching Cubes. Very large volumetric datasets can be partitioned into chunks, which can be 

then serially reconstructed on the GPU. In order to guarantee a watertight extracted surface, the first and last slices 

of a chunk overlap with neighbor slices. The exact reconstruction results of a very detailed volumetric dataset are 

provided on the right part of the figure.  
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The implementation of the presented algorithm was tested on a video card with 1.5 GB of 

GPU RAM. Various sizes have been tested for the chunks, in order to compare memory usage, 

and thus determine the optimal chunk size. The memory occupancy obtained with different 

chunk sizes is presented in Table 3. Because the occupancy can be queried in real-time, it can be 

used as a metric to quickly determine the best chunk size for the reconstructed volume. 

Chunk Size (number of slices) RAM (MB) Memory Usage 

32 1495 99.6 

16 1440  96 

8 1432 95.4 

4 >1500 >100 

Table 3 Chunked Marching Cubes Memory Usage. This table presents the memory usage obtained during dataset 

reconstruction with different sizes, using the Chunked Marching Cubes algorithm. The table shows that there is an 

optimal chunk size and that chunk overlapping can become counterproductive for very small chunks. 

This algorithm has been used in a medical application, 3D for Medicine, as part of the 

European Project SABIMAS, PNCDII-Joint Applied Research Projects, 2008-

2011), http://se.cs.pub.ro/SABIMAS/ [SAB15]. The program is designed to help doctors 

personalize implants for hip arthroplasty, based on tomography results stored in Digital Imaging 

and Communications in Medicine (DICOM) [NEM15]  format.  

A screenshot from this software is presented in Figure 29. This method has also been 

used in non-photorealistic rendering pipelines, such as the one described in “GPGPU Based Non-

photorealistic Rendering of Volume Data” [Mor13]. 

 

Figure 29 3D for Medicine. This screenshot is taken from the 3D for Medicine software, which can inspect and 

reconstruct very large DICOM datasets in real-time. The software can alter the dataset in real time, to eliminate 

scanning artifacts. The reconstruction algorithm is based on chunked marching cubes. 

 

http://se.cs.pub.ro/SABIMAS/
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3.2.3. Hierarchical Impostors 

Impostors represent a partial solution to two problems of real-time rendering: scalability 

and anti-aliasing. Rendering with impostors drastically lowers the geometry processing 

complexity of a scene, and thus significantly decreases rendering time. Impostors are over-

sampled representations of objects stored as images, and therefore do not suffer from geometric 

reconstruction artifact, but are filtered like textures. Furthermore, because impostors are stored as 

textures they are very easy to integrate into a streaming system like virtual texturing. 

Although the state of the art contains a large number of impostor techniques, such as 

billboards [Ger88], billboard clouds [Dec03], omni directional billboards [And07], true 

impostors [Ris06], 3-view impostors [Har10] or volumetric impostors [Dec09], none of these 

methods extends beyond a single object. The closest methods to the proposed hierarchical 

impostors method are [Ume05] and [OHa02], in which several objects are bundled in the same 

impostor, but this is done in the context of homogenous super-objects such as clouds.  

The newly presented method, hierarchical imposters, differs from the state of the art 

through the integration within a virtual texturing streaming mechanism, the ability to be 

rendered with parallax effects and through the fact that it explicitly applies to any type of object 

group. Each hierarchical impostor represents a group of objects and contains depth, normals and 

color information, which can be used for high quality distant object rendering. When the view 

distance or viewing angles change too much from the currently stored impostor, the impostor 

contents are updated with the new view and distance. Expected views and distances can also be 

used. 

This algorithm is especially designed for very large scenes, where not all the scene assets 

are stored in GPU memory. The entire scene is stored offline in an acceleration structure. 

Depending on the camera position the scene nodes mapped high in the acceleration structure 

which are further than a certain threshold distance will have their impostors precomputed and 

loaded. Then impostors will be streamed in and out for all the other visible objects, which are 

greater than a certain threshold. When the size of a scene node is smaller than a certain screen 

space number of pixels threshold all the children of the scene node will not be rendered. Instead, 

the impostor of the scene node failing the threshold test will be rendered.  

Impostors are updated depending on angle of view and distance of view. Because of this, 

a secondary acceleration structure can be used for dynamic objects, which can be update on a per 

frame basis. The complexity of this operation can be amortized by making the update over a 

number of frames.  

Because hierarchical impostors group many distant scene nodes into a single renderable 

entity, which can remain valid for a large number of frames, they greatly decrease the rendering 

complexity of the scene. Because the only geometry rendered for an impostor is a simple 

billboard the geometry cost is dramatically decreased, while the shading cost is maintained close 

to constant per frame even without deferred algorithms. Perhaps the most important feature of 

impostors is that they minimize geometric aliasing, transforming geometric aliasing into texture 

aliasing, which is far easier to handle because of the automated texture filtering available on all 

consumer hardware. The loss of detail can be almost completely prevented with parallax sub-

geometric rendering algorithms. A hierarchic impostor is presented in Figure 30. 
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Figure 30 Hierarchical Impostors. An object impostor is presented in the superior part of the image. It contains data 

about color, normals, specular response and sub-geometric depth displacement data. As presented in the lower part 

of the image, the impostor concept can be applied to large groups of objects. The maps that contain all the impostor 

data can be managed and streamed through a virtual texturing system. 

The presented impostor can also be augmented with emission and transparency properties, 

at the cost of more memory. Before the effective rendering the process of impostor determination 

can be integrated with culling and other scene management operations. The proposed method 

renders the hierarchical impostors like true impostors. Each impostor is sent to the graphics 

pipeline as a point which is expanded to a textured screen space aligned quad, a billboard. Then, 

the billboard is adjusted to the correct depth. For each fragment generated through billboard 

rasterization is intersected with a linear search, in a process often times called marching, in order 

to quickly determine the approximate location of the camera surface intersection. A secondary 

binary/secant search is used to accurately determine the camera surface intersection point. The 

map information found by using the texture coordinates resulted from the marching process is 

used for shading the pixel.  

The pseudocode for hierarchical impostors is the following: 
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CACHED (node, camera, scene) 

distance, angle, size ← compute distance and size based on node  and camera  

FOR element in impostorcache  

 elementdistance , elementangle, elementsize ← load data for element 

 IF elementdistance   distance and elementangle   angle and elementsize   size 

  RETURN element 

RETURN null 

 

CREATE (node, camera, scene) 

cached ←  CACHED(node, camera, scene) 

IF cached not null 

 RETURN cached 

ELSE 

 IF impostorcache is out of storage space 

  RETURN null 

 impostorcamera, distance, angle, size ← compute distance and size based on node and camera 

 poweroftwo←         

 create impostor with resolution              

 FOR scenenode in scene 

  IF scenenode visible by impostorcamera 

   nodedistance, nodeangle, nodesize ← compute distance and size based on scenenode  

                    and impostorcamera 

   scenenodeimpostor← CACHED(scenenode, impostorcamera, scene) 

   IF scenenodeimpostor not null 

    impostorview ←render scenenodeimpostor 

    impostorview←depth, transparency, emission, color, displacement, specular 

   ELSE 
    render node into impostorview 

   impostorview ←depth, transparency, emission, color, displacement, specular 

impostordepth, impostorangle ← impostor depth and angle of view, as viewed from camera 

impostorcache ← impostorcache   impostor 

  

PRE-RENDERING (scene, camera) 
renderqueue ←  traverse scene from camera 

impostorrenderqueue←  Ø 

FOR node in renderqueue 

 nodedistance, nodeangle ←   compute distance and angle of node  from camera 

 IF nodedistance > threshold AND nodeangle < threshold 

  cached  ← CACHED(node, camera, scene)  

  IF cached not null  

   renderqueue ← renderqueue  cached 

  ELSE 

   newimpostor ← CREATE(node, camera, scene) 

   IF newimpostor not null 

    renderqueue ← renderqueue  newimpostor 

LINEARSEARCH (displacementmap, entrypoint, entryray) 

depth, preventrypoint ← depth of entrypoint 

mapdepth ← read displacementmap at entrypoint 

WHILE  depth > 0 

 preventrypoint← entrypoint 

 depth, entrypoint← entrypoint + entryray 

 mapdepth ← read displacementmap at entrypoint 

 IF mapdepth > depth 

  RETURN entrypoint, preventrypoint 

RETURN null, null 
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BINARYSEARCH (displacementmap, inf, sup, entryray) 

error ← threshold 

WHILE  error < threshold 

 midpoint← (inf + sup)/2 

 middepth ← read displacementmap at midpoint 

 midpoint← adjust for middepth 

 best ← closest to midpoint between inf and sup  

 IF inf = best 

  sup = (inf+sup)/2 

 ELSE 

  inf = (inf+sup)/2 

 error ← distance to midpoint from best 

RETURN best 

 

RENDERING (renderqueue, camera) 

FOR impostor in renderqueue 

 send a point to the vertex shader 

 billboard ← draw and expand point to a billboard in the geometry shader 

 rasterizedfragments ← rasterize the billboard into fragments 

 FOR fragment in rasterizedfragments 

  displacementmap ← get displacement map of impostor 

  depth ← get impostor depth 

  cameraray ← ray from camera to pixel 

  entrypoint ← coordinates of displacement map entry point, adjust to depth 

  entryray ← transform cameraray to local depth adjusted space, 

  inf, sup ← LINEARSEARCH displacementmap, entrypoint 

  IF nextpoint, prevpoint not null  

   intersection ← BINARYSEARCH displacementmap, inf, sup, entryray  

   fragmentcolor ← shade intersection 

   fragmentcolor ← background color 

 OUTPUT fragmentcolor 

 

 The process of rendering with hierarchical impostors is displayed in Figure 31. 

 

Figure 31 Rendering Hierarchical Impostors. The first step is to create a billboard, mapped with the impostor 

textures. In the second step, the billboard is displaced with the creation depth of the impostor. In the third step the 

surface-camera intersection point is accurately determined through linear search followed by binary search. All the 

impostors are saved in the impostor cache, uniquely identified by the tuple of scene node, view angle and view 

distance. 

The proposed hierarchical impostor technique differs from the state of the art through its 

virtual texture integration, and through its explicit construction over many scene nodes. Because 

of the hierarchical nature of the proposed method it decreases the complexity of the rendering 

process from            to                . 
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3.3. Task Generation for Rasterization 

Task scheduling on the GPU has been an important area of research in the last years 

[Gro13] [Gup12] [Jog13] [Tze12] [Mem12] because it maximizes GPU efficiency by 

minimizing CPU control. The additional GPU tasks, also called dynamic tasks, and the process 

through which they are created is called dynamic parallelism. The advantage of this technique is 

that it brings a significant simplification in solving massive parallel problems by offering 

superior performance and software design opportunities. Driver developers have also been 

offering this functionality for GPGPU programming languages like CUDA 5 [NVI15], OpenCL 

2.0 [KHR14] or Mantle [AMD15].  

These task generation and scheduling efforts are from a GPGPU perspective since the 

standard rasterization graphics pipeline is expected to schedule and dispatch the threads on 

which the specialized programs named shaders run. The task creators vary in complexity from 

small task generators, which only generate GPU work to full blown GPU task schedulers, which 

manage the parallelization of recursively generated tasks. 

A special GPU task scheduler governs these shader invocations, but it is impossible to be 

directly controlled, therefore it is impossible to add general tasks to this scheduler manually. 

Current directly controllable GPGPU task scheduling solutions such as [Gup12] [Jog13] [Tze12] 

[Mem12] do not concern themselves with offering control over the GPU rasterization task 

scheduler, thereby making GPU rasterization programs unable to generate additional task 

without CPU control. There are many situations in which rasterization based GPU programs 

need to generate additional tasks, for example in the case of hierarchical culling, extreme 

tessellation, angle of view dependent rendering or for the evaluation of complex materials. When 

these programs generate computationally heavy GPU threads, the created work can’t be 

parallelized without CPU control. In this section a novel task generator that works within the 

hardware rasterization scheduler is presented, which is based on the “A GPU task generator 

for rendering” article [Pet14].  

The presented method is based on the idea of using the geometry amplification 

capabilities of the hardware rasterization pipeline to generate GPGPU-like tasks. This is 

achieved through the tessellation control, tessellation evaluation, geometry and fragment shaders, 

by using SM5 instructions.  

The original primitives are sent to a modified rendering pipeline. The tessellation and 

geometry stages are either added, if they were missing, or modified to fit the task generator needs. 

In the tessellation control shader the computational effort of the primitive is approximated and it 

is divided into task groups.  

The task groups are evaluated in the tessellation evaluation shader, where other finer 

grained task groups are created, through the geometry shader invocation mechanism.  

In the geometry shader, each fine grained task group is analyzed and a large number of 

tasks are generated for each group.  

In the fragment shader these tasks are executed like GPGPU-like threads. 
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Figure 32 Task Generation on the GPU. The upper part of the image presents the difference between simple task 

generation and recursive task generation. Simple task generation can generate tasks, even recursively, but the 

recursion level is hard capped. Recursive task generation can generate tasks with no limitation. In the second part of 

the image a novel GPU task generator is presented. It can create additional tasks for originator primitives at several 

points in the hardware rasterization pipeline, using the hardware geometry amplification capabilities as task 

generators. Despite the fact that the presented pipeline can generate tasks at several points, it is still not a recursive 

generator, as the number of generation points is limited. 

A small area of GPU memory that is used for keeping basic task information, such as 

thread indexes or basic numeric result codes is utilized as support for thread communication. 

This memory area can be written to and read from any stage of the rasterization pipeline by using 

SM5. The originator primitive first enters the tessellation control shader.  

This originator primitive is first evaluated with an algorithm dependent metric, in order to 

approximate its computational effort. If the metric suggests parallelization is necessary, the 

original primitive set          the number of primitives that will be created by the tessellator. 

These          primitives contain the original primitive and        task groups.  

The original primitive is sent to normal rasterization and follows a normal rendering 

pipeline with a pass-through geometry shader, which generates normal fragments, which are 

shaded as the primitive was supposed to be shaded. The other        primitives are instancing 

with the geometry shader instancing mechanism, reaching a total number of        
           number of instanced primitives in the geometry shader. Each instanced geometry 

shader primitive then uses another algorithm dependent parallelization metric, determining 

         for each     invocation of the geometry shader.          represents the number of 

working threads that will be spawned by each geometry shader invocation. These threads are 

created by drawing a billboard in normalized device coordinates with the following width and 

height. 
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The billboard is then rasterized and spawns          fragments, which will be computed 

like GPGPU-like threads with the help of SM 5 instructions. The total number of spawned 

threads is                             . The GPGPU like fragments then take a completely 

different code path than the rendering fragments. Each GPGPU-like thread can read one or more 

tasks from the memory area in which they were written by the geometry shader. Thus, these 

special invocations of the fragment shader solve tasks, write the results back into GPU memory 

and do not write to the framebuffer. Thus, uneven rendering efforts are effectively parallelized in 

a manner that is both easily implementable and extremely efficient while working within the 

rendering pipeline. The pseudocode for the presented method is the following: 

(ONCE) PREPROCESS 

allocate sharedmemory for task communication 

TESSELLATION CONTROL SHADER (originator primitives) 

FOR  primitive in originator  primitives 

 approxcost ← use algorithm dependent metric to approximate primitive rendering cost  

 IF approxcost > threshold  

  tessellationfactors, primitives  ←  set to generate          primitives          
  primitives  represent task groups 

 primitive  is sent down the pipeline to normal rasterization  

TESSELLATION EVALUATION SHADER (processedprimitives)  

FOR primitive in processedprimitives 

 IF processedprimitive = original primitive 

  send processedprimitive to the normal rasterization path 

 ELSE 

  create taskgroup 

  sharedmemory← write taskgroup 

GEOMETRY SHADER (instances, primitives) 

FOR primitive in primitives 

 IF primitive is originator primitive 

  fragments ← render primitive normally 

 WHILE instances>0      //INSTANCING 

  width ← 
            

                                      
 

  height ← 
  

            
    

  taskinfo ← sharedmemory 

  generatedtaskgroups ←generate task groups for taskinfo 

  sharedmemory ← generatedtaskgroups 

  gpgpufragments ← rasterize screen space billboard with width and height 

  instances ← instances - 1 

FRAGMENT SHADER (fragments) 

FOR fragment in fragments 

 IF fragment rendered normally  

  render normally 

 ELSE 

  taskinfo ← sharedmemory 

  result ← solve task  

  sharedmemory←result 
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This method can be extend to a fully extensible task generator by reading back the 

fragment tasks to the CPU and drawing a primitive linked to the fragment task. The primitives 

could follow the same task generation pipeline, without the normal rendering path. However, this 

task generator method was designed for rendering tasks which need to generate task trees with a 

large number of tasks but with a low height, for which this method is ideal. 

 

Figure 33 Task Generation Results. The left side of the image presents a simple rendering scenario, where many 

particle systems are drawn, and each particle system can in turn generate other particle systems. With Dynamically 

Not Parallel (DNP) methods the rendering time rate of growth is much larger than with the presented method. This 

is caused by the DNP inability to parallelize the computing effort, leading to a small number of computationally 

heavy threads. The presented method efficiently parallelizes the rendering effort. 

The presented method efficiently parallelizes uneven rendering efforts, as presented in 

Figure 33 and Table 4. This task generator for rasterization rendering is fully compatible with the 

entire consumer hardware rasterization based rendering pipeline, working through the GPU 

rasterization scheduler. It is able to generate new tasks efficiently, without requiring 

preprocessing. It also doesn’t monopolize the hardware resources compared to existing GPU task 

schedulers and generators, which usually control the entire pipeline.  

Rendering method/ Tasks 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M 1.1M 

DNP min 0.06 0.11 0.12 0.25 0.31 0.34 0.33 0.38 0.45 0.44 0.62 
DNP  0.07 0.15 0.25 0.30 0.38 0.35 0.35 0.48 0.60 0.63 0.76 
DNP max 0.0 0.16 0.28 0.34 0.50 0.40 0.43 0.50 0.70 0.84 0.93 
TaskGen min 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 
TaskGen 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 
TaskGen max 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.04 0.06 
Table 4 Task Generator for Rendering Results. This table presents the memory usage obtained during dataset 

reconstruction with different sizes, using the Chunked Marching Cubes algorithm. The table shows that there is an 

optimal chunk size and that chunk overlapping can become counterproductive for very small chunks. 

The task generator was not designed for full recursion, but it can be configured to be run 

as a fully recursive task generator. The reason behind this choice is that in rendering, the 

dynamic tasks are rarely required to create deep tree tasks themselves. Without the obvious 

exceptions like ray and path tracing, which are usually handled in specialized pipelines, the 

potential dynamic rendering tasks for which a task generator would be useful in a rasterization 

context are usually leafs, or close to leafs in the task graph. 
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3.4. Hierarchical GPU Culling 

Massive scenes produce extremely large amounts of processed data. This is especially 

important from a geometric standpoint in rasterization, since the camera-surface intersections are 

obtained without order. Because of this, performant culling algorithms are vital to a high quality 

rendering pipeline. There are various types of culling, such as view frustum culling, which culls 

objects outside the visual volume, occlusion culling, which culls object objects occluded by other 

objects inside the visual volume, or distance culling, which culls objects if their projection is 

smaller than a given threshold. Because of the large number of operations involved in culling, 

such algorithms almost always use acceleration structures to decrease operation complexity.  

State of the art methods [Bit04] [Gut06] [Mat08] [Mat15] [Zha97] [Mar11] [Déc05] 

[Bar12] either use geometry impostors or are not hierarchic or are dependent on costly 

synchronization operations. Because of this there is an opportunity for improvement in this area. 

Hierarchical GPU Culling is a hierarchic view frustum culling method, which runs entirely on 

the GPU, without CPU interference and without precomputation. Hierarchical GPU Culling is 

not limited to geometric impostors but can benefit from their presence. The algorithm is based on 

the previously presented GPU task generation mechanism and introduces multiple frames culling, 

where objects are culled for many frames. 

The most relevant state of the art methods used today in culling are CHC++ [Mat08]  and 

Hierarchical Occlusion Maps [Zha97]. While CHC++ can be adapted to an integral GPU 

algorithm with hardware occlusion query buffers or through the use of a stack [Mat15], it is still 

limited by the synchronization time introduced by waiting for rendering batches to finish.  

 

Figure 34 Coherent Hierarchical Culling. The algorithm works by rendering all the objects which were visible 

during the previous frame and then renders all their children recursively, until children are culled. In the image the 

nodes which were visible during the previous frame are colored in green and the nodes which were not are colored 

in red. The nodes which are tested for visibility during the current thread are encased in blue disks. The algorithm 

determines visibility through view frustum culling tests and hardware occlusion queries. CHC has been improved 

with CHC++ which uses statistics and multi-queries to decrease the number of occlusion queries. The weakness of 

CHC is that in order to render the children of a node, the node in cause has to be labeled visible, and therefore has to 

be rendered and occlusion queried. A CPU-GPU synchronization and wait event can appear because of this behavior. 

This behavior can be attenuated with a GPU implementation of CHC++. 

The CHC algorithm processes the scene tree hierarchically, rendering only what needs to 

be rendered. Because of this the algorithm works correctly without pre-processing. On the other 

hand the nature of the algorithm makes it to translate poorly to GPUs, since there are many 

synchronization after wait events, which are not compatible to many core computing. CHC++ 
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has problems especially with complex depth distribution scenes such as forests, where it is hard 

to define a visibility hierarchy. CHC++ is presented in Figure 34. 

CHC++ is prone to frame rate fluctuations produced by an uneven per-frame number of 

synchronization and wait events and it can sometimes perform considerable extra work by 

rendering without testing the objects which were visible during the previous frame. Furthermore, 

CHC++ can’t handle alpha accumulation and culls objects only for the current frame. Scenes 

with dynamic objects are particularly difficult for CHC algorithms because of the large changes 

between frames. 

Hierarchical Occlusion Maps has been adapted into Hierarchical Depth Culling [Rak15], 

which is an integral GPU algorithm.  Hierarchical Depth Culling uses the depth buffer as the 

original occlusion map, creating the occluder hierarchy based on it, and then culling against this 

hierarchy. Compared to Hierarchical Occlusion Maps, Hierarchical Depth Culling performs the 

visibility test on all the pixels on which an object is projected by approximating the tested objects 

with bidimensional bounding boxes which are then tested against a single pixel from one of the 

mipmaps of the depth buffer. It is an approximate algorithm in the absence of a strong visibility 

constraint such as geometric impostors. Such impostors are precomputable for a large majority of 

objects, but they are impossible to apply to high geometric frequency objects such as trees and 

fences. Another problem of Hierarchical Depth Culling is that it cannot reach maximum 

efficiency without front to back sorting. Because all the culling is performed relative to the 

previous frame buffer, Hierarchical Depth Culling is prone to a number of temporal artifacts. The 

algorithm is presented in Figure 35. 

 

Figure 35 Hierarchical Depth Culling. The left side of the image presents a blue object that is currently tested for 

depth. The right side of the image presents the depth buffer obtained from the previous frame, along with all its 

mipmaps. Hierarchical Depth Culling tests the visibility of the blue object by extending it to a screen space 

bidimensional bounding box, and then culling against a single pixel from the best fitting mipmap of the previous 

frame depth buffer, as shown on the right side of the image. The best fitting mipmap is chosen based on the size of 

the extended bidimensional bounding box of the tested object. 

In this subchapter a new hierarchical culling algorithm is introduced, which handles 

occlusion through hierarchical depth culling, when impostor geometry is available and view 

frustum culling through a hierarchical GPU algorithm, based on the task generator for 

rasterization presented in Chapter 3.3. The presented algorithm is integrated with the hierarchical 

impostors system presented in Chapter 3.2 and uses a multi-frame culling scheme which can 

greatly decrease computational costs. The culling method writes the visible objects in a buffer, 

which is rendered with indirect rendering. This method can also be implemented with dynamic 

parallelism.  
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The culling algorithm is based on task generation, generating new tasks for each child of 

scene nodes which were evaluated as visible. If the height of the resulted tree is higher than the 

number of task generation points supported, than the algorithm is run in several runs or the 

superior part of the tree, which represents a very small percent of the culling effort, is computed 

on the CPU. The latter case is desirable because it guarantees the creation of sufficient work for 

the GPU. The algorithm can be implemented in GPGPU fashion with the help of dynamic 

parallelism, which is easier to implement, therefore the rasterization variant of the algorithm is 

presented. The presented culling method requires no preprocessing and does not maintain data 

structures which require synchronization, such as the priority queue from the coherent 

hierarchical culling algorithms. The interaction with the CPU is minimal, the CPU is only used 

to generate a sufficient amount of work for the GPU, after which the algorithm is CPU 

interference free. The algorithm is depicted in Figure 36. 

 

Figure 36 Hierarchical GPU Culling. The upper part of the image presents that some CPU work is required to create 

sufficient work to elicit GPU culling. The left side of the image displays a path taken through a scene tree. The right 

side of the image presents both GPGPU and Rasterization paths that can be used by the presented algorithm. The 

rasterization path uses principles from the task generator presented in Chapter 3.3. 

The preprocessing required by the presented technique is minimal, as only a scene tree 

which guarantees a small number of children is required. The algorithm has been tested with a 

scene tree with structure of maximum     children per scene node. 

The culling algorithm starts by allocating a large index array, where the indices of the 

visible scene nodes will be stored. The method then starts to generate a sufficient amount of 
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work for the GPU, by computing view frustum culling and occlusion culling, depending on the 

usage of Hierarchical Depth Culling.  

After sufficient GPU work has been generated, each scene node that is to be tested for 

visibility is sent to the graphics pipeline as a vertex of a line strip. The Vertex Shader (VS) 

evaluates each scene node sent and outputs the visibility result to the tessellation control shader. 

If the vertex shader processes a scene node which is both visible and a leaf, the scene node id is 

added to visible nodes list. The Tessellation Control Shader (TCS) evaluates all   children of the 

scene node which was sent to it by the VS, saving the visible leafs to the visible nodes list. The 

TCS sets the Tessellator to generate vertices for    isolines. The Tessellation Evaluation Shader 

(TES) is executed once for each of the generated vertices. Each invocation of the TES evaluates 

the visibility of a scene node, sends the visibility results to the Geometry Shader (GS) along with 

the primitive and saves the visible leaf into the visible nodes lists. The geometry shader is set to 

perform hardware instance   times, and each instance of the GS computes the visibility of one of 

the children of the scene node which was processed in the TES and whose visibility result was 

sent to the GS. If visible leaf nodes are found, they are added to the visible node list. The GS 

then evaluates the visibility of all the children of the node that was sent to the GS, effectively 

evaluating the next level of the scene tree. If visible leaf nodes are found, they are added to the 

visible node list. The GS then creates geometry for N billboards, following the same principles 

as the task generator from Chapter 3.3. Each of the N billboards generates a large number 

fragments which represent leaf tasks, which are sent to the Fragment Shader for evaluation. 

The visible nodes list can be drawn without CPU control, through the use of indirect 

rendering. The culling algorithm can also be made aware of impostors, by maintaining two node 

lists, one for visible nodes which will be rendered geometrically and one for visible nodes which 

will be rendered with impostors. The Hierarchical Impostors presented in Chapter 3.2. can be 

tightly integrated with the presented culling solution, each GPU thread can compute the 

geometry level of detail or impostor for each object, besides performing view frustum culling. 

Occlusion Culling can be handled through the integration of a Hierarchical Depth Culling 

mechanism, but this would make the culling solution inexact and prone to temporal artifacts. 

Multiple frame culling is the final contribution of the presented culling algorithm. 

Instead of just culling objects for the current frame, the analysis shows that many objects are 

culled for relatively long durations. While this is difficult to prove efficiently for occluded 

objects, it is relatively easy to do for view frustum culled objects. As presented in Figure 37, 

objects can be trivially culled by just analyzing the speed of the camera.  

If the camera direction is quantified as a solid angle and if it is considered that in real-

time applications the camera has hard caps on its orientation change speed, then the entire scene 

can be partitioned. The partition is based on the idea that the camera would reach the partition 

area only after at least a number of frames at maximum speed, which is usually much less than 

the normal application speed. If an object is stationary inside a partition that is four maximum 

speed frames away from the camera, then it is guaranteed to be culled for the next four frames. 

The same conclusion can be taken for an object whose trajectory can be quickly evaluated on the 

GPU, using a method similar to that described in 3.1, and which is guaranteed to remain in such 

a partition.  
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The only exception happens when the camera is instantly oriented or moved, which is 

naturally handled with a reset of the entire multiple frame culling mechanism. For normal 

camera speed movements the multiple frame culling mechanism can lead to a large decrease in 

computational effort, because it drastically increases the number of operations. Furthermore, 

since the camera suffers reorientations constantly, the set of objects culled for more than one 

frame varies in time, therefore the starting set of five frames culled objects, as depicted in Figure 

37, will not all reach reevaluation concomitantly. Therefore, the multiple frame culling 

computations are amortized over different frames. The amortization can further be sophisticated 

with an implicit checking order over the culled frames. 

 

Figure 37 Multi frame culling. The image shows that the entire scene can be partitioned into radial zones, based on 

the smallest number of frames it would take the camera to reach them, while rotating at maximum speed. This 

optimization can lead to large computational cost decrease in many common rendering scenarios. 

Storing the number of culled frames does not have to be performed inside a large 

precision number, because the maximum speed for camera in real-time applications is relatively 

large. The solution of an additional byte for each scene node, one bit to distinguish between leaf 

nodes and other scene nodes, four bits to store the number of frames culled, one bit to determine 

if the object is transparent or not and one bit to determine if the object is a light or not. With each 

passing frame the previously culled object will be have their count recomputed or decreased.  

Since the algorithm is constructed with an object partitioning scheme in mind, like BVH, 

it is sufficient to decrease the multi frame culling value for an invisible parent and to update the 

child number of culled frames the next time it is walked, by comparing the multi frame culling 

value with that of its parent. If the value is greater, then the child has not been reached for a 

sufficient duration that its number of culled frames is guaranteed to have expired.  

The pseudocode for the culling algorithm is shown on the next page. 
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CPU (root, camera) 

initialize indexarray← 0 

initialize numframesarray←0 

childlist ← root 

WHILE size of childlist < threshold 

 list ← childlist 

 childlist ← Ø 

 FOR node in list 

  IF node visible 

   FOR childnode of node 

    childlist ← childlist   childnode 

 IF dynamic parallelism available  

  indexarray ← DYNAMIC (childlist) 

 ELSE 

  FOR node in childlist 

   indexarray ← indexarray   VERTEX (node) 

 renderqueue ←use indexarray to generate rendering queue 

 draw renderqueue 

 

EVALUATE(node, camera) 

aabb ←axis aligned bounding box of node 

visible, camerazone ← compute View Frustum Culling with aabb 

IF visible 

 indexarray ← set visible in index array 

ELSE 

 numframes ← get the number of frames from camera to camerazone 

 numframesentry← numframesarray, node 

 IF numframes >numframesentry 

  numframesarray←set numframes 

IF occlusion culling available 

 COMPUTE occlusion culling 

RETURN visible 

 

DYNAMIC (nodes, camera) 

FOR node in nodes 

 visible ← EVALUATE(node, camera) 

IF visible 

 children ← get node children  

 DYNAMIC(children, camera) 

 

VS (node, camera)  

visible ← EVALUATE(node, camera) 

IF visible 

 children ← get node children  

 FOR childnode in children 

  TCS(childnode, camera) 

TCS (node, camera)  

visible ← EVALUATE(node, camera) 

IF visible 

 children ← get node children  

 FOR childnode in children 

  visible ← EVALUATE(childnode, camera) 

  IF visible 

   grandchildren← get childnode children 

   FOR grandchildnode in grandchildren  

    TCS(grandchildnode, camera) 

Set TES to run for total number of grandchildren 
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TES (node, camera)  

visible ← EVALUATE(node, camera) 

IF visible 

 children ← get node children  

 FOR childnode in children 

  visible ← EVALUATE(childnode, camera) 

  IF visible 

   grandchildren← get childnode children 

   FOR grandchildnode in grandchildren  

    GS(grandchildnode, camera) 

 

GS (node, camera)  

instances←scene tree max number of child nodes  

FOR instance in  instances 

 ichild  ← ith child of node 

 visible← EVALUATE  ichild 

 IF  visible 

  FOR  child  of  ichild 

   visible ← EVALUATE  child 

   grandchildren , numgrandchildren ←number of children of child 

   width ← 
                     

                                      
 

   height ← 
  

            
–    

   billboard ← create a billboard in NDC with width and height 

   fragments← RASTERIZE(billboards) 

   FOR fragment in fragments 

    grandchild ← pop grandchildren 

    FS(grandchild, camera) 

FS (node, camera)  

 EVALUATE (node ,  camera)  

 

If the algorithm is used in combination with hierarchical occlusion culling, a minor 

optimization is to conservatively approximate opacity per pixel, and cull the object against the 

opacity occlusion. On the other hand this optimization can only be implemented with occlusion 

impostors. 

Compared to the state of the art, the presented Hierarchical GPU Culling method runs on 

the GPU without CPU interference, without synchronization and wait mechanisms. It runs 

hierarchically and while it does not explicitly solve occlusion culling it can be tweaked to use 

Hierarchical Depth Culling. The presented algorithm uses a multiple frame culling mechanism, 

which can cull objects for more than one frame, lowering computational costs. The culling 

algorithm is integrated with the hierarchical impostor method presented in Chapter 3.2 and can 

also be implemented with dynamic parallelism.  

The presented technique draws without CPU interference, by using indirect rendering. 

The algorithm has been tested on very large scenes with different object distributions, 

such as the ones presented in Figure 38, with results culling results slightly inferior to those of 

CHC++ but with superior running time due to lack of CPU synchronization and to the better fit 

of the algorithm to the GPU many core architecture.  
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Figure 38 Hierarchical GPU Culling Results. The presented hierarchical GPU Culling algorithm has been tested on 

large scenes with different object distributions, such as the ones displayed in the image above. The view on the left 

is especially difficult to cull, because it is extremely incoherent spatially. Scenes with a large number of objects 

benefit greatly from multiple frames culled objects. 

3.5. Opaque Rasterization  

Opaque rasterization represents the process through which opaque objects are rasterized. 

The majority of rendered objects in real-time scenarios are opaque; therefore this area of 

rasterization based rendering has been thoroughly examined. Yet, with new opportunities offered 

by increasingly performant consumer hardware raise new opaque rasterization challenges, 

especially in bandwidth and memory usage.  

In massive scenes opaque rasterization is usually performed with multiple depth frusta 

[Coz09], because the depth precision isn’t stored in a linear format but in one directly 

proportional to the inverse of depth.  

As the precision is not stored linearly and the resolution of the depth buffer is biased 

towards the near clipping plane and not towards the far plane, fragments from objects that are 

rasterized close to the far plane can suffer from an effect called z-fighting, where the z-Buffer 

algorithm returns incorrect results due to lack of precision. Because of this, even 32 bits of 

resolution are not sufficient for increasingly complex scenes.  

The depth precision problem is illustrated in Figure 39.  [Ree15] offers an in-depth 

discussion on this topic. A common solution to this problem is to modify the resolution of the 

depth buffer through multiple depth frustums [Coz09], or through modify the distribution of the 

depth samples with a logarithmic depth buffer [Coz09]. On the other hand a logarithmic depth 

buffer writes depth explicitly and this prevents critical rasterization optimizations [Gre93].  

An efficient approximate solution to depth precision is displayed in Figure 39. The depth 

range can be reversed, from the normal 0 to 1 to 1 to 0, which has the effect of bringing the depth 

sampling closer to a uniform sampling distribution. This method is named the semi logarithmic 

depth buffer [Ree15].  
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Figure 39 Depth Precision. The image on the left shows a normal depth buffer, and it shows that depth does not 

vary linearly, as it varies with 1/z. It shows that the hardware depth buffer allocates more precision in the proximity 

of the near clipping plane, and that precision decreases rapidly as the depth values approach the far clipping plane. 

This can adversely affect the stored depth values and lead to the incorrect Z-Buffer results, which lead to the z-

fighting effect. A solution to the depth precision problem is presented on in the right side of the image, in which the 

depth range is reversed. This is called the quasi logarithmic depth buffer, and it samples with a close to uniform 

distribution. Images from [Ree15]. 

Wrinkled surface rendering is a subfield of rendering which studies the detailed rendering 

of low frequency geometric meshes, which are augmented with visual detail stored in textured 

maps. There are two major directions for wrinkled surface rendering: mesh tessellation, which 

reconstructs geometry at a geometric level and mesh mapping, which reconstructs the geometry 

only in aspect.  

Mesh tessellation [Bou081] [Loo09] [Dyk09] creates a large amount of vertices which 

are then displaced with displacement mapping, and which can exactly reconstruct a low 

frequency mesh. The weakness of this approach in the context of rasterization is in the resulting 

rendering alias, because a large number of created vertices is projected on a small number of 

pixels. This large number of vertices has to be heavily multisampled, in order for the geometric 

signal to be properly reconstructed; otherwise the pixel will show aliasing. Furthermore, the 

computational cost can be extremely high in exceedingly tessellated scenes. For this approach to 

be productive, the tessellation level has to adapt to the projected surface size, a method named 

adaptive tessellation. 

In the context of rasterization rendering, mesh mapping [Bli78] [Coh98] [Kan01] [Bra04] 

[Tat06] [Pre06] [Pol07] is a more efficient alternative, because it works at pixel level. This 

approach is less computationally expensive and produces better visual results than extreme 

tessellation. On the other hand mesh mapping isn’t as expressive as judicious tessellation, and 

usually mesh tessellation and mesh mapping are both applied, tessellation for the large sub-

polygonal details and mapping for pixel-level effects. 

The presented pipeline uses a combination of adaptive tessellation with Gregory Patches 

[Loo09] and adaptive use of either parallax iterative mapping [Pre06] or normal mapping 

[Coh98], depending on distance and angle of view. This combination is easy to tweak for 

different surfaces and minimizes aliasing without entailing an excessive computational cost. 

Screen space parallax mapping [Lob08] can also be used, but it is prone to reconstruction 

artifacts, especially for small on-screen contributors. The wrinkled surface rendering path is 

described in Figure 40. 
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Figure 40 Wrinkled Surface Rendering. Tessellation is described in the lower part of the image, where each triangle 

is adaptive tessellated and displaced using either displacement map information or Gregory Patches, which is 

displayed in the right lower corner and is used if no displacement information is available. The superior part of the 

image displays several mesh mapping render paths: no wrinkled surface, normal mapped, iterative parallax mapped, 

offset limited iterative parallax mapped with soft shadows. 

Wrinkled surface rendering requires working in the tangent space, which either means 

asset preprocessing or tangent space reconstruction during rendering [Sch06] [Sch15]. In the 

case of asset pre-processing this can be performed geometrically, by storing the tangent as a per-

vertex attribute or through derivative maps (dudv), such as the ones depicted in Image 24. 

Tangent space reconstruction is performed analytically with screen space derivatives [Sch15], 

which are computed using the depth data available from the geometry buffer.  

This is the pseudocode for the wrinkled surface rendering path: 

TCS (primitive, camera) 

ssaabb ← projected primitive screen space bidimensional bounding box 
N ← number of pixels in ssabbb 

normal ← normal of primitive 

center ← center of primitive 

cameraray ← ray from camera to center 

A ← angle between cameraray and normal 
IF N > threshold      
 IF A < threshold     
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  generatedvertices, tessellationfactors ←  set tessellation factors to tessellate primitive 

  controlpoints ←  Ø 

  IF displacementmap available 

   FOR vertex in primitive 

    controlpoints ← controlpoints   vertex 

  ELSE 

   cornerpoints ← gregory corner control points             

   edgepoints     ← gregory edge control points    
    

    
    

    
    

   

   facepoints      ← gregory face control points    
    

    
    

    
    

   

   specialpoints ← gregory special control points            

   controlpoints ← cornerpoints   edgepoints   facepoints   specialpoints 

  FOR vertex in generatedvertices 

   TES ( controlpoints) 

ELSE 
 FOR vertex in primitive 
  TES (vertex) 
 

TES (controlpoints) 

barycentric ← obtain barycentric coordinates from tesselator 

IF displacementmap available 

 position, normal← compute position and normal with barycentric and controlpoints 

 displacement ← read from displacementmap 

 displacednormal← read from normalmap, use normal to compute tangent space 

 displacedposition ← displace position with displacement 

ELSE 
 displacednormal, displacedposition ← controlpoints 
RASTERIZE vertex with displacementnormal and displacementposition 

 

FS (position, normal)  

camera ← get rasterization camera 

IF tangent not available 

 derivatives ←compute derivatives required for tangent space reconstruction 
 tangentspace ← reconstruct tangent space with derivatives 
IF not alpha culled 

 fragmentdistance ← distance from camera to position 

 IF fragmentdistance < high quality threshold  

  fragmentcolor ← parallax iterative mapped with secant, soft shadows , textured 

 IF fragmentdistance < high quality threshold 

  fragmentcolor ←parallax iterative mapped with secant, textured 

 IF fragmentdistance < medium quality threshold 

  fragmentcolor ←normal mapping, textured 

 ELSE 
  fragmentcolor ←textured 

 OUTPUT fragmentcolor 

 

Opaque surface rendering usually represents the largest computational effort in 

rasterization rendering, therefore the computational cost of this process has been analyzed in 

depth. Deferred and decoupled algorithms separate the geometry processing and shading 

operations, in an effort to minimize the surface-light-camera interactions. The presented pipeline 

is based on the same principle. The problems with deferred and decoupled algorithms appear 

when they are analyzed more thoroughly. In general, these algorithms suffer from high 

bandwidth, high geometry or high storage costs.  
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3.5.1. Analyzing Deferred Rendering 

In opaque rasterization rendering process each camera-surface interaction is computed, 

and, through the z-buffer algorithm, the closest camera-surface interaction is determined and 

displayed on screen. This can lead to a large amount of unneeded computations, such as shading 

occluded fragments, which can be avoided by using deferred methods, as shown in Figure 41. 

 

Figure 41 Why deferred. The upper part of the above image presents the surface-camera interactions which take 

place over a Pixel. A large number of per-pixel interactions can take place in complex scene, thus shading occluded 

interactions would be a very large and useless computation effort. Deferred rendering is widely used in real-time 

rendering applications because it does not shade occluded fragments, shading only the fragments visible on screen. 

It does this by storing shading information (depth, normals, colors, roughness, etc) in large screen sized buffers, 

which are then lit and shaded, as presented in the lower part of the image. 
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Deferred rendering decreases the number of shaded surface-camera interaction by 

shading only the interactions which are visible on the screen. Because of this, deferred rendering 

drastically lowers the complexity of opaque object rasterization rendering from          
         to                  . This complexity reduction is one the main reasons, for which 

deferred rendering is extremely popular in real-time rendering applications. 

The deferred rendering idea has been further advanced with deferred decoupled rendering 

[Lik12], which completely decouples shading samples from fragments. While the idea of 

deferred rendering is simple, the implementation details have created difficult to solve problems 

such as correct anti-aliasing integration, transparent object integration, bandwidth and shading 

decoupling, light-surface acceleration and so on. Because of these problems, there are a large 

variety of methods which take different approaches to opaque rasterization, but these methods do 

not have taxonomy and lack more in-depth metrics to improve their comparison.  

Deferred methods can be classified by the number of geometry passes: single geometry 

pass and multiple geometry pass. Deferred methods can also be classified by the surface-light 

interaction method which can either be implicit, explicit or decoupled. A large part of the 

deferred algorithms can be adapted to either be single or multiple geometry pass methods. Single 

pass methods have lower geometry processing costs, while multiple pass methods usually have 

lower bandwidth. 

 The implicit methods [Lee09] [van13] [Thi09] [Mar14] [Hol13] [Seg06] accelerate 

intersection of lights and objects through the raster grid structure, which acts as an implicit 

bidimensional associative array, in which the objects are binned, and in which the objects 

intersecting the lights are queried during the rasterization of lights, in the lighting stage.  

Explicit methods [Tre09] [Lau12] [Ols12] [Ols11] [Har12] [Hob09] [Bur13] use 

acceleration structures instead of the raster grid. These include bitwise lists, per-pixel lists, tiles, 

2.5D tiles and clusters. These explicit acceleration structures appear to not be hierarchic but it is 

only an appearance. When the structures are filled through rasterization of all lights, the raster 

hierarchically [Gre93] intersects them (as fragments) with the screen, and consequently with the 

acceleration structure. Thus, explicit structures are still created hierarchically. 

Decoupled methods [Lik12] [Cla13]  run rendering stages at distinct sampling rates, 

where the samples are linked through many-to-one or many-to-many mappings in addition to 

other acceleration structures. The disadvantage of the current state of the art decoupled methods 

is that they are still very expensive for the consumer hardware. 

This thesis separates bandwidth consumption, processing cost, storage (memory) cost, 

and state cost, in order to ease the comparison between deferred methods. The different 

performance metrics can also be used to switch between deferred algorithms during rendering, 

depending on the situation, in the same spirit as hybrid deferred rendering [van13]. 

A comparison of state of the art deferred algorithm is provided in Table 5 and Table 6. 

While the presented comparison does not provide the measurement equations for the proposed 

metrics, the equations can be found together with the original analysis in the “Analyzing 

Deferred Rendering Techniques” article [Pet15].  

 



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

113 

 

 

Algorithm\Criterion Light-Object 

Intersection 

Acceleration 

Transparency 

Support 

Hardware MSAA 

Support 

Light Data 

Access 

Pattern 

Shading Data 

Access 

Pattern 

Forward implicit yes yes random random 

Depth Pre Pass implicit no yes random random 

Deferred implicit no no sequential random 

Deep Deferred implicit partial depends sequential random 

Light Pre Pass implicit yes yes sequential random 

Deferred Transparency implicit partial no sequential random 

Light Indexed Deferred explicit no no random sequential 

Light Indexed Forward explicit yes yes random sequential 

List Light Indexed Deferred explicit no no random sequential 

List Light Indexed Forward explicit yes yes random sequential 

Tiled Deferred explicit no no random sequential 

Tiled Forward explicit yes yes random sequential 

Forward+ explicit yes yes random sequential 

Clustered Deferred explicit no no random sequential 

Clustered Forward explicit yes yes random sequential 

Deferred++ decoupled yes yes random sequential 

Deferred Decoupled Sampling decoupled yes no random sequential 

Sort based deferred decoupled yes yes random sequential 

Table 5 Deferred Algorithms Comparison - I. The table provides a basic comparison of deferred rendering 

algorithms with respect to data access patterns and functionality. 

Algorithm\Criterion Decouples 

texture 

sampling 

Decouples 

vertex 

attributes 

GPU 

Commands 

Cost 

Processing Cost Allocated 

Memory 

Cost 

Bandwidth 

Cost 

Forward no no very high very high very low very high 

Depth Pre Pass no no very high high low low 

Deferred no no low low high high 

Deep Deferred no no low high very high very high 

Light Pre Pass no no high high low low 

Deferred Transparency no no low high very high very high 

Light Indexed Deferred no no low low high high 

Light Indexed Forward no no high high high low 

List Light Indexed Deferred no no low low high high 

List Light Indexed Forward no no high high high low 

Tiled Deferred no no low low high high 

Tiled Forward no no high high low low 

Forward+ no no high high low low 

Clustered Deferred no no low low high high 

Clustered Forward no no high high low low 

Deferred++ yes no low high low low 

Deferred Decoupled Sampling yes no high high high low 

Sort based deferred yes yes low high high low 

Table 6 Deferred Algorithms Comparison - II. The table provides a comparison of deferred rendering algorithms, by 

showing the approximate costs in different metrics. 

 The only state of the art algorithms that completely decouple texture sampling from 

visibility determination are all very costly from a processing standpoint because they either use 

expensive GPU synchronization to implement a cache, or completely reconstruct the geometry 

with all the attributes per fragment. In the next subchapter a novel deferred algorithm is 

introduced, called virtual deferred, which decouples texture sampling from visibility 

determination, while still having processing costs comparable to light pre pass deferred rendering. 
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3.5.2. Virtual Deferred 

A common problem with state of the art algorithm is that they either decouple shading 

bandwidth from visibility determination and perform a multiple geometry passes or couple 

shading bandwidth with visibility determination and perform a single geometry pass. No 

deferred technique decouples visibility determination from texture and shading bandwidth and 

renders the geometry only once. This thesis introduces virtual deferred, a new deferred algorithm, 

which is able to perform this decoupling in a single geometry pass, based on the article “Virtual 

Deferred Rendering” [Pet151]. 

The introduced algorithm is a combination between virtual data methods and deferred 

algorithms, using the virtual texturing mechanism to store only critical geometric and 

texturing data in a small modified geometry buffer, consuming texture bandwidth only when 

it affects the geometry rendering process, for example for alpha culled or displacement 

mapped objects. In doing so virtual deferred guarantees complete decoupling between visibility 

determination methods, shading bandwidth, illumination and shading. Virtual deferred rendering 

offers these properties without a complex and hard to implement memoization cache, such as the 

one used in decoupled rendering [Rag11] [Lik12]. 

Virtual rendering is based on the idea of using virtual texturing to maximize deferring 

opportunities. Instead of storing texture values inside the G-buffer, the presented method stores 

texture coordinates and their derivatives. Thus, instead of consuming bandwidth for each 

occluded primitive for which textures are read, saved into the geometry buffer and then 

overwritten, virtual deferred saves only the absolute minimal texturing information. Depending 

on the scene configuration the texture coordinates and their derivates can be packed, as it is 

shown in Figure 42.  

 

Figure 42 Virtual deferred G-Buffer. The image highlights the difference between state of the art geometry buffers 

and the one used in virtual deferred. Compared to state of the art geometry buffers, virtual deferred stores only 

critical texturing information, the texture coordinates and their derivatives. Because of this, when the deferred 

renderer is used in scenes with complex materials, the geometry buffer size scales better for virtual deferred than for 

the state of the art methods. The virtual deferred G-Buffer can also be further decreased in size through texture 

coordinate compression, if the scene configuration supports it. 
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The illumination stage of virtual deferred is identical to the illumination stage of 

clustered deferred, where the lights are first clustered into an acceleration structure and are then 

intersected with the G-buffer. In the shading stage, instead of loading the texture data stored in 

the G-buffer, virtual deferred reads the virtual texture whose coordinates were saved into the G-

buffer. The texture fetches are then performed with the loaded texture coordinates and 

derivatives. Because virtual deferred is based on virtual texturing, it also has the benefit of being 

extremely easy to integrate into a virtual texturing system.  

Virtual deferred can be combined with decoupled sub pixel reconstructed antialiasing 

(DSRAA), an antialiasing algorithm presented in the Post Processing sub-chapter, in the 

Illumination Chapter. The illumination stage of virtual deferred is presented in detail in the 

Illumination chapter. The pseudocode for virtual deferred is: 

(ONCE) PREPROCESS 

IF using multiple frusta 
 frusta ← subdivide the visual volume frustum into multiple frusta 
 N ← number of frusta 
 objects[N], lights[N], lightgrid[N], depthbuffer[N], Gbuffer[N], visibilitybuffer[N] ← Ø,init 
 FOR object in objects 
  FOR frustum in frusta 
   i← frustum number 
   IF object in frustum 
    IF object visible 
     objects[i] ← objects[i]   object 
 FOR light in lights 
  FOR frustum in frusta 
   i← frustum number 
   IF light in frustum 
   lights [i]← lights[i]  object 
 SORT frusta in front to back order 

ELSE 

 frusta ← frustum 

 

GEOMETRY STAGE (objects)  

FOR frustum in frusta 

 IF using multiple frusta and frustum not first  //MULTIPLE FRUSTA ZBUFFER 

  prevfrustum← get previous frustum from frusta 

  prevdepthbuffer ← get depth buffer of prevfrustum  

  depthbuffer ← frustum depth buffer  

  FOR pixel in screenpixels 

   prevdepth← prevdepthbuffer value for pixel 

   IF prevdepth < far distance of prevfrustum 

    depth ← near distance of frustum 

 i ← frustum index 

 FOR object in frustumobjects[i] 

  IF using DSRAA 

   fragments, visibilitysamples ← render object, generate fragments 

   visibilitybuffer[i]← visibilitysamples(depth, normal optional) 

  ELSE 

   fragments ← render object, generate fragments 

  FOR fragment in fragments 

   IF fragment is visible 

    depthbuffer[i] ← update 

   Gbuffer[i] ← store fragment data into virtual deferred gbuffer 
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LIGHTS STAGE(lights)  

FOR frustum in frusta 

 i ← frustum index 

 FOR light in lights[i] 

  depthbuffer[i] ← depth buffer of frustum, created in GEOMETRY STAGE 

  fragments ← render light, generate fragments, cull using depthbuffer[i] 

  FOR fragment in fragments 

   IF fragment is visible 

    cluster ← determine location in lightgrid[i] 

    cluster ← cluster  light 

 

VIRTUAL TEXTURE STAGE 

streamlist ← Ø 

FOR frustum in frusta 

 i ← frustum index 

 FOR pixel in Gbuffer[i] 

  IF pixel depth < frustum max depth 

   texderivatives ← load texture derivatives from pixel in Gbuffer[i] 

   material ← material of pixel 

   FOR texture in material 

    texmipmap ← determine mipmap level of texture with texderivatives 

    IF texmipmap not in virtualtexture 

    streamlist ← streamlist   texmipmap 

IF streamlist not Ø 

 COMPACT streamlist 

 WHILE streamlist not Ø 

  mipmap ← pop streamlist 

  send streaming command to virtual texture to stream mipmap 

  

 The shading stage for the virtual deferred algorithm is discussed in chapter 4.1.4, in the 

illumination chapter, as it is has more to do with light transport than with geometric 

computations. It is described here with an emphasis on the geometric constraints given by the 

multiple frusta, in the 4.1.4 chapter the emphasis is put on light transport and texture fetching. 

SHADING STAGE (fragment)  

FOR frustum in frusta 

 i ← frustum index 

 FOR pixel in Gbuffer[i] 

  visible ← true 

  IF i>0 

   prevdepth ← depthbuffer[i-1] 

   IF prevdepth < max depth for previous frustum  

    visible←false 

  IF visible 

   pixeldata ← load non texturing pixel data 

   texturedata← load texturing data through  virtual texturing 

   diffuse ← compute low frequency illumination with lights[i] and other scene lights 

   specular ← compute high frequency illumination with lights[i] and other scene lights 

   pixelcolor ← diffuse, specular, pixeldata, texturedata 

   OUTPUT pixelcolor 

 

From a complexity standpoint, virtual deferred lowers the storage and texture bandwidth 

complexity, as it is shown in Table 7 and Figure 43.  
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Algorithm\Criterion Single Geometry Pass 

Deferred Rendering 

Multiple 

Geometry Pass 

Deferred 

Rendering 

Decoupled Deferred 

Rendering 

Virtual 

Deferred 

Geometry Processing 1x 2x 1x 1x 

State changes 1x 2x 1x 1x 

Texture bandwidth T*TS*D T*TS T*TS T*TS 

Geometry buffer storage Geometric Information + 

T*TS 

Geometric 

Information 

Geometric Information 

+ memoization 

Geometric 

Information + 2 

Table 7 Virtual deferred and the state of the art. The table compares virtual deferred with state of the art deferred 

rendering families: single geometry pass deferred, multiple geometry pass deferred and decoupled deferred 

rendering. Virtual deferred combines the most desirable properties from each of these algorithm families. 

 

Figure 43 Virtual deferred Results. The upper part of the image shows the rendered scene and the mipmaps levels 

for the rendered textured. Virtual deferred renders the opaque scene objects into a modified G-Buffer, which stores 

only texture coordinates and their derivatives as texturing data, without storing effective texture data. The textures 

data is then loaded in the shading pass, through the texture coordinates and the object id. The lower part of the image 

shows the results of virtual deferred (right), compared to a standard single pass deferred rendered (on the left). The 

images in the lower part encode bandwidth consumption, darker is better. 

The virtual deferred algorithm can be improved with a screen space optimization, in 

which the texture coordinates derivatives are computed through neighbor differentiating, like the 

ddx and ddy instructions in consumer hardware. This optimization further lowers the storage and 

bandwidth consumption of the presented algorithm.  

Virtual deferred is not without problems, the biggest of which is multiple material 

support. Since texel fetching is performed through virtual texturing, it is impossible to texture a 

multiple textured material without storing multiple texture coordinates and their derivatives. This 

is easy to observe in a scene which is lit through precomputed lightmaps. Therefore, care must be 

taken to minimize the number of such problems, especially in systems with heavily varied 
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texturing systems. On the other hand such systems are slowly becoming obsolete as more work is 

performed during rendering and less is precomputed.  

Even so, virtual deferred performs better than the state of the art single pass deferred 

methods, as can be seen in Figures 44 and 45. An analysis of the storage consumption of virtual 

deferred is offered in Figure 44. 

 

Figure 44 Virtual deferred Per Pixel Storage Analysis. The image depicts the storage costs difference between a 

single geometry pass deferred G-buffer, colored in blue, and the virtual deferred G-Buffer, colored in red. As long as 

all the texture in the same material use the same coordinates, a vastly common texturing setup, the virtual deferred 

algorithm will store less bytes pixel than the state of the art single geometry pass deferred. The difference between 

methods grows with the number of materials, as standard G-Buffers have a larger storage complexity than that of the 

virtual deferred G-Buffer. Multiple geometry pass deferred algorithms are not depicted in this image as their large 

geometry processing cost makes them less suitable for massive scenes. 
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 The bandwidth consumption of virtual deferred is compared to the of the geometry buffer 

in Figure 45. It has to be noted that the bandwidth increase in virtual deferred is caused by the 

geometric data processed at a fragment level, as the algorithm loads only the shading data that is 

used for visible objects. If in Figure 45 the geometric bandwidth cost would not be considered, 

and the comparison would be only between the G-buffer and virtual buffer texture fetching 

bandwidth, the virtual buffer would have a constant cost in the number of different texture 

mappings per object, which is normally just one. 

 

Figure 45 Virtual deferred Per Pixel Bandwidth Analysis. The image depicts a comparison in per pixel bandwidth 

consumption between virtual deferred rendering, colored in red, and single geometry pass deferred rendering, 

colored in blue. The measurements are directly performed in texture fetches per pixel, disregarding the number of 

materials, as that would further favorize virtual deferred. The difference between methods grows with the depth 

complexity, as single geometry pass deferred algorithms will consume more bandwidth on occluded pixels. 
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3.6. Transparent Rasterization  

The rasterization of transparent objects has similarities and dissimilarities with the 

rasterization of opaque objects. The triangle projection process, the wrinkled surface methods 

and the material shading code are either identical or very similar. On the other hand the visibility 

determination process is different, caused by the lack of order in surface-camera interactions in 

rasterization.  

Transparent object rendering is usually performed after opaque object rendering, in order 

to not pay the rendering costs for transparent objects that are occluded by opaque objects. 

Transparent rasterization uses the same displacement and parallax algorithms described in 

chapter 3.5.  

The problem of transparent rasterization is very difficult in rasterization because 

transparency is implemented through the composition operator as defined by [Por84], but the 

rasterization process processes the surface-camera interaction in an unordered manner. If    is 

the fragment opacity,    is the fragment color,    is the composited color and    is the 

background color, then the composition operator is defined as in the following equation: 

                   

The equation can be written in front-to-back [Had06] compositing order as: 

 
                

            

  

The equation can be also be written recursively as: 

            

         

     

      
                

         

   

         

   

    

Therefore the existing transparent rasterization rendering techniques either pay a very 

large rendering cost and render the image exactly [Tar10] [Bav08] [Car84] [Bar11] [Mau12] 

[End10] [Sal11] [Sal14], or resort to approximated methods that either approximate the 

composition operator [Mes07] [McG13] or completely redefine it [Sin09] [Jan10].  

In this sub-chapter two new transparent object rasterization algorithms are presented. One 

of them is an exact order independent transparency rasterization algorithm which modifies the 

state of the art GPU implemented A-Buffer method [Bar11], applying virtual data principles to 

decrease bandwidth and storage consumption. The introduced method, virtual order independent 

transparency, distinguishes itself from other state of art algorithms by being a order independent 

transparency algorithm that shades and consumes bandwidth adaptively, stopping when the 

visual contribution decreases under a quality threshold. 

The other one is an approximate method which enhances the state of the art occupancy 

maps with distributions, which artificially increase the occupancy map resolution and adapt to 

the depth configuration of the fragments which were rasterized on the pixel.  
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3.6.1. Virtual Order Independent Transparency 

One of the most successful exact transparent rasterization solutions is the GPU 

implemented A-Buffer method [Bar11] [Mau12], albeit with extremely large storage and 

bandwidth costs. The A-Buffer method can be transformed into a high quality approximation 

method through the usage either stochastical storage [Sal11], or through guards, like in the 

“Guarded Order Independent Transparency” article [Pet152], but it then becomes prone to 

temporal artifacts caused by different approximations in consecutive frames which produce 

aliasing. Therefore, in real-time precision sensitive problems the original algorithm performs 

best.  

While there are several types of high quality and low quality approximation methods, 

some based on the A-Buffer algorithm, the necessity for exact algorithms is easily shown 

through results comparison, as displayed in Figure 46.  

 

Figure 46 Order Independent Transparency. Transparent rasterization algorithms need to correctly handle the 

problem of surface-camera intersection order, as rasterization generates the intersection without order and the 

fragment composition operator used in transparency is not commutative. This requires either order approximation 

algorithms, which are cheap to compute but produce low quality results, or the correct per-pixel sorting of all the 

generated intersections. As it can be observed in the above figure, the difference in quality between a bad 

approximation and a better approximation algorithm is generally measured by the increased morphologic perception 

of the rendered scene. The difference in quality between a correct and approximated result can be drastic, as shown 

in the image. 

A variation of the A-buffer algorithm is presented in this thesis. The Virtual Order 

Independent Transparency A-Buffer (VOIT or VA-Buffer) decreases the excessive storage 

and bandwidth costs of the state of the art A-Buffer algorithm. It uses the same virtual data 

principles which were applied to deferred rendering in the previous sub-chapter.  
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The A-Buffer is required to shade all the fragments generated through rasterization, 

before storing the color results in the A-Buffer list nodes. In comparison, VOIT decouples 

shading computation and bandwidth from the list construction, therefore VOIT adapts to the 

rendering situation of each pixel, consuming only what is necessary. After the per-pixel list is 

sorted, VOIT performs front to back composition and loads the texturing data for each node. 

When VOIT determines that the alpha channel is completely occluded it stops the rendering 

process, therefore it does not load bandwidth for nodes which are occluded, as would the A-

Buffer algorithm. Because of this, VOIT is also superior from a software design perspective, as it 

is a decoupled solution to transparent object rasterization. 

VOIT is visually presented in Figure 47.  

 

Figure 47 Virtual Order Independent Transparency - algorithm. The image presents the application of virtual data 

principles to the GPU A-Buffer algorithm, named Virtual Order Independent Transparency, or VA-Buffer. 

Compared to the state of the art A-Buffer the presented algorithm is designed to work with virtual texturing. The 

stages of the method are displayed on the left side of the image, the rasterization stages in orange and the shading 

stages in green.  On the right side of the image VOIT is compared to A-Buffer. Instead of storing fragments with 

shaded color, as in a state of the art A-Buffer node list, the VOIT stores only texture coordinates. In the shading 

phase, the texture coordinates are used to reconstruct the texture coordinate derivatives, which are then used to 

perform the texel fetches. VOIT has the advantage of adaptively shading the fragments, stopping early if sufficient 

alpha occlusion is computed, and paying the texture bandwidth for exactly what it shades instead of paying it for all 

the fragments, as A-Buffer does. Compared to the state of the art A-Buffer nodes, the VA-buffer consumes slightly 

more storage than a low dynamic range node, but significantly less storage than a high dynamic range node. In this 

thesis the micro tile size is 2x2 pixels, the minimum size required to correctly reconstruct texture coordinate 

derivatives. 
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The introduced algorithm works on multiple stages, as depicted in Figure 47. The first 

stages work through rasterization, in which the geometry is rasterized and stored in the VA-

Buffer specific node list.  

Compared to the standard A-Buffer, VOIT does not store the shaded colors but the 

texture coordinates in compressed format. Because of this, the VOIT has better storage 

efficiency for high quality shading, where high dynamic range rendering is used. The next stage 

determines the visible textures and the required mipmap levels and sends streaming commands 

to the virtual texturing system. In order to prevent walking the entire fragment lists twice, once 

for shading and once for checking if the right texture mipmaps are loaded, VOIT uses a mipmap 

buffer, which stores the streamed state of all the scene textures, represented in binary. With each 

rasterized fragment, VOIT checks if the texture mipmaps that will be read are streamed. If the 

texture mipmaps are not streamed, the algorithm flags the texture mipmaps for streaming. 

The shading part of the VOIT algorithm is presented in the Illumination chapter, the 

pseudocode for the rasterization based stages is: 

(ONCE) PREPROCESS 

IF lighting 

 lightgrid ← allocate space for lights grid acceleration structure  

nodebuffer ← allocate space for fragment list nodes  

headbuffer ← allocate space for fragment head pointers  

mipmapcachebuffer ←allocate space for mipmap streaming information (binary)  

mipmapframebuffer ←allocate space for mipmap streaming information (binary)  

FOR pixel in screenpixels  

 set pixel head pointer to null  

 

GEOMETRY STAGE (sceneobjects)  

objects ← sceneobjects which are not culled 

fragmentcounter ← 0 

mipmapbufferframe← 0 

FOR object in objects 

 fragments  ← Ø 

 FOR primitive in object 

  fragments ← fragments    fragments from rasterized primitive 

 FOR fragment in fragments 

  atomically increase fragmentcounter 

  node ← fragment depth, texture coordinates, other data 

  store node in fragmentcounter position in the nodebuffer 

  set node pointer to next element to null 

  atomically swap head with node next pointer 

  textures ← fragment textures 

  FOR texture in textures 

   texturesderivatives ← texture coordinates 

   texturemipmap ← determine texture mipmap with texturesderivatives 

   texturemipmapstate ← read texture mipmap state from mip mipmapcachebuffer 

   IF texturemipmapstate unloaded 

    mipmapframebuffer← set texturemipmap has to be streamed 

   

Exact order independent transparency is not mandatorily used with illumination, for 

example the geometry is rarely lit in real-time rendering performed for scientific visualization. 

This is valid because order independent algorithms are usually employed to render object design 

scenes in CADs. Therefore the following stage is optional. 
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LIGHTS STAGE(scenelights)  

IF lighting 

 FOR  light  in scenelights 

  depth ← depth buffer from VIRTUAL  DEFERRED  GEOMETRY STAGE 

  fragments ← render light, generate fragments, cull using depth 

  FOR visible fragment in fragments 

   cluster ← determine location in lightgrid 

   cluster ← cluster  light  

VIRTUAL TEXTURE STAGE (allscenemipmaps)  

streamlist ← Ø 

FOR mipmap in allscenemipmaps 

 framestate ← state of mipmap in mipmapframebuffer 

 cachestate ← state of mipmap in mipmapcachebuffer 

 IF framestate AND NOT cachestate 

  streamlist ← streamlist   mipmap 

FOR mipmap in streamlist 

 stream mipmap from disk 

 update virtual texture 

 mipmapcachebuffer ← set mipmap  

 In order independent transparency problems texture streaming determination can’t be 

determined like in deferred rendering algorithms, just by querying the geometry buffer. Querying 

all nodes would generate a very large cost in bandwidth, making the algorithm counterproductive. 

Streaming can be elegantly implemented with two binary state buffers, one which holds the 

state of the texture mipmaps for the current frame and one which holds the state of the texture 

mipmaps for the entire virtual texturing cache. The maps are queried and filled by each fragment 

during the geometry stage of the algorithm and are compared once in the texture stage, as shown 

in the pseudocode. The shading stage of the virtual order independent transparency algorithm is 

discussed here succinctly; it is presented in full detail in chapter 4.1.6. 

SHADING STAGE 

FOR microtile(2x2) in image 

 allocate microtilecache 

 FOR pixel in microtile 

  list ← load the per pixel list into microtilecache 

  FOR node in list 

   node ← owner by pixel 

   allocate extra space for texture coordinate derivatives 

  sort list by depth 

 synchronize microtile 

 FOR pixel in microtile 

  FOR node in list 

   derivatives ←  reconstruct derivatives from neighbors texture coordinates 

  synchronize 

  pixelocclusion ← 0 

  pixelcolor← 0 

  WHILE pixelocclusion < threshold 

   node ←  next in list 

   IF lighting 

    illuminate with lights from lightgrid 

   nodecolor, nodealpha←  load textures  and shade 

   pixelcolor, pixelocclusion  ←  compose with nodecolor and nodealpha 
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 VOIT can benefit from the same optimizations as the A-Buffer, thus it can be 

implemented with compute indices in a geometry pass like in the transparency linked list offset 

array method [Kno12]  or with micro-pages [Cra10]. Both methods improve data coherency. 

The offset array method uses a geometry pre-pass to compute the fragment list offsets for all the 

generated fragments, thus VA-buffer can be implemented with exact lists per pixel instead of a 

large list, guaranteeing data locality. The micro-pages method requires the implementation of a 

critical section and stores fragments in large nodes, called pages. Because of this the number of 

GPU links between the large nodes is much smaller than the normal number of links and data 

cache coherency is increased.  

In high quality rendering scenarios, where high dynamic range rendering is used, VOIT 

also has superior storage and bandwidth consumption than the A-Buffer, as it is depicted in 

Figure 48. 

 

Figure 48 Virtual Order Independent Transparency – state of the art comparison. The image shows the bandwidth 

and storage usage of the state of the art A-Buffer and the proposed VOIT List method. The A-Buffer variants are 

displayed for both low dynamic range rendering (LDR) and high dynamic range rendering (HDR). While the 

presented method has a slightly worse storage consumption than the state of the art LDR A-Buffer it consumes the 

least bandwidth. 

The presented virtual order independent transparency algorithm completely decouples 

shading from geometry processing while processing the geometry only once. It has comparable 

and results to the LDR variant of the A-Buffer, while offering HDR rendering quality. 

Furthermore, the shading computation scales better than the A-Buffer because VOIT adapts to 

the pixel opacity distribution. 

A weakness of the presented algorithm is that objects must be textured with a single 

texture mapping, as with other virtual data methods. The algorithm gracefully resorts to a simple 

colorless A-Buffer in the case of real-time scientific visualization, where objects are rarely 

textured, and the scene object components each have colors which encode their usefulness. In 

this case the method only stores either the object id or the material id, as this information is 

sufficient to determine the color in the reconstruction. Texture coordinates and their derivatives 

are not computed, as they are not needed.  

The presented algorithm processes and loads textures adaptively, only paying for 

operations which are guaranteed to have a visual impact in the final image. Because of this, 

VOIT is a bandwidth and cost efficient solution for detailed visualizations in real-time. 
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A real-time scientific visualization is displayed in Figure 49, in which the importance of 

order independent transparency is emphasized. 

 

Figure 49 Virtual Order Independent Transparency – applications. Order independent transparency is particularly 

useful in scientific visualization. The image above shows the difference in visualization quality of a technical scene. 

The upper part of the image is normally shaded, while the lower part uses correct order independent transparency 

rendering. The second image is superior from a CAD point of view, as it permits more accurate design, and a richer 

perception of the objects with which the scene is modeled. 
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3.6.2. Distribution Occupancy Maps 

The state of the art approximated solutions for transparent object rasterization are not 

good enough to render complex, non-uniform objects. Because such methods either approximate 

or redefine the composition operator they are either too inexact or too rigid for complex 

rendering scenarios. In general these methods are used to render low-frequency geometry, such 

as fuzzy objects, because they are able to perform this rendering operation with acceptable visual 

results and at a fraction of the cost that comes with exact solutions.  

The most relevant methods that can produce high quality visual results are occupancy 

maps and Fourier opacity maps. Both these methods approximate the depth distribution per pixel, 

and use this distribution to redefine the composition operator. In the case of Fourier opacity maps, 

the algorithm approximates the depth distribution by analyzing opacity as signal varying on the 

depth axis. The signal is Fourier transformed and the Fourier coefficients are used to 

approximate opacity in a second and final geometry pass. In the case of occupancy maps there is 

an additional assumption that opacity is a constant  , with which the composition operation is 

changed into an  opacity function over depth, which is commutative. As given by [Sin09] the 

composition equation changes to: 

                           

         

   

                   

This assumption can be used in real-time applications where there are many transparent 

objects that have to be rendered, but the rendering quality can be less accurate and all the 

rendered elements have similar opacity. These properties are common fuzzy, transparent objects 

such as smoke, clouds or liquids. 

Based on the same assumption this thesis introduces an improved variant of the 

occupancy maps, distribution occupancy maps. The method uses per-pixel distributions in 

order to make occupancy maps adaptive, by altering the occupancy bits resolution. Instead of 

using a uniform distribution for all pixels, several simple uniform and multi-pole Gaussian 

distributions are used. Because of the altered distribution of samples, the resolution is artificially 

increased and the quality of opacity measured with occupancy maps increases.  

Distributed occupancy maps use an additional buffer, the distribution buffer, which stores 

occupancy in a uniform depth distribution, like a very low resolution occupancy map. The 

algorithm stores this additional buffer for the current and the previous frame. The bits of this 

distribution buffer are used to partition the full resolution occupancy map adaptively, based on 

the depth distribution of the pixel fragments. Each partition of the full resolution occupancy map 

uses a different, local, sampling strategy. The used sampling strategies are based on distributions: 

uniform, multi-pole uniform, Gaussian, multi-pole Gaussian, sigmoid and multi-pole sigmoid 

distributions. For an 8 bit buffer the sampling offsets of these distributions can be easily 

precomputed and stored in small table, which resides GPU memory.  

The basic idea of the distribution occupancy maps is presented in Figure 50. 

 



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

128 

 

 

Figure 50 Distributed occupancy maps. Distributed occupancy maps enhance the state of the art occupancy maps by 

adapting the occupancy map sampling process to the distribution of rasterized fragments on the depth axis. The 

transparent composition is performed with the commutative opacity operator, which queries a function over the 

depth axis of the fragment, as shown at the bottom of the image. Compared to occupancy maps, distributed 

occupancy maps are more adaptable and use the samples more efficiently, therefore they produce better looking 

results in non-uniform depth distributions while demoting to simple occupancy maps in the case of a uniform depth 

distribution.. 

Before rendering, the algorithm allocates four buffers: two depth distribution buffers, one 

for the current and one for the previous frame, the occupancy buffer and an offset map. The 

occupancy buffer stores the occupancy on the depth axis of the pixel. The occupancy samples are 

controlled by the depth distribution from the previous frame, through the offsets read from the 

offset map, which stores data in the [0, 1] interval. 

The two depth distribution buffers store the depth distribution bits for the current and 

previous frame, because the presented algorithm uses one of the depth distribution buffers to 

describe the current frame but uses the previous frame distribution buffer to query the offsets at 

which it stores occupancy. A depth distribution buffer can be considered as a minuscule uniform 

occupancy map, whose bits can be considered to represent an index. The index can be used in the 

offset map to query the exact offset needed for the occupancy samples. 

The offset map stores the offsets for the occupancy sampling points, for each depth 

distribution. The offset map is divided into zones, one for each depth distribution area. Each zone 

contains the offset for each occupancy sample, transforming the uniform distribution into a non-

uniform one. 

The algorithm runs in two passes, the geometry pass and the shading pass, and it is a 

coupled algorithm, which couples shading, visibility determination and texture fetching. 

In the geometry pass the geometry is normally rasterized in order to obtain the fragment 

depth. The fragment depth is used together with the previous frame depth distribution to properly 

insert into the occupancy buffer. The current depth distribution buffer is used as a very low 

resolution uniform occupancy map.  



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

129 

 

In the rendering pass the geometry is rendered once more and the fragment colors are 

computed based on the occupancy samples from the previous geometry pass, using the depth 

distribution buffer from the previous frame. T 

The outputted fragments are blended additively. The pseudocode for the proposed 

algorithm is the following:  

(ONCE) PREPROCESS 

allocate the two depthdistributionbuffer, with resolution          (e.g.                ) 
allocate the occupancybuffer, with resolution            (e.g.                    ) 

allocate an occupancyoffsetbuffer, with                             

allocate offsettmap, with sampling offsets for all depth distribution permutations  
FOR permutation of           bits of depthdistributionbuffer 

 clusterid[          ←  0 

 FOR set bit in permutation 

  i ← bit index   

  clusterid[i] ← i 

 change ←  true 

 WHILE change 

  change←  false 

  FOR set bit in permutation 

   localchange ←  true 

   traversalbit←  bit 

   WHILE localchange 

    localchange←  false 

    leftbit ← left neighbor bit of traversalbit 

    IF leftbit set AND clusterid [leftbit] != clusterid[bit] 

      clusterid[leftbit] ←  clusterid[bit]  

      localchange , traversalbit ←  true, leftbit 

   traversalbit←  bit 

   WHILE localchange 

    localchange←  false 

    rightbit ← right neighbor bit of traversalbit 

    IF rightbit set AND clusterid [rightbit] != clusterid[bit] 

      clusterid[rightbit] ←  clusterid[bit]  

      localchange , traversalbit←  true, rightbit 

 N, index←  0 

 WHILE index <           

  IF clusterid[i] > 0 
   N ←  N+1 

   WHILE clusterid[i+1] = clusterid[i]  
   N, i ←  N+1, i+1 

   N ←  N+1 

 bounds[2N], resolution[N], distribution[N]←  remaining unique clusters in clusterid 

 FOR cluster in uniquecluster 

  k ←  number of unique cluster 

  resolution[k]←  
          

                         
          

  IF bounds[2*k+1]-bounds[2*k] =1 

   distribution[k] ←  Gaussian 

  ELSE 
   cluster margins bits add sigmoid distributions over a single bit 

   all inner margin bits add one uniform distribution 

 offsettmap  ← compute offsets for all the occupancy samples  
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GEOMETRY PASS (objects)  

fragments ← rasterize primitives from objects 
FOR fragment over pixel in fragments  
 distribution ← previous frame depthdistributionbuffer, for pixel 
 uniformoccupancysample ← determine uniform occupancy sample 
 occupancysample ← uniformoccupancysample, distribution 
 occupancybuffer ← set occupancysample 
 depthbit ← determine bit occupied by fragment in depthdistributionbuffer 
 depthdistributionbuffer← set depthbit 
  
SHADING PASS (objects)  

set outputmerge to additive 
fragments ← rasterize primitives from objects 
FOR fragment over pixel in fragments  
 distribution ← previous frame depthdistributionbuffer, for pixel 
 uniformoccupancysample ← determine uniform occupancy sample 
 occupancysample ← uniformoccupancysample, distribution 
 opacity← compute opacity for the number of set samples in the occupancymap, before occupancysample 
 fragmentcolor ← shade with opacity 
 OUTPUT fragmentcolor 
OUTPUTMERGE final pixelcolor 
previous depthdistributionbuffer ← current depthdistributionbuffer 
curent current depth distribution buffer ← 0 

 

As all temporal coherent algorithms, distribution occupancy maps suffer from temporal 

artifacts. The algorithm is designed for low frequency geometry, where temporal artifacts are 

imperceptible. An example of a rendering with distribution occupancy maps is given in Figure 

51. 

 

 

Figure 51 Distribution Occupancy Maps Results. This approximated order independent transparency algorithm 

works best with low frequency geometry such as clouds, or smoke. Compared to the state of the art occupancy maps, 

the presented algorithm adapts its sampling to the depth configuration of each pixel, therefore it obtains the same 

results as occupancy maps for uniform depth distributions and better results for non-uniform depth distributions. 
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3.7. Atomic Geometry Selection 

The following section is based on the “Efficient picking through atomic operations” 

article [Pet13]. It presents a selection algorithm, atomic geometry selection (AGS), which is 

capable of selecting any type of renderable geometry.  

Selection rendering, also named picking, is the process through which a single entity or a 

list of entities is selected from a scene. The subject of picking is both a rendering and a collision 

detection problem, with the majority of research being on optimizing the ray-scene intersection 

problem.  

Several algorithms that solve the selection problem exist in the context of rasterization, 

but all of them lack several of the features of this proposed solution while, with one exception, 

all being much more expensive in terms of computational time. The introduced method is able to 

correctly select not only primitives but also any type of objects that may appear on the screen 

at a fragment level including hardware instanced, alpha culled, hardware tessellated, hardware 

animated and fuzzy objects. The proposed technique has optimal memory requirements and 

offers the opportunity to select at micro polygon level and is not limited to the first contact, 

offering the full intersection list per ray if required to do so.  

 

Figure 52 Object Selection. In the left upper corner a rendering scene is presented, which contains many difficult to 

select objects, such as the hardware instanced hardware tessellated ground, the alpha-culled palm trees and the fuzzy 

geometry of the smoke. The presented method can select all intersected objects rasterized over a fragment, but 

compared to all state of the art algorithms, it can account for alpha occlusion, thus it does not return the palm trees 

behind the smoke. Wrinkled surface geometry selection is presented in the right upper corner. In the left lower 

corner selection is performed on multiple billboards, returning a list of all the intersected surfaces. In the right lower 

corner alpha culled selection is presented. The tree support geometry is shown in the highlighted blue rectangle. 

The proposed technique offers further unique opportunities such as flexible fuzzy object 

selection and takes into account opacity accumulation from transparent objects, in the case of 
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multiple transparent objects per fragment. Some of the most interesting selection cases handled 

the presented algorithm are shown in Figure 52. 

The selection problem has been solved through geometry intersection [Las03], micro-

raster rasterization [Nei93], color picking buffer methods [Wri10], geometry stream out [Wri10] 

and atomic selection [Ric12].  

The geometry intersection method requires ray-scene intersection, which can solve 

multiple intersections per fragment but has the intersection complexity of         , where   is 

the number of primitives in the scene. This method does not work with fragment level effects 

such as alpha culling. The geometry intersection can also be implemented as depth picking over 

a deferred geometry buffer, as the depth stored in this buffer uniquely identifies the closest 

camera-geometry intersection, which lowers the intersection cost to      but enforces depth 

storage and returns only the closest surface-camera intersection, as there is no depth stored for 

occluded fragments.  

Micro-raster rasterization renders the entire scene into a minuscule raster, which has a 

high geometry processing cost, because the scene has to be rendered multiple times. The atomic 

selection method can be considered as a one pixel micro-raster variant, which does not process 

the geometry multiple times. On the other hand the method does not handle multiple 

intersections per fragment. 

Color picking buffer methods work by encoding the object id into a color representation. 

They use an additional screen output buffer, in which this encoding color is stored, and which 

can be used to uniquely determine the first camera-surface intersection point for each pixel. As 

the geometry intersection method, the color picking method can’t handle multiple intersections 

per fragment.  

The geometry stream out algorithm uses a buffer which is filled from the geometry 

shader in the stream out/transform feedback hardware rasterization stage. It can handle multiple 

intersections per fragment, but it does not work at fragment level even though it is a conservative 

method. Furthermore, the method can’t handle fragment level effects such as alpha culling. 

The main contribution of the presented selection algorithm is that it uses a atomically 

synchronized selection area buffer in which all the fragments that are rasterized over it store 

surface intersection points. The entire list is then sorted over the depth axis, in a process similar 

to that used in the GPU A-Buffer algorithm [Bar11].  

The entire surface-camera intersection point saving process is performed at fragment 

shader level, thus the presented method can accurately detect pixel level visibility, which is very 

important for wrinkled surfaces and alpha culled geometry. Compared to the state of the art 

methods the presented method does not allocate more storage than what it needs, and processes 

only the relevant surface-camera intersection points without rendering the scene geometry 

multiple times. The algorithm also gracefully handles any geometry altering methods such as 

tessellated displacement mapping or instancing.  

This selection and accumulation process is displayed in Figure 53. 
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Figure 53 Atomic Geometry Selection Marching. The atomic geometry selection algorithm stores camera-surface 

intersection points per selection zone, which can be either a single pixel or a large area. The intersection points are 

stored in linked list, synchronized through atomic operations. The linked list is finally depth sorted and walked. The 

walk computes the accumulated opacity and ends as soon as the alpha channel is completely occluded. 

The presented algorithm works on a selection zone, which can either be a single pixel or 

large number of pixels in a rectangle area. The algorithm starts at the vertex shader level, and 

sends further down the pipeline the object id, provided by the application and the vertex id and 

the instance id, which are freely provided by the rendering pipeline.  

If the rendered geometry has tessellation stages, each micro polygon created with 

hardware tessellation receives a unique id based on a simple spatial hash, which is valid only for 

at primitive level. The spatial hash can be any sufficiently rare hash function that uses the 

tessellation barycentric coordinates         generated by the tessellator unit, for example: 

                                    

This unique id is then used to uniquely identify transient geometry, which is never 

permanently stored. Therefore the presented selection algorithm can select and work with sub-

primitive geometry. The method uses a geometry shader to determine the rendered primitive id. 

The geometry shader sends the primitive id to the fragment shader, along with the vertex id, 

instance id and object id received from the vertex shader and, optionally, the unique id generated 

in the tessellation stage. 

The fragment shader then uses all the ids to store the intersection point, along with depth 

and opacity of the fragment. The intersections points are stored in a buffer, named the picking 

buffer, which is per-selection zone linked list. Access to the linked list is synchronized through 

atomic operations. 
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The selection method ends with either a CPU or a compute shader stage, which sorts by 

depth and then walks the stored intersection points. Front to back composition is performed only 

to determine opacity. The walk ends as soon as the alpha channel reaches total opacity, thus the 

algorithm does not return occluded camera-surface interaction. This is the pseudocode for the 

atomic geometry selection algorithm: 

INTEGRATED IN RASTERIZATION (selectionzone, objects) 

FOR pixel in selectionsonze pixels 

 count ← 0 

 selectionlist← 0 

FOR primitive in objects  

 IF hardware tessellation used 

  TCS ← ObjectId, InstanceId, VertexID←VS 

  TES ← data ←  TCS 

  barycentric ←  TES 

  GS ← TransientID ←   hash(barycentric) 

 ELSE 

  GS ← ObjectID, InstanceID, VertexID←VS 

 FS ←  PrimitiveID ←   GS 

 IF geometry shader instanced 

  FS ←  GSInstanceID ←  GS 

 IF fragment   selectionszone 

  depth, opacity ←  fragment depth 

  data ←  ObjectId, InstanceId, VertexID, TransientID, PrimitiveID, GSInstanceID, opacity 

  IF fragment opaque 

   entry, entrydepth ←  first entry in selectionlist 

   IF  entry empty OR entrydepth > depth 

    save data to first entry in  selectionlist 

  ELSE 

   save data to count+1 index in the selectionlist 

   count ← count + 1 

 

CPU/GPGPU (selectionzone, objects) 

selected← Ø 

FOR pixel in selectionzone 

 opaqueentry ← first entry in  selectionlist 

 IF opaqueentry not empty 

  selected ← selected    opaqueentry 

 ELSE 

  list ← selectionlist, count for pixel 

  sort list  after depth 

  fragmentopacity ← 0 

  WHILE fragmentopacity < threshold 

   node ← next in list 

   opacity ← node opacity 

   fragmentopacity←accumulate opacity  in front to back order 

   selected ← selected    node 

 

The selection algorithm is compared to the state of the art methods in Table 8. The algorithm 

combines all the strong features of the state of the art methods while still adding more useful properties 

such as micro primitive selection, fuzzy object selection, alpha occlusion awareness or zone selection. 
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Selection algorithm Selection Algorithm Properties 

Correct 

Picking 

Alpha 

Occlusion 

Aware 

Selects all 

per pixel 

intersections 

Storage 

10 fragments 

@1080p 

Geometry 

passes 

Hw. 

Instan-

cing 

Hw. 

Tessel-

lation 

Fuzzy 

Selection 

Ray casted Geometry 

Intersection  
no no yes 

not 

applicable 

not 

applicable 
no no no 

Depth Buffer 

Geometry Intersection  
yes no no 66.35 mb 1 yes no no 

Micro-Raster yes no yes 320 b 2 yes no no 

Color Selection yes no no 49.76 mb 1 yes no no 

Atomic Selection yes no no 320 b 1 yes no no 

Transform feedback no no yes 320 b 1 yes yes no 

AGS (this algorithm) yes yes yes 320 b 1 yes yes yes 

Table 8 Comparison of selection algorithms. The atomic geometry selection (AGS) algorithm combines the best 

aspects out of the state of the art methods, while also enabling transient geometry and alpha occlusion selection. 

Because of the novel selection opportunities offered by the presented selection algorithm, 

it can be efficiently used in the wrinkled surface asset baking process, where it can displace the 

transient geometry of a tessellated mesh, which would then be directly saved in displacement 

maps. This is presented in Figure 54. 

 

Figure 54 Other uses of selection. The selection algorithm can be used in the baking process of displacement maps. 

It can be used to load low resolution real-time assets, dramatically increase their primitive count dynamically 

through hardware rasterization and perform vertex displacement manually or with an intelligent tool. When the 

geometric displacement process is finished, the displaced transient geometry is saved directly into a displacement 

map. Thus, displacement map editing baking can be performed directly on the real-time assets. 
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4. ILLUMINATION 

This chapter describes the second part of the proposed rendering pipeline, which computes 

global illumination and shading. The modules and algorithms presented in this chapter are 

succinctly depicted in Figure 55; the green modules represent thesis contributions.  

 

Figure 55 Illumination Overview. The chapter is subdivided into two large modules: Approximative Illumination 

and Correct Illumination. Approximative Illumination solves the global illumination problem through a combination 

of several rendering algorithms, using shadow mapping, virtual lights and screen space cone tracing, effectively 

decoupling light transport. The Approximative Illumination module contains many contributions. Conservative 

Inexact Voxelization is a fast voxelization algorithm designed for many/virtual light generation and shadowing. The 

shading of opaque objects is handled through the shading part of virtual deferred, a novel deferred algorithm which 

decouples texture bandwidth from visibility determination. Antialiasing for deferred rendering is done with an 

improved reconstruction method for the sub-pixel reconstructed antialiasing. The shading of transparent objects is 

computed with the shading part of virtual order independent transparency, a new bandwidth decoupled adaptive 

order independent transparency algorithm. In contrast to the Approximative Illumination module, the Correct 

Illumination module solves the illumination problem with a monolithic path tracing framework, accurately 

simulating light transport. The module renders images with a bidirectional path tracing algorithm which uses 

amortized visibility which lowers to cost of tracing rays. The bidirectional path tracer adapts the conservative 

inexact voxelization algorithm to path tracing, using it to trace fast conservative inexact rays, which can be then 

used to prevent the tracing of exact rays. The algorithm also uses a new type of importance sampling, Light Flux 

Importance Sampling, which generates a map of all the flux of light of the scene. This map is then used to quickly 

guide paths to vertices from the light tracing pass of the bidirectional path tracer. 

The chapter is subdivided into two large modules, which tackle the global illumination 

problem with different approaches: the Approximative illumination module runs in real-time and 

the Correct Illumination module runs offline. It can also run at a very low number of frames per 

second, at the edge of interactivity, if computed on the GPU. Except for the shadow mapping 

algorithm used in the Approximative Illumination module the entire Illumination pipeline is not 

dependent on rasterization. 
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The Approximative Illumination module tackles global illumination from a real-time 

standpoint, using approximated visibility operators for light propagation. The module uses the 

inputs created by the Geometry Processing stage, such as the virtual deferred geometry buffer 

and the virtual order independent transparency per-pixel lists. The exact connection between the 

Illumination pipeline and the Geometry processing pipeline is shown in Figure 2. The 

illumination process is decoupled into multiple algorithms and rendering paths, each of which 

handles specific light paths.  While the visual results are pleasing and close to photorealism a 

large number of light paths, the Approximative Illumination module can’t simulate difficult 

types of light paths, for example light paths with multiple highly specular surface interactions.  

The Approximative Illumination module approximates the potential impact of the scene 

lights received from the geometry processing pipeline and selects a few of them, which are 

considered dominant lights. Shadow maps are rendered for each of the dominant lights, 

maximizing the quality of the visibility operator for easy to perceive illumination. Each shadow 

map rendering uses the hierarchical culling algorithm presented in Chapter 3.4. The rest of the 

illumination is decoupled between low frequency (diffuse) and high frequency (specular).  

A new light transport method is presented, which accelerates low frequency lighting by 

approximating the visibility operator through conservative inexact voxelization (CIV). CIV is an 

object-level acceleration structure which can be quickly created and used to determine a fairly 

accurate geometric composition of the scene. This geometric representation can be then used to 

trace visibility determination rays for the random walks used by the virtual light generation 

system, which generate virtual lights. The virtual lights are stored into a cluster acceleration 

structure. The CIV structure is then used to trace the visibility determination rays for the 

secondary lights.  

Specular light transport is notoriously difficult to simulate correctly in real-time. Correct 

specular transport requires visibility determination mechanisms which work at high frequency, 

such as rays, paths or photons. These high frequency operations generate incoherent memory 

walks which greatly slow the rendering process, especially for streaming many-core architectures 

such as GPUs. While there are solutions for high quality approximations for specular transport in 

real time [Cra14], they require total data control, which in turn leads to resolution problems 

since volumetric solutions can’t express detail as efficiently as analytical solutions, leading to 

impractical storage requirements. Hybrid solutions [Mar14] [Her14] hold the most innovation 

promise since they reconstruct high frequency signals from cheap to obtain or already existing 

data, without needing further geometry processing, which is extremely expensive in large real-

time dynamic scenes. 

Shading is performed in a tiled manner and there are separate shading phases for opaque 

and transparent objects. For each shading phase, each micro tile 2x2 pixels loads data for a small 

number of GPU threads.  

In the opaque shading phase the tiles load the modified G-buffers created by the virtual 

deferred algorithm, a novel deferred method presented in the Geometry Processing pipeline, 

chapter 3.5.2. The modified G-buffers are then intersected with the clustered lights and shading 

is performed over texture data read through virtual texturing.  
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In the transparent shading phase the tiles load the modified A-buffer lists created by the 

virtual order independent transparency algorithm, a new transparent rasterization method 

presented in the Geometry Processing pipeline, chapter 3.6.1. The modified A-buffer lists are 

then intersected with the clustered lights and composited. The composition is performed front to 

back and it ends as soon as the alpha channel is completely occluded, thus, the shading is 

computed adaptively. The texture data read for shading is also adaptively loaded through virtual 

texturing, paying the bandwidth cost only for contributing modified A-Buffer nodes. 

The module contains a novel, decoupled antialiasing algorithm, specialized for deferred 

renderers. The algorithm is named decoupled sub-pixel reconstruction antialiasing (DSRAA) and 

is an improvement over the state of the art sub-pixel reconstructed antialiasing (SRAA) [Cha11]. 

It requires only a minor integration step in the geometry processing pipeline, where it generates 

multiple depth samples per pixel, for which the depth test is run. It can optionally multisample 

normals for an even higher quality reconstruction. The method integrates in the geometry 

processing pipeline without affecting other The reconstruction phase of the algorithm uses 

neighbor matching, in order to more accurately filter the unshaded depth samples. 

The Approximative Illumination module ends with a short post processing phase, which 

is shared with the Correct Illumination module.  

The Correct Illumination module tackles global illumination from a correctness 

standpoint. The module uses special acceleration structures, an exact light transport mechanism 

and only uses approximations to accelerate the sampling processes. In contrast to the 

Approximated Illumination module, the correct illumination module is monolithic and coupled, 

solving the illumination problem in a single, consistent mode. The visual results are exact; the 

precision is limited only by the number of used samples.  

The Correct Illumination module can run on both CPU and GPU, but it is not a real-time 

module, and it is only presented as a visual reference generator. The presented algorithms will 

run in real-time with better consumer hardware.  

Since the module performs exact tracing it needs a different type of acceleration structure 

than the one used in the real-time path, therefore a Bounding Interval Hierarchy has to be 

maintained over the scene geometry. The cost of tracing rays is amortized with a modified 

conservative inexact voxelization structure. The module renders images with the bidirectional 

path tracing algorithm, with different types of importance sampling, including the novel scene-

wide light flux sampling algorithm. Compared to the state of the art, the light flux algorithm 

approximates light flux over the entire scene and it used to guide unproductive paths to light 

vertices produces by light paths. In essence, light flux is a global sampling mechanism which is 

faster, more efficient from a storage standpoint and easier to implement than other high energy 

importance sampling mechanism such as Metropolis [Vea97], Energy Redistribution [Cli05] or 

Skeleton importance [Bir12]. 

The Correct Illumination module ends with a short post processing phase, which is shared 

with the Approximative Illumination module.  
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4.1. Approximate Illumination Stage 

The approximate illumination stage is a perception based rendering approach to global 

illumination which seeks to render photorealistic images without any preprocessing. It uses 

different approximative visibility determination operators for indirect diffuse light transport and 

indirect specular light transport and accurate visibility operators for direct light transport, 

maximizing the efficiency of easy to perceive light transport. The greatest weakness of the 

approximate illumination pipeline is the light transport over complicated specular light paths, 

which is a common theme in real-time render, as these paths need accurate visibility operators 

which can’t be implemented without ray tracing, path tracing or photon mapping, which are far 

from being acceptable real-time rendering solutions.  

The presented method is based on the many lights rendering paradigm. While the 

paradigm supports accurate specular transport [Sim15], it does so at a cost which rivals ray 

tracing, path tracing and photon mapping. Specular light transport has been solved through 

sparse voxel cone tracing [Cra09], but it only works properly on extremely high resolution voxel 

representations which require extensive pre-processing, and such constraints are impractical for 

real-time rendering of massive dynamic scenes. Thus, the maximization of the most important 

rendering features from a perception standpoint [Wat13] [Sha73] indicates that hybrid solutions 

offer the best results in real-time.  

The rendering solution combines rasterization through the shadow maps used the for 

direct visibility of dominant lights, many light methods for the secondary lights and the 

generated virtual lights, approximate ray tracing for the shadows of secondary lights and 

approximate cone tracing for indirect specular transport. Much of the approximated visibility 

operations are implemented through a novel acceleration structure named Conservative Inexact 

Voxelization (CIV), which is created from the bounding boxes of objects instead of the geometry 

of the objects and is thus extremely fast to compute. The many lights are generated with random 

walks inside the CIV. The shadows for secondary lights and the virtual lights are computed by 

tracing inside the CIV. The specular light transport is screen space cone tracing and CIV is used 

to augment the algorithm in many of its failure cases. 

The approximate rendering pipeline first computes light transport for dominant lights, 

with state of the art shadow map techniques. Then the conservative inexact voxelization is 

performed for the scene objects. Secondary light sources are used to transport light, through the 

CIV visibility operators. Through ray traced random walks the pipeline generates thousands of 

VPLs.  

4.1.1. Light transport for Dominant Lights 

The dominant lights are solved with shadow mapping because it benefits from the 

coherency of rasterization and thus provides the highest quality visibility operator that can be 

used for real-time rendering. While rays can also be used for the visibility determination operator, 

they are inherently incoherent and the cache access penalties decrease the rendering speed too 

much. Tracing into a coherent structure like down in sparse voxel cone tracing [Cra09] needs a 

very detailed acceleration structure, which makes the storage costs impractical for high quality 

rendering. The voxel space structure is also a bad fit for dynamic objects, which means that the 

structure has to be recomputed per frame. Because of these reasons shadow mapping is the most 

cost effective high quality direct visibility determination process. There are many approaches to 
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shadow mapping: precision warping methods [Sta02] [Wim04] [Mar04] [Kol12] [Llo06] 

[Ros12], partitioning [Dim07] [Zha06] [Lau11], adaptive sampling [Fer01] [Gue07], analytical 

reconstruction [Dai08] [Ros12], volumetric [Lok00] [Pag04] [Yuk08] [Sal10] [Kim01] [Jan10] 

[Sal101] [Che11], temporal [Sch13], ray traced [Sto15] or distance field based [Zho05]. 

The presented rendering pipeline uses cascaded ray-trace shadows, which are filtered in a 

screen space pass [Bag10] with altered kernel size as introduced in [Ran05]. The solution 

renders the scene from the light point of view and instead of storing depths, it stores the indices 

of the primitive from which the depth is normally stored in classic shadow mapping [Wil78].  

In the rendering pass the primitives in neighborhood around the pixel are streamed and 

filtered, based on the depth comparison test from the reconstructed primitive position and the 

current fragment position. This test is performed in a vicinity, with a kernel identical to that 

defined [Ran05], and the results are then combined into a weighted average. This enables high 

quality shadow generation and requires the same amount of samples. While the technique can 

suffer from aliasing, this can be mitigated through rendering with level of detail geometry or 

with and hierarchical impostors. Aliasing can also be mitigated through multisampled ray traced 

shadow maps, which can reconstruct the depth more accurately. The algorithm is shown in 

Figure 56. 

 

Figure 56 Ray traced shadow maps. The shadow maps do not store depth, but the primitive ID of the primitive 

whose depth would normally reside in the shadow map, as shown in the upper left corner of the image. The colors 

are generated from a hash of the primitive id. The lower left corner of the image shows the reconstruction process. 

Each primitive is then loaded into memory and the depth is computed analytically for each primitive, through 

camera ray – primitive intersection. The analytically reconstructed depth is also filtered with PCSS and it shows 

little alias, as can be seen in the final result, shown in the lower right corner and in the reconstructed light depth 

view, shown in the upper right corner. 
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4.1.2. Conservative Inexact Voxelization 

Inexact representation of objects is very useful in rendering because it enables fast 

approximative representations of scene data. This principle has already been explored many 

times in global illumination, because it decreases the cost of the visibility determination 

operation, which in turn speeds up rendering. Inexact object representation has been done with 

point based rendering [Rit08], point based reconstructions and convex hulls, screen space 

voxelization [Eis08], imperfect voxelized shadow maps and volumes [Wym13], dense point 

clouds as imperfect volumes [Mav11] and sparse voxelization [Cra09]. The majority of these 

methods are or can be considered to be voxelization variants, being either bidimensional 

voxelizations such as the imperfect shadow maps method [Rit08] or tridimensional voxelizations. 

In the case of the bidimensional algorithm it has to be performed per light.  

The problem with these methods is that the cost of voxelization is still very high, and the 

voxelization has to be computed for each frame in dynamic scenes. These reasons make 

voxelization based methods either barely interactive in the context of a large rendering pipeline 

or totally dependent on heavy preprocessing, which quickly becomes useless for dynamic 

environments.  

In this thesis a new voxelization method is presented, which differs from the state of the 

art methods in several ways: it is a much a less exact but conservative representation and it is 

extremely cheap to compute.  

This method, named Conservative Inexact Voxelization (CIV), is intended to be used 

with virtual lights methods, as presented in the 4.1.3 Chapter, where the inexact representation of 

scene geometry can be used in the transfer of low frequency (diffuse) light. There CIV is used to 

relax the cost of the visibility operator, speeding up the demanding task of virtual light 

generation. 

CIV takes a different approach to voxelization, being a top to bottom algorithm. This 

choice is responsible for the speed of the algorithm as it guarantees an extremely low complexity, 

              , compared to the state of the art complexities of                   or 

               . The method also uses all the existing scene geometry data usually found in 

real-time deferred rendering, back projecting information from the geometry buffer into the 

inexact voxelization, in order to maximize the precision for the visualization frustum. CIV uses 

hierarchical impostors, such as the ones presented in Chapter 3.2.3, but it can be adjusted to work 

without them. 

The main idea of CIV is create a high resolution hierarchical representation of the scene 

geometry, highly accurate for data inside the visualization volume and inexact for the rest of the 

data. This is stored as a mipmapped tridimensional texture.  

The algorithm runs in multiple stages: culled object determination, culled object 

voxelization, depth buffer reprojection and mipmap population. In the culled object 

determination stage, the algorithm runs hierarchically through the objects of the scene, a step 

which can be integrated with the culling method presented in Chapter 3.4. The algorithm walks 

the scene tree and inexactly determines which objects or scene nodes are to be voxelized, 

terminating the walk based on the distance from the camera. Only the scene nodes and objects 

outside of the visualization volume are voxelized in this step. This can be determined by 
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hierarchical depth buffer culling. The results can be stored in a draw list, like the ones used for 

transparent or opaque rasterization in the culling chapter. 

In the culled object voxelization stage the algorithm expands each element to its axis 

aligned bounding box saves a single entry in the CIV texture, in the mipmap which is closest in 

size to the size of the axis aligned bounding box. Thus, the entire bounding box is added to the 

CIV texture highest resolution mipmap that encases it. In the case of highly elongated objects, in 

which the object sizes are unevenly long, the voxelization algorithm uses a geometry shader to 

dice the original bounding box into multiple smaller boxes, which are then saved into the CIV 

mipmaps. The impostors of important objects can have their depths projected on the boundary of 

the CIV texture. The CIV texture can represent the existence of objects in binary, thus even a 

large resolution CIV texture requires only little storage. 

 In the depth buffer reprojection stage, the depth buffer is used as a geometry information 

source, and all the depth buffer entries are back projected inside the CIV texture, in the highest 

resolution mipmap. 

The mipmap population stages use a tridimensional push-pull process in which the 

mipmaps are populated based on the already stored information. This produces accurate results 

inside and in the vicinity of the visualization volume, and inexact results further away, making 

CIV an ideal solution for low frequency light transport through approximative ray tracing of 

shadows and virtual light random walks. The algorithm is visually presented in Figure 57. 

 

Figure 57 Conservative Inexact Voxelization. This image shows the construction of a Conservative Inexact 

Voxelization (CIV), an inexact representation of scene geometry. The method uses the depth buffer data to 

guarantee a highly accurate representation for the geometry inside the visualization volume while using a fast 

inexact bounding box dice and voxelize process for objects outside of the visualization volume. Each bounding box 

is diced if it has uneven sizes. Each of the diced bounding boxes is then saved as a single entry, in the highest 

resolution mipmap which completely encases it. Because of this CIV construction is very fast, when compared to the 

state of the art methods. CIV can also make use of hierarchical impostors. 

The CIV texture is then used as a ray tracing visibility determination support, which can 

use ray tracing over voxels optimizations such as empty space skipping. The pseudocode for CIV 

construction is the following:  
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PREPROCESS 
allocate texture with mipmaps for CIV 
reset all data before each rendered frame 
 

CULLED OBJECT DETERMINATION 
currentnode ← root 
walkqueue  ← root 
voxelizationqueue ← Ø 

WHILE walkqueue  not empty 
 node ← pop walkqueue   
 IF node inside the visualization volume (cull node bounding box against hierarchic depth buffer) 
  CONTINUE 
 ELSE 
  distance ← distance between camera and node 
  IF distance > threshold 
   voxelizationqueue ← voxelizationqueue   node 
  ELSE  
   children ← children of node 
   walkqueue ←  walkqueue   children 
 

CULLED OBJECT VOXELIZATION 
voxelizationqueue← CULLED OBJECT DETERMINATION 
WHILE voxelizationqueue not empty 
 node ← pop voxelizationqueue 
 aabb ←  node axis aligned bounding box 
 minlength, maxlength ←  min(aabb.x, aabb.y, aabb.z) 
 IF minlength << maxlength 
  boxes ←  dice aabb into multiple even boxes 
  FOR box in boxes 
   CIVmipmap, cluster ← compute which mipmap entry best encases box 
   flag cluster inside the CIVmipmap as occupied 
 

DEPTH BUFFER REPROJECTION 
depthbuffer ←  G-buffer 
FOR pixel in screenpixels 
 depth ←  sample depthbuffer at pixel 
 position ←  reconstruct position from depth 
 cluster ←  determine cluster in CIV mipmap 0  
 flag cluster of the CIV texture mipmap 0 as occupied 
 

MIPMAP POPULATION 

mipmap= max CIV mipmap level 
WHILE mipmap > 0 
 FOR pixel in mipmap 
  IF pixel is occupied 
   children ←  four pixels from mipmap-1 which are encased by pixel 
   IF any child in children is occupied 
    set the pixel to occupied 
mipmap =0 
WHILE mipmap < max CIV mimpap level 
 FOR pixel in mipmaplevel+1 
  children ←  four pixels from mipmap which are encased by this pixel 
  IF any child in children is occupied 
   set the current pixel to occupied 

 

The CIV texture storage can be modified to suit the needs of the renderer. If the renderer 

requires only inexact visibility for diffuse illumination than the CIV stores a single bit per pixel, 
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which is set when geometry is present. In this case a detailed 512x512x512 resolution would 

only require 16MB of GPU storage. If the renderer is used in for scattering effects, then the 

storage can be modified to a one byte per pixel structure, which holds one bit for transparent/slid 

geometry presence, one bit to differentiate between solids and transparents and 6 bits for either 

opacity or solid normal direction. In this case a detailed 512x512x512 resolution would only 

require 134MB of GPU storage.  

If the renderer is used in more complex scenes, which contain scattering and indirect high 

frequency illumination, then the CIV storage can be modified to a 2 byte per pixel structure, 

which holds a bit for geometry presences, a bit to differentiate between solids and transparents 

and 14 bits which are either used for color (12 bits) and transparency (2bits) or for participating 

media transparency (5bit) and participating media color (9 bit). In this case a detailed 

512x512x512 resolution would only require 268MB of GPU storage. In the case of specular 

lighting, tracing is also performed in screen space if the screen space resolution is superior to that 

of the CIV. This can be also applied to diffuse lighting, but it is not mandatory from an artifact 

suppression point of view.  

Storage Type / Storage Requirements 128x128x128 256x256x256 512x512x512 1024x1024x1024 

Simple (1bpp) 262.14 KB 2.09 MB 16.77 MB 134.21 MB 

With transparents (1Bpp) 2.09 MB 16.77 MB 134.21 MB 1.07 GB 

With transparents and colors (2Bpp) 4.18 MB 33.54 MB 268.42 MB 2.14 GB 

Table 9 Conservative Inexact Voxelization Storage Requirements. Conservative Inexact Voxelization can either 

store the state of geometry in a single flag per pixel, store opacity information for transparents at one byte per pixel 

or store specular lighting information at two bytes per pixel. The storage structure can be modified depending on the 

needs of the renderer. 

CIV consumes varying amounts of storage, depending on the rendering strategy, as 

shown in Table 10, but it compares positively with the state of the art methods, as shown in 

Table 10. 

Rendering Algorithm \  

Comparison Criterion 

Full scene 

data 
Conservative Complexity 

Ray Tracing 

Support 

Scattering 

Support 

Point Cloud Geometry 

Reconstruction 
yes no O(vertices) no no 

Point Cloud Convex Hull yes yes O(vertices) no no 

Imperfect Voxelized Shadow Maps yes yes O(lights*vertices) no partial 

Screen Space Voxelization no yes O(primitives) partial partial 

Imperfect Volumes yes no O(primitives) yes yes 

Sparse Octrees yes yes O(primitives) yes yes 

Conservative Inexact Voxelization  

(this algorithm) 
yes yes O(objects) yes yes 

Table 10 CIV and the state of the art. Conservative Inexact Voxelization is can be constructed much faster than all 

the other state of the art voxelizations, because it works directly at object level. Despite being an inexact 

representation, CIV is conservative, therefore it can be used to query the approximative structure of the scene. 
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The CIV algorithm can be optimized through many mechanisms. The construction cost 

can be paid once for state objects and amortized over multiple frames for the dynamic objects. 

This can also be used in combination with a temporal reprojection mechanism. Sparse storage 

methods can be applied to CIV to lower the storage requirements. Filtering over multiple reads 

into the CIV texture can be used to antialias traced rays.  

The key property of conservative inexact voxelization is that if it is used as an 

acceleration structure for tracing rays, it offers a varying visibility operator, accurate inside 

the visualization volume and coarse outside it. This property is very useful for real-time light 

transport algorithms because it adapts to the perceptually important areas of the scene. It can be 

used for both low frequency and local high frequency light transport, and it is used chapters 

4.1.3.1 and 4.1.3.2. The property it is presented in Figure 58. 

 

Figure 58 Varying Visibility Operators With Conservative Inexact Voxelization. This image shows how the 

conservative inexact voxelization algorithm can be used as a ray tracing acceleration structure. Because tracing 

inside the CIV is significantly more coherent than tracing inside a normal ray-tracing acceleration structure such as a 

kd-tree, the cost of visibility operations is much lower, while the quality is comparable inside the visualization 

volume, the area most perceptually important. Because CIV is also conservative, the tracing is conservative and no 

light transport can be done through geometry. 

 The presented voxelization method does not provide exact visibility, but it provides a fast 

conservative approximation of it. This property is sufficient for some light transport algorithms 

such as many light methods or secondary light shadowing. For real-time rendering purposes the 

presented structure provides a much faster generation method while still maintaining raster 

resolution accuracy inside the visualization volume. The presented conservative inexact 

voxelization is used in a modified instant radiosity algorithm in the next chapter. 

 The algorithm is also used to improve the fail cases of the screen space cone tracing 

algorithm, a high frequency light transport algorithm which works with approximated geometric 

information. 
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4.1.3. Light transport for Secondary Lights 

Light transport for secondary lights is a notoriously difficult real-time rendering problem, 

for which a large number of solutions has been proposed.  The difficulty to solve this is given by 

the nature of the simulated transport, which is expressed in the following equation, after [Kaj86]: 

                                               
 

 

The bulk of the rendering time is usually dominated by visibility determination 

operations [Hav14] and the equation is by definition recursive, which quickly leads to incoherent 

visibility determination tests. But incoherent data accesses lead to the most costly operations in 

computer science, cache misses. And if the visibility queries are forced to be coherent through 

rasterization algorithms, than this leads to large number of passes over the entire scene as 

rasterization does not support recursion, as do path/ray/photon tracing.  Furthermore, 

path/ray/photon tracing require acceleration structures, which have to be recomputed per frame, 

which further complicate rendering.  

The problem is a long standing one and many approximations have been proposed. One 

of these approximations families, the many light algorithms, use few visibility operations to 

transfer large amounts of light, an approach compatible with the needs of real-time rendering. 

While this is practical with only a relatively small number of light transfers, the visual quality 

downgrade is acceptable in the context of real-time applications. Furthermore, this class of 

algorithms is inefficient for high frequency light transport.  

This chapter uses a decoupled light transport solution, using different algorithms for low 

frequency and high frequency light transport. For low frequency (diffuse) light transport a novel 

method is presented. For high frequency (specular) light transport, a modified version of screen 

space cone tracing is used, which has its failure cases augmented with data from the low 

frequency solution. The two light transports algorithms have their results combined, to obtain the 

total light transport. 

4.1.3.1. Light transport for Low Frequency Light 

The many lights methods are based on instant radiosity [Kel97], which uses random 

walks inside the scene to transfer large amounts of light at once, which spawn many virtual lights, 

giving the many/virtual lights method its name. But in order to transfer these large amounts of 

light, the algorithm requires recursive visibility operations, which are impossible to implement 

efficiently through rasterization, therefore in the presented variant they are performed with rays. 

This problem makes instant radiosity especially difficult to implement for scenes with poor light 

transport, where the random walks need to trace more rays.  

In this chapter a novel variant of instant radiosity is presented, in which the random walks 

are performed using ray tracing over a conservative inexact voxelization of the scene geometry. 

Because of this, the rendering equation used by this method has a different visibility operator 

than the exactly traced normal operator. But the introduced operator is both conservative and 

coherent, therefore it is sufficient for virtual light transport, as this operator is not used in the 

illumination computations directly. The modified visibility operator concept is shown in Figure 
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57. The visibility operator is used for both tracing the random walks which spawn the virtual 

lights, as displayed in Figure 58, and for tracing the shadows for the virtual lights. 

The virtual lights are generated with a random walk process. A small number of samples are 

generated for each scene light. Distant lights are clustered together in hierarchic impostors, 

which then have their light emission sampled. The same procedure is applied to skyboxes, area 

and volume lights and impostor lights. The samples are generated from Halton sequences, which 

converge faster in     
   

   , compared to using random number series     
 

  , where   is the 

number of sampled dimensions and   is the number of samples. Care must be taken to drop the 

first few entries every other entry in the series, to minimize sample correlation and variance.  

Each sample is traced, in a process similar to light tracing. Mutation strategies like [Seg07] 

[Seg061] can be optionally used. Each vertex of the path is treated as a potential virtual point 

light (VPL).   

Depending on the type of CIV storage, the presented variation of instant radiosity can 

correctly perform color bleeding or not. For a CIV structure that does stores color (color bleeding 

is not available for the 1bit storing mode), the energy received and assigned to each virtual point 

light is given by the following equation (based on [Vea95]): 

                                              

 

   

 

Where    is the sample position on the light,    is the next vertex in the path,    is the last 

vertex in the path,   is the length of the path,       is the reflectance function and    is the 

angle between the incident light direction and the surface normal. If a Lambertian reflectance 

function is used, as in the original instant radiosity paper [Kel97], then the equation becomes 

identical to that given by Veach and Guibas, with the 
      

 
  term [Vea95].  

Scattering is also considered, if the used CIV storage supports it, changing the VPL energy 

equation to: 

                                                         

 

   

 

 

   

 

Where   is the number of scattering events between      and    ,   is the scattering 

probability,    is the incoming radiance to the j-th scattering event.  

Not all the generated VPLs are saved, the rejection criteria for unimportant samples [Geo10] 

is that a sample must be either directly visible from the camera, or be directly linked with VPL 

that is directly visible from the camera.  

The VPL generation process is presented in Figure 59. 
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Figure 59 Virtual lights generation. Virtual lights are generated though random walk process, in which rays are 

traced in the conservative inexact voxelization acceleration structure. Each vertex of a random light path is a 

potential virtual point light. The samples are rejected based on their impact in visualization volume, shown in blue: 

the red samples are rejected, while the green samples are accepted. 

The pseudocode for the modified instant radiosity is the following:  

PREPROCESS 
allocate texture with mipmaps for CIV 
compute CIV 
 

VPL GENERATION 
scenelights ← scene lights 
lightsqueue ← scene lights and light impostors 
WHILE lightsqueue not empty 
 node ← pop lightqueue 
 samples ←  generate n samples with Halton sequence, with position and radiance 
 FOR sample in samples 
  walkvpl ← Ø 
  WHILE max recursion depth not reached 
   trace until surfacehit 
   FOR event in scattering events 
    compute inscatter and outscatter 
    compute surface interaction 
    vpl ←  generate potential virtual point light 
    walkvpl ←  walkvpl   vpl 
  WHILE walkvpl not empty 
   vpl← pop walkvpl 
   IF vpl succeeds rejection sampling 

    scenelights ←  scenelights   vpl 

 

 The presented instant radiosity variation can benefit from established scalability methods 

for many light algorithms such as the amortization of virtual light generation over multiple 

frames for both reduced computational effort and flickering prevention. While lightcuts [Wal05] 

[Wal061] [Wal12] [Dav12] and light grouping [Don09] [Pru12] are established methods for 

many lights storage, this thesis uses a clustered structure like one of the acceleration structures 

presented in Figure 60 to better integrate into the deferred inspired pipeline. All the secondary 

lights, VPLs and scene lights, are stored in a cluster.  
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Figure 60 Scene lights acceleration structures. Secondary lights like small scene lights and generated virtual lights 

can be stored in a variety of methods which are easy to integrate with a deferred pipeline: per pixel linked lists (left 

top corner), tiles (right top corner), 2.5D tiles which uses a binary mask for light rejection (left bottom corner) and 

clusters (right bottom corner). 

Rendering with virtual lights is performed by querying the light storage acceleration structure 

and solving all surface – light interactions. For the illumination with virtual lights the following 

equation is used (based on [Vea95]): 

                         
          

      
         

 Where   is the VPL used for illumination,   is the point being illumination by  ,    is the 

previous vertex to   in the random walk,    is the angle between the VPL surface normal and the 

incident ray from    ,    is the angle between the illuminated point normal and the incident ray 

from    and the visibility factor        is traced over CIV, as shown in Figure 61. 

 

Figure 61 Secondary lights visibility. For each secondary light one or more shadow rays are traced over the 

conservative inexact voxelization acceleration structure. Scattering samples are also taken. 
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Illumination with virtual lights is not artifact free, as artifacts appear as structured illuminated 

hotspots, in contrast to the noise found in path tracing. This can be seen in Figure 61. These 

artifacts are caused by the singularities generated by the 
 

        (part of the 
          

       form 

factor) term in illumination equation. A common solution to this problem is to clamp the 

contribution of each light [Kol04]. Another possibility is to store indirect diffuse illumination in 

a screen space buffer and filter it in a manner similar to SSPCSS [Bag10]. A scene illuminated 

with this method is presented in Figure 62. 

 

Figure 62 Illumination with virtual lights. The upper left corner of the image presents the intersection between 

virtual lights and the scene geometry. The lower left corner presents the results of lighting with these virtual lights, 

by using a color enabled conservative inexact voxelization acceleration structure. Artifacts can be seen at the top of 

the Sponza building, as structured illuminated hotspots, caused by an un-clamped form factor. Color bleeding can 

also be observed, especially on the columns. In the right upper corner the image is divided: the top shows the direct 

illumination and the bottom shows the indirect illumination computed with many virtual lights, using a colorless 

CIV. The combined result of both direct and indirect illumination is presented in the right bottom corner of the 

image. 

4.1.3.2. Light transport for High Frequency Light 

High frequency light transport is a difficult problem for the real-time rendering of 

dynamic scenes, and because of this, it is handled in a decoupled manner in this thesis, since 

many-light methods struggle to efficiently transport specular light  [Dav10] [Sim15].  

While high quality specular light transport is possible in real-time static scenes with 

heavy preprocessing [Cra09], the state of the art algorithm requires per-frame high resolution 

voxelization in order to work with dynamic scenes. Furthermore, the storage costs are extremely 

expensive. 

The specular light transport method used in this thesis is based on screen space cone 

tracing [Her14] [Ulu14], which is an approximated variant of cone tracing. It can be executed 

before or after the diffuse light transport,  
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Screen space cone tracing generates one or more cones per pixel, which are then traced 

over the screen space. The direction of the reflected cone is given by the reconstructed surface – 

cone interaction. The size of the cone is based on the traced distance. In order to minimize the 

number of texture reads, the screen buffers are mipmapped and each cone surface intersection is 

performed at the fitting mipmap level, as determined by the cone size.   

The screen space cone tracing algorithm has many fail cases, some of which are 

presented in Figure 63: lack of information due to depth overlap, tracing outside of the screen 

space or tracing through unknown space behind the screen space.  

 

Figure 63 Screen space cone tracing. The image presents screen space cone tracing, an approximative tracing 

algorithm that works in screen space. Each pixel traces cones over the mipmapped screen buffers, reading from the 

fitting mipmap based on cone size. This is depicted in the three surface-ray interactions colored in pink (mipmap 0), 

blue (mipmap 1) and yellow (mipmap 2). The gray normals represent the averaged normal over the impact surface. 

The fail cases of this approximative algorithm are depicted in the upper right corner of the image: rays can be traced 

outside of the screen space, they can intersect surfaces behind the screen space, or they can pass through areas 

lacking information. All fail cases are directly caused by lack of geometric information outside the visualization 

volume. In this thesis, the conservative inexact voxelization is used to augment the rays which are traced outside the 

visualization volume, which greatly ameliorates the results of the fail cases. 

The conservative inexact voxelization (CIV) acceleration structure used for low 

frequency light transport is used to augment screen space cone tracing in the failure cases, which 

can greatly lower visual artifacts, even if CIV is not designed for high frequency light transport. 

The CIV structure has to be one with color information enabled, which increases the storage 

costs drastically, as highlighted in Table 10.  

Because the CIV resolution is usually significantly lower than the resolution of the screen 

space buffers, the cones are traced over both CIV and screen space, in order to maximize the 

accuracy of the resulting visibility determination operators. Scattering in participating media can 

also be implemented using CIV. Furthermore, cone tracing on the screen space and CIV is 

almost equivalent to cone tracing over an octree, if the voxelization for the CIV method is set to 

produce high quality results and the scene objects are cut into multiple other objects, but then the 

complexity of the method would be approximately equal to the one used in [Cra14] as the 

number of objects would soon be roughly the same as the number of primitives. 
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4.1.4. Opaque shading 

This subchapter discusses opaque shading operations, in which lights and virtual lights 

generated and clustered in the previous subchapters are used to shade the opaque objects 

represented in the geometry buffers stored by the deferred opaque rasterization. The algorithm is 

the decoupled shading stage of the Virtual Deferred algorithm, using the virtual data mechanism 

as described in the 3.5.2 Chapter.  

The method has two shading stages. In the first shading stage, the texture data is fetched 

and shading is performed with direct and indirect diffuse light transport and direct specular 

transport. In the second shading stage indirect high frequency light transport is performed, based 

on the results of the first shading phase. 

The method starts by loading the Virtual Deferred G-Buffer data into work tiles, one 

GPGPU thread per pixel, in a GPGPU render pass. This is done in order to determine basic 

object properties such as which is the visible object which is being shaded in the pixel.  

After loading the virtual G-Buffer data the algorithm has two alternate rendering paths, 

depending on the storage of texture coordinate derivatives. The more storage intensive 

bandwidth stores the texture coordinates derivatives per pixel. The more computationally 

intensive variant does not store the texture coordinates derivatives. Since proper texturing 

requires texture coordinates and their derivatives, the former rendering path is included in the 

latter rendering path. 

The latter rendering path uses a texture derivative reconstruction process, which 

differentiates the texture coordinates stored in the pixel with the texture coordinates stored in 

neighboring pixels, if the neighboring pixels are of the same object id and material id. Thus, 

texture coordinate derivatives are reconstructed in the same manner they are initially generated 

by the hardware rasterization pipeline, through neighbor fragment texture coordinate 

differentiation. The algorithm then uses the texture coordinate derivatives to determine the 

mipmap levels required to properly perform the pixel texture fetches. This is done on a material 

basis. The shading method can include geometry reconstruction elements such as screen space 

tangent reconstruction through the use of normals and screen space position derivatives. 

After the texture fetches have been performed and have been locally stored within the 

work group, the algorithm tackles illumination. It first solves dominant lights illumination 

through the use of the visibility operator provided by shadow maps techniques. The secondary 

scene lights are solved by using the visibility operator approximate in the conservative imperfect 

voxelization algorithm. Thus, the interaction of each secondary or virtual light with a pixel is 

determined through the tracing of one or a few rays. The illumination is then performed normally.  

If multiple geometry frusta are used in the geometry pass the shading algorithm is not run 

multiple times, because the virtual geometry buffers produced by the multiple frusta are 

accumulated into a single coherent geometry buffer. A potential optimization is to perform 

multiple material paths, in order to minimize work tile divergence. On the other hand, if the 

algorithm is used in a rendering system where an asset format can be imposed, a proven and 

flexible reflectance function such as Cook Torrance [Coo82], is a good  choice as it implicitly 

minimizes work tile thread divergence.  



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

153 

 

The pseudocode for the low frequency illumination and shading stage of the virtual 

deferred algorithm is: 

LOW FREQUENCY ILLUMINATION AND SHADING STAGE 

FOR tile in screenpixels 

 allocate tilecache 

 FOR pixel in tile 

  FOR  material  in materials      // TEXTURE FETCHING 

  IF  the texture derivatives are not stored in the virtual G -Buffer 

   neighborlist  ← Ø 

   texderivatives←0  

   FOR  neighbor  of pixel  in 2x2 region 

    IF  pixel  and neighbor  share object id and material id  

     neighborlist ←  neighborlist    neighbor 

    IF  neighborlist  not empty 

     avgderivative ←  0 

     FOR  neighbor  in neighborlist  

      difference ←  compute texcoord difference between  

        neighbor and pixel 

      avgderivative ←  accumulate difference  

     texderivatives  ←  compute derivatives with avgderivative  

    ELSE 

     Set derivatives  ←   1 (highest mipmap)  

   mipmap  ←   determine mipmap with texture coordinates , object ID, mat ID  

   inf ,  sup ←   use texderivatives  to find the inf and sup texture mipmaps  

   IF  inf  not stored 

    inf ←   closest stored mipmap level  

   IF  sup not stored 

    sup ←   closest stored mipmap level  

   physicalcoordinates  ←    texture  coordinates, inf,  sup  

   texturedata  ←   sample virtual texture with physicalcoordinates  

   tilecache  ← texturedata 

 SYNCHRONIZE TILE 

 dominantlights  ←  load dominant lights in tile  //ILLUMINATION PSEUDOCODE 

 FOR pixel in tile 

  pixelcolor  ← 0  

  FOR light in  dominantlights 

   IF light intersects  pixel 

    visibility← query dominant light shadow map  

    FOR  material  in materials   

     shadedcolor ← lighting&shading← visibility, tilecache  

     pixelcolor .  ←  pixelcolor + shadedcolor  

 secondarylights  ← load the frustum secondary lights in tile 

 SYNCHRONIZE TILE 

 FOR pixel in tile 

  FOR light in secondarylights 
   IF light intersects pixel 

    cone ← light, pixel 

    visibility ← TRACE CIV(0, cone) 

    FOR material in materials  

     shadedcolor ← lighting and shading using visibility and tilecache data 

     pixelcolor  ←  pixelcolor + shadedcolor 

  OUTPUT pixelcolor 
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The second shading pipeline computes indirect approximative specular light transport. 

This is an optional stage and it should be disabled if a scene does not contain perceptible high 

frequency specular transport. The second shading stage is computed in screen space, based on 

the shading results of the first shading stage and because of this, the visibility operator used to 

transfer specular light between the surfaces is very poorly approximated and will not produce 

exact results. Because of this the illumination pipeline uses screen space cone tracing instead of 

screen space ray tracing, because cone tracing includes additional filtering which decreases the 

occurrence of artifacts. 

The algorithm can trace color into the Conservative Inexact Voxelization structure, if the 

colors and normals are saved, which augmented by the screen space cone tracing makes the 

entire method work like a fast, low quality voxel cone tracing algorithm. The color/normal 

variant of the CIV is also a support for scattering, as it is explained in Chapter 4.1.2. While CIV 

is not created for high frequency visibility determination, it can be used to produce acceptable 

results from a perception standpoint. More importantly using CIV helps alleviate the many visual 

artifacts that appear in screen space cone tracing, by providing geometric information outside the 

visualization volume.  

The pseudocode for the second shading pipeline of the virtual deferred algorithm is: 

PREPROCESS 

SS ←  Create a mipmap with the depth, normal and the color outputted from the first shading pass 

CIV ←  compute inexact voxelization 

IF using CIV AND CIV support normal and color  
 CIV←  CIV    project each normal and color from ssmipmaps into CIV 

 

TRACE CIV(recursiondepth, cone) 

mipmaplevel ←  max mipmap level (coarsest) of CIV 

scatter ←  0 

surfacehit ←  null, trace cone over the mipmaplevel 
IF surfacehit 

 WHILE no exact surfacehit 
 IF  mipmaplevel > minimum mipmap level (given by cone angle and traced distance)   
  surfacehit, scatter ←  trace until approximative surfacehit and accumulate scattering  
  mipmaplevel ←  mipmaplevel – 1 
 ELSE 
  surfacehit, scatter ←  trace until exact surfacehit and accumulate scattering 
IF surfacehit  
 radiance ←  0 
 normal ←  normal at surfacehit in CIV (either filtered or directly stored) 
 cluster ←  get cluster from lightgrid in vicinity of surfacehit 
 IF surfacehit reflective  
  IF recursiondepth < max recursion depth //SAMPLE SURFACES 
   reflectedcone = reflect(cone,  normal, distance traced, material) 
   incomingradiance←   TRACECIV(recursiondepth+1, reflectedcone) 
   scatteredincomingradiance←  compute scattering with scatter, lightradiance 
   reflectedradiance ←  scatteredincomingradiance, normal 
   radiance ←  radiance + reflectedradiance 
 RETURN radiance 
ELSE 

 RETURN 0 
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TRACE SCREEN (recursiondepth, cone) 

mipmaplevel ←  max mipmap level (coarsest) of  SS 

surfacehit ←  trace cone over the highest mipmaplevel 

WHILE exact surfacehit not found AND inside of screen space  
 IF mipmaplevel > minimum mipmap level (given by cone and traced distance) 
  surfacehit ←  trace until approximative surfacehit or outside of screen space 
  mipmaplevel ←  mipmaplevel  - 1 
 ELSE 
  surfacehit ←  trace until exact surface hit or outside of screen space 
radiance ← 0  

IF surfacehit found 
 IF the surfacehit reflective AND recursiondepth < max recursion level 
  position, normal, color, material ← read data from the mipmaplevel at surfacehit  
  reflectedcone ← reflect(cone,  normal, angle based on material) 
  incomingradiance ← TRACE SCREEN (recursiondepth +1, reflectedcone) 
  reflectedradiance ← incomingradiance, normal, material 
  radiance ← radiance + reflectedradiance 
ELSE  
 IF using CIV 

  radiance ← TRACE CIV (recursiondepth, cone) 
RETURN radiance 

 
LOW FREQUENCY ILLUMINATION AND SHADING STAGE  

FOR tile in screen 
 tilecache ← load data from virtual deferred G-buffer  (depth, normals, colors, material id) 
 SYNCHRONIZE tile 
 FOR pixel in tile 
  diffusecolor  ← LOW FREQUENCY ILLUMINATION AND SHADING STAGE  

  depth, normal, material  ← read from G -buffer, pixel 

  position  ← reconstruct position from depth, camera 

  cameraray ← ray from camera  to position 

  coneangle ← compute cone angle based on material, normal 

  cone← cameraray, angle based on material  

  indirectradiance←0  

  IF  using a sufficiently high resolutio n colored CIV 

   indirectradiance←  TRACE CIV  ( 0, cone) 

  ELSE 

   indirectradiance←TRACE SCREEN  ( 0, cone) 

  specularcolor ← indirectradiance, normal, material  

  pixelcolor ← diffusecolor + specularcolor  

  OUTPUT pixelcolor 

 

The presented shading pipeline perfectly integrates with the Virtual Deferred algorithm, 

and can be used as a self standing algorithm, outside of the rendering framework proposed in this 

thesis. 

The shading pipeline is continued with the decoupled sub-pixel reconstructed antialiasing 

(DSRAA) method, a decoupled antialiasing algorithm especially designed for solving 

antialiasing in deferred pipelines. DSRAA can be used to tackle the aliasing inherent to the low 

sample reconstruction processes which take place in deferred algorithms. DACRT can also be 

used to counter the micro aliasing produced by texture coordinate derivative reconstruction, 

especially if the texture coordinates are stored in compressed format.  
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4.1.5. Decoupled sub pixel reconstructed anti-aliasing 

In rendering there are many sources of aliasing such as geometric aliasing, texture 

aliasing or shading aliasing. Geometric aliasing is usually the easiest to perceive [Hum09] and 

also the most difficult to handle, especially in a deferred rendering context, therefore geometric 

antialiasing is one of the largest forms of aliasing in rasterization rendering. Deferred rendering 

is in particular prone to aliasing artifacts as storing the information for the entire set of shading 

samples quickly leads to excessive bandwidth and storage costs. Anti-aliasing methods can be 

categorized into a small number of algorithm families: sampled antialiasing, morphological 

antialiasing, temporal antialiasing, analytical antialiasing and hybrid sampled antialiasing. 

Like in any digital signal processing problem, an increased number of samples leads to a 

better, more accurate, reconstructed result. In the case of rasterization rendering the original 

signal is represented by the analytically rasterized geometry, which is then reconstructed through 

samples multiple geometry samples per pixel. Sampled antialiasing methods keep multiple 

shading samples per pixel, which increase the resolution of the rasterization process. Sampled 

antialiasing methods either fully shade each of the samples of the pixels or use different rates in 

order to perform visibility determination at the maximum sample rate and shade at a reduced rate. 

Because shading is much more costly than basic visibility determination in rasterization, a 

reduced shading rate is almost always employed. Supersampling antialiasing (SSAA) [Jim11], 

Multisampling Antialiasing (MSAA) [Jim11], Coverage antialiasing (CSAA) [Jim11], enhanced 

quality antialiasing (EQAA) [Jim11] and deferred MSAA are all examples of techniques based 

on sampling. Because sampled techniques need to store data per sample they are extremely 

costly to use with deferred rendering. 

Morphological antialiasing takes a different approach to antialiasing. Instead of trying to 

reconstruct the original signal, in this case geometry, morphological antialiasing methods try to 

find known patterns in the un-filtered result and then use precomputed filtering solutions for 

these cases. Because of this, morphological antialiasing is not an exact reconstruction method, 

and while algorithms from this category can produce visually antialiased results, they suffer from 

temporal instability. Fast Approximate antialiasing (FXAA) [Lot09], Morphological antialiasing 

(MLAA) [Jim11], Sub-pixel morphological antialiasing (SMAA) [Jim12] are all examples of 

solutions and processes which tackle aliasing from a morphological perspective. A variant of 

morphological solution are edge antialiasing solutions such as Directionally Localized 

antialiasing (DLAA) [And11], normal filter antialiasing (NFAA) and screen space SSAA 

[Uni11]. 

Analytical antialiasing methods solve aliasing through analytical reconstruction. They are 

rarely used in real-time rendering, because they are very expensive. Therefore, they are only 

used for specific scenes. Geometry Buffer antialiasing (GBAA) [Jim11] , Distance to edge 

antialiasing (DEAA) [Jim11] and phone wire antialiasing (PWAA) [Per15] are all analytical 

antialiasing methods. 

Temporal solutions aim to increase the number of samples through the reuse of samples 

from previous frames, basically amortizing the sampling cost. These methods are usually 

combined with other antialiasing methods, leading to algorithms such as temporal antialiasing 

(TXAA) [Yan09] and Subpixel morphological antialiasing (SMAA) [Jim12].   
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Hybrid sampled algorithms completely decouple the sampling rate of visibility 

determination operations from the sampling rate of shading. These methods generally use 

multiple stages, in which sampling data is either aggregated or decoupled, only to be resampled 

and resolved in post-processing stage. Aggregate geometry buffer antialiasing (AGAA) [Cra15], 

surface based antialiasing (SBAA) [Sal12], Subpixel reconstruction antialiasing (SRAA) [Cha11] 

and resampling antialiasing (RSAA) [Res12] are examples of hybrid sampling antialiasing 

techniques. Hybrid methods have seen the most development in recent period, but they still do 

not decouple bandwidth usage.  

While supersampled methods are excessively costly from a storage and bandwidth 

standpoint and morphological algorithm require temporal antialiasing methods to prevent frame 

to frame artifacts, hybrid methods take the best from both approaches, sampling only critically 

important data and then reconstructing the samples.  

The thesis presents an improvement over hybrid methods, which completely decouples 

shading bandwidth from visibility determination from the antialiasing point of view, further 

lowering the bandwidth and storage costs of antialiasing methods while. The presented method, 

decoupled sub pixel reconstructed antialiasing, shades only once per pixel and uses the shaded 

results to reconstruct the other samples, at a sub-pixel level. The algorithm then uses the 

reconstructed samples in a standard resolve process. The method is similar to SRAA, but the 

reconstruction method is based on shaded sample matching and not on direct filtering. 

Furthermore, the reconstruction method is much easier to implement and less computationally 

expensive than SRAA. 

Decoupled sub pixel reconstructed antialiasing is easily incorporated into any deferred 

rendering pipeline. The presented method has two stages. In the first stage, named the sampling 

stage, the method is integrated into any deferred renderer, such as the virtual deferred method 

presented in Chapter 3.5.2, which is slightly modified to sample visibility determination at a 

large rate. Therefore, the deferred renderer saves depth and performs the z-Buffer algorithm at 

many sub-pixel samples but saves all the other bandwidth-heavy information in a single sample. 

With this system, the increased bandwidth is comparable to that of a low bandwidth hybrid 

antialiasing algorithm such as SRAA. Optionally, normals can also be saved along with depths, 

as they can be used to increase the accuracy of the method, albeit increasing the bandwidth cost. 

The second stage, named the reconstruction stage, of the algorithm works as a post 

process, in which both the shaded samples generated by the deferred renderer and the unshaded 

visibility determination samples are loaded in a tiled format. The unshaded samples are first 

linked to the pixel shading sample, based on a depth, and optionally normal, distance metric, 

such as SADP [Res12]. Then, the unshaded samples linked to the pixel samples have their color 

set to that of the pixel shaded sample, and are now considered “shaded”.  

In the next step the remaining unshaded samples are linked to the shading samples from 

the neighbors of the processes pixel, again based on a metric of depth and optionally normal 

distances. When a sample is linked to more than one neighbor, each of the   neighbors is given a 

weight, based on the following metric: 
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Each unshaded sample is then resolved based on the linked neighbors: 

                           
        

 

   
 

If unshaded samples remain they are set to the background color. The final pixel color is 

obtained by resolving all the samples: 

           
             

 
   

 
 

The algorithm is visually presented in Figure 64. 

 

Figure 64 Decoupled sub-pixel reconstructed antialiasing. The antialiasing algorithm is designed for deferred 

renderers, and it has two stages. In the first stage the method slightly modifies a deferred renderer to sample all the 

bandwidth heavy attributes once per pixel, but to keep many visibility determination samples. After this, the 

deferred renderer shades each pixel with a single, central sample. The second stage of the algorithm has multiple 

steps. In the first steps all the unshaded samples are loaded per tile, in the second step the unshaded samples which 

are similar in depth to the shaded samples are linked to the shaded sample. The rest of the unshaded samples are 

linked to the neighbor pixels and colored through the interpolation of the colors of the linked neighbors. The final 

color is obtained by resolving all the sub-pixel samples. 

The presented method computes the minimum bandwidth required to correctly perform 

sub pixel visibility determination while still working within a single geometry pass deferred 

renderer. Compared to the state of the art SRAA the bandwidth is equal and the reconstruction 

mechanism is easier to implement and less computationally expensive. Compared to other 

deferred oriented antialiasing algorithms such as AGAA, the method is material aware, and does 

not filter pre-shaded data or geometry.  
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This is the pseudocode for the decoupled sub-pixel reconstructed antialiasing method: 

(ONCE) PREPROCESS  

select a pixel sampling strategy and a centralsample for shading 

allocate multisampled msdepthbuffer 

IF using normals 

 allocate multisampled msnormalbuffer 

 

SAMPLING STAGE (DEFERRED RENDERER INTEGRATION)  

FOR pixel in screenpixels 

 FOR sample in pixel 

  depth ← compute sample depth 

  msdepthbuffer ← store sample depth 

  IF using normals 

   normal ← compute sample normal 

   msnormalbuffer ← store sample normal 

  normal deferred renderer  

  attributes saved once per pixel, in centralsample 

 

Between the sampling stage and the reconstruction stage the once per pixel sampled 

attributes of the geometry buffer are used for shading and illumination, thus shading is 

performed exactly once per pixel. The reconstruction stage takes place after the shading stage: 

RECONSTRUCTION STAGE (TILED) 

FOR tile in screenpixels 

 FOR pixel in screenpixels 

  tilecache ← load the centralsample from the deferred renderer results, with color 

 SYNCHRONIZE tile 

 pixelcolor←0 

 FOR pixel in screenpixels 

  centralsample ← load the shaded central sample from tilecache  

  samples← load all the unshaded depth (and optionally normal) samples 

  samplecolors[num samples]←0 

  sampleshaded[num samples] ←false 

  FOR sample in samples 

   distance ←  distance metric sample to centralsample, use depth (optionally normals)  

   IF distance < threshold 

    samplecolors [sample] ←  centralsample color 

    sampleshaded[sample] ←  true 

  FOR sample in samples 

   IF sampledshaded[sample] = false 

    linked ←  Ø 

    FOR neighborpixel in neighbor pixels 

     distance ←  dist. metric sample to centralsample of neighborpixel 

     IF  distance < threshold  

      linked ←  linked   (neighborpixel, distance) 

     IF linked empty 

      samplecolors [sample] ←  background 

     ELSE 

      FOR neighbor in linked 

       weight ←  neighbor distance 

       samplecolors [sample] ←  average linked neighbors 

   pixelcolor ← pixelcolor + samplecolors [sample] * 1/(num samples) 

  OUTPUT pixelcolor 
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A comparison of the introduced algorithm, along with various antialiasing techniques is 

given in Table 11. 

Algorithm\Quantity per pixel Depth 

Samples 

Coverage 

Samples 

Geometry 

Data 

Shading 

Data 

Storage 

Requirements 

Bandwidth 

No antialiasing 1 0 1 1 1 1 

Multisampling Antialiasing (MSAA) +++ +++ 1 1 + + 

Coverage Sampling (CSAA/EQAA) +++ +++++ 1 1 + + 

Supersampling Antialiasing (SSAA) +++++ 0 +++++ +++++ +++++ +++++ 

Deferred MSAA +++++ 0 +++++ +++++ +++++ +++++ 

Fast Approximate Antialiasing (FXAA 1 0 1 1 1 + 

Morphological Antialiasing (MLAA) 1 0 1 1 1 + 

Subpixel Morphological Antialiasing (SMAA) + 0 + + + +++ 

Directionally Localized Antialiasing (DLAA) 1 0 1 1 1 + 

Geometry Buffer Antialiasing (GBAA) 1 0 +++++ 1 + + 

Distance to Edge Antialiasing (DEAA) 1 0 +++ 1 + + 

Phone Wire Antialiasing (PWAA) 1 0 +++ 1 + + 

Temporal Antialiasing (TXAA) 1 0 1 1 +++ +++ 

Aggregate G-Buffer Antialiasing (AGAA) 1 + 1 1 1 + 

Surface Based Antialiasing (SBAA) +++ +++ +++ 1 +++ +++ 

Subpixel Reconstruction Antialiasing (SRAA) +++ 0 1/+++ 1 +/+++ +/+++ 

Resampling Antialiasing (RSAA) +++ +++ +++ 1 + + 

Decoupled Subpixel Reconstructed Antialiasing 

(DSRAA)  

+++ 0 1/+++ 1 +/+++ +/+++ 

Table 11 DSRAA and antialiasing algorithms.  The table compares the presented algorithm in terms of sampling 

rates per pixel. Legend: 0 – no samples or not used, 1 - a single sample, + – a small number of samples or a small 

amount, +++  – many samples or a large amount, +++++ – a very high number of samples/amount . 

 In comparison to the state of the art SRAA algorithm, the presented method uses a better 

reconstruction stage, in which exact links are created between each of the unshaded visibility 

samples and either the shaded central sample of the pixel or the shaded central samples of the 

neighboring pixels. Because of this, instead of approximating each unshaded sample contribution 

with a bilateral filter, each unshaded sample is first linked to the existing shading samples, 

reconstructed, and only then used in the pixel resolve. Thus, this method produces results closer 

to the  correct value that would be obtained if full supersampling would be applied.  Figure 65 

presents a comparison between DSRAA 8x and MSAA 8x. 

 

Figure 65 Decoupled sub-pixel reconstructed antialiasing Results. This image presents the difference between 

DSRAA 8x and MSAA 8x. The visual results are extremely similar. 
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4.1.6. Transparent Shading 

This subchapter discusses transparent shading operations. The approximated distribution 

occupancy maps method is a coupled solution, and it is discussed as a geometry method, in 

chapter 3.6.2. The subchapter presents various shading methods for the objects represented in the 

virtual a-buffer nodes, stored by the VOIT algorithm. The first presented method shades in the 

classical A-Buffer style, but with adaptive texture loading and shading. The second presented 

method is an adaptive texture loading and shading limited ray tracing method. Compared to the 

Virtual deferred shading stage which was presented in the previous sub-chapter, the shading 

stage for the virtual order independent transparency (VOIT) algorithm (also named virtual a-

buffer) is a more intricate process.  

If the texture coordinate derivatives are not stored at the virtual order independent 

transparency node level, they need to be reconstructed, and VOIT uses a micro tile phase in 

which it reconstructs the texture coordinate derivatives. The algorithm loads the fragment node 

lists into micro-tiles, which are smaller than the tiles used in virtual deferred because of the 

hardware memory per tile limitations, usually limited to just 2x2 pixel groups. The 2x2 limit is 

the minimum required to reconstruct texture coordinate derivatives, which are needed for proper 

texturing. After the fragment nodes are loaded in micro tiles, they are sorted by their depth, 

therefore multiple lists are sorted together. Thus, each pixel first sorts its own list and then one of 

the pixels does a merge step, like in the merge sort algorithm. This per-pixel sort operation can 

be implemented through in-place quicksort, or any other fast in-place sorting algorithm. Each 

pixel thread walks the sorted micro tile list, reconstructing the texture coordinates only for the 

nodes which it owns. For each owned micro tile list node each pixel search the vicinity of the 

micro tile list node in the micro tile list, for neighbors which have the same object id and 

material id. Based on the found neighbors the texture coordinates are differentiated in screen 

space and the texture coordinate derivatives are obtained. 

If the texture coordinate derivatives are stored, than the virtual order independent 

transparency algorithm does not need to reconstruct them. The algorithm only loads the nodes of 

each pixel in local memory, where it sorts them. 

After the texture coordinate derivatives are available, the algorithm walks the depth 

sorted nodes in front to back order, loading the texture data and shading and illuminating each 

walked node. The walk is adaptive, stopping as soon as the alpha channel reaches an opacity 

threshold. The front to back composition is done using the following equations:  

 
                

            

  

In the above equation    is the fragment opacity,    is the fragment color,    is the 

composited color and    is the background color. Because of the front to back composition 

strategy, the process stops as soon as the alpha channel is occluded. This can drastically reduce 

both shading computations and texture bandwidth. In order to determine the fragment color and 

opacity, VOIT uses the same virtual texturing backed mechanism as virtual deferred: the texture 

coordinate derivatives are used to determine the mipmap levels required to properly perform the 

pixel texture fetches, and the mipmaps are then sampled and interpolated.  
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The pseudocode for the shading pipeline of the virtual order independent transparency 

algorithm is: 

SHADING STAGE 

IF lighting 

 lightgrid←  scene lights 

IF VOIT doesn’t store texture coordinate derivatives 

 FOR microtile(2x2) in screenpixels 

  microtilecache ←  allocate space for node lists per micro tile, each microtile node stores parent  

  FOR pixel in microtile 

   microtilecache, list←  load the pixel fragment list into the microtile storage cache 

   microtilecache,list←  sort the list in place, in the microtilecache 

  SYNCHRONIZE microtile 
  mergedlist ←  one pixel in microtile merges the lists 

  SYNCHRONIZE microtile 
  FOR pixel in pixels 

   finished ←  false 

   WHILE not finished 

    node ←  next node in mergedlist, owned by pixel  

    avgderiv ← Ø 

    FOR neighbornode in mergedlist 

     IF neighbors (distance+ material  metric) 

      coord ← texture coordinates of node   

      ncoord ← texture coordinates of neighbornode 

      texturederivatives ←   differentiate coord, ncoord 

      avgderiv ←  avgderiv    texturederivatives 

    derivatives←  reconstruct avgderiv 

    node ←  store derivatives 

ELSE 

 FOR pixel in screenpixels 

  locallist ←  load the pixel fragment list into the local storage cache 

  locallist ←  sort the list in place, in the local storage cache 

FOR pixel in screenpixels 

 pixelcolor, pixelalpha ←  0 

 IF VOIT doesn’t store texture coordinate derivatives 

  list ←  mergedlist in microtile 

 ELSE 

  list ←  locallist 

 WHILE pixelalpha < threshold 

  node ←  get next fragment owned by the pixel, in front to back order, from list 

  texture ←   texture coordinates, object ID, material ID, like in standard virtual texturing 

  inf ,  sup ←    use texderivatives  to find the inf and sup texture mipmaps  

  IF  inf  not stored  

   inf ←   closest stored mipmap level  

  IF  sup not stored 

   sup ←   closest stored mipmap level  

  physicalcoordinates  ←    texture coordinates, inf ,  sup  

  texturedata  ←   sample virtual texture with physicalcoordinates  

  IF  using lighting 

   determine visibility through shadow maps or ray tracing over CIV 

   perform illumination with intersected scene lights  

  pixelcolor ,  ← the fragment with the already walked fragments ,front to back order  

  pixelalpha  ← compute the new fragment alpha occlusion in front to back order  

OUTPUT pixelcolor 
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The presented shading method is more efficient than the standard classic a-buffer method 

because virtual order independent transparency has adaptive bandwidth consumption and 

adaptive shading, performing only the texture fetches and shading computations which have an 

impact in the final visual result. Thus, virtual order independent transparency decouples shading, 

bandwidth consumption and geometry processing for transparent object rasterization.  

The presented method can be further visually improved through better support for 

specular light transport in order independent transparency, albeit at a steep bandwidth penalty. 

High quality high frequency light transports for transparent objects inside the visualization 

volume can be achieved through a sparse volume representation of the rendered transparent 

objects in the scene, in which rays can be traced.  

Because virtual order independent transparency is an accurate rendering method, the 

visibility approximation operator can’t be applied here. Instead of a conservative inexact 

voxelization an indexed cluster grid is used, which can accurately detect ray-surface intersection. 

On the other hand, if slight approximations are permitted, the visual results can be augmented 

with inaccurate data from a transparents enabled CIV, in similar fashion to the extension done in 

the high frequency light transport for opaque objects, as shown in chapter 4.1.4.  

The visual volume is guaranteed to lack occluders, as the fragments generated by the 

VOIT algorithm are generated after the depth buffer is populated with opaque fragments. If a ray 

is reflected or refracted outside of the visualization volume it can either be traced inside the 

scene  with CIV, or just be discarded.  

 If the rendering process is concerned with occlusion from opaque data, the conservative 

inexact voxelization is evaluated in clusters, which have the same size as the clusters used by the 

index cluster grid. These are used to  

The method runs in two stages: the link stage, which links the linked list nodes to the 

index cluster grid, and the shading stage in which the index cluster grid is traced and the 

referenced nodes are adaptively shaded.  Each index cluster from the index cluster grid holds a 

linked list with pointers to all the virtual order transparency nodes which are spatially located 

inside the cluster.  

The shading stage spawns for each pixel reflection and refraction rays, for the closest 

camera-surface interaction. These rays are then traced inside the index cluster grid and new 

refraction and reflection rays are spawned for each contact. If a ray intersects an index cluster 

and the cluster is not empty, the ray is tested for intersection with each node linked to the cluster. 

Since the index cluster grid is a very sparse volume representation, this does not lead to 

excessive computation tests.  

The linked list nodes are shaded on demand, the first time a node is reference by a ray, it 

has its textures fetched through the virtual data method and it is shaded. Instead of reconstructing 

the texture derivatives by walking multiple lists in micro-tiles this variant of virtual order 

independent transparency queries the nearby clustered nodes in order to obtain local texture 

coordinate differences. The texture derivatives are then obtained, the texel fetches performed and 

the color for the node is computed. The color is then written in the space of the texture 

coordinates, in a single atomic operation.  
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Figure 66 Virtual order independent transparency with a cluster grid. A cluster grid can be used together with 

virtual order independent transparency, which enables refractions and reflections with ray tracing over the fragments 

saved in the clusters. The fragments are mapped to the cluster grid, which stores a list of the mapped fragments per 

cluster. Because of this the visibility determination operator is accurate over this sparse voxelization. The algorithm 

runs over the objects visible in screen space, therefore occlusion from opaque objects is not considered, since 

transparent objects are rendered after the depth buffer is populated with opaque objects. 

This variation of the VOIT algorithm is presented in Figure 66. The method still shades 

and reads texture data adaptively, only now it follows rays. The new shading pseudocode is:  

PREPROCESSING 

indexgrid  ←   allocate  an index grid of clusters, which hold pointers to VOIT nodes 

FOR cluster in indexgrid 

 clusternodes ← Ø 
 

LINK STAGE (integrated in GEOMETRY STAGE) 

indexgrid  ←   clear 
FOR pixel in pixels 
 list ← load the pixel fragment list into local shader memory 
 FOR node in list 
  position ←use node depth to reconstruct the position of the stored fragment 
  cluster ← use position  to determine in which cluster in indexgrid would the node reside 
  index← fragment index inside the nodebuffer, flag index as unshaded 
  clusternodes ← clusternodes   index 
 

SHADING STAGE 

FOR pixel in pixels 

 list ← load the pixel fragment list into local shader memory 

 IF list empty 

  OUTPUT background color 

 node ←first node in list, front to back order 

 position ←depth from node  

 cameraray ← create ray from camera to position 

 normal ← the normal of the node 

 refractedray ← refract  cameraray against normal 

 reflectdray ← reflect cameraray against normal 

 cluster ←indexgrid cluster, closest to node 

 incomingrefractedcolor ← TRACE(refractedray, cluster) 

 incomingreflectedcolor ← TRACE(reflectdray, cluster) 

 refractedcolor ← incomingrefractedcolor, normal, material 

 reflectedcolor ← incomingreflectedcolor, normal, material 

RETURN refractedcolor + reflectedcolor 
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TRACE(ray, cluster) 

trace starting from cluster, over the indexgrid until a hit with non empty cluster is detected 
IF no hit 
 RETURN 0 
ELSE 

 cluster ←indexgrid cluster for closest to hit 

 intersectednodes← Ø 

 FOR index in cluster  

  node ←LOAD(cluster,index) 

  position ← reconstruct fragment position, from depth 

  nodegeometry ←sphere, with radius of pixel size, centered at position 

  IF ray intersects nodegeometry 

   intersectednodes ← intersectednodes   node 

 IF intersectednodes not emptry 

  sort intersectednodes, over ray 

 ELSE 

  TRACE(ray, cluster) 

 node ← first node in intersectednodes 

 normal ← the normal of the node 

 refractedray ← refract ray against normal 

 reflectdray ← reflect ray against normal 

 incomingrefractedcolor ← TRACE(refractedray, cluster) 

 incomingreflectedcolor ← TRACE(reflectdray, cluster) 

 refractedcolor ← incomingrefractedcolor, normal, material 

 reflectedcolor ← incomingreflectedcolor, normal, material 

 RETURN refractedcolor + reflectedcolor 

 

LOAD(cluster, index) 

IF  index flagged as unshaded 
 IF VOIT variation is not storing texture coordinate derivatives 
  finished ←  false 

   WHILE not finished 

    node ←  next node in mergedlist, owned by pixel  

    avgderiv ← Ø 

    FOR neighbornode in mergedlist 

     IF neighbors (distance+ material  metric) 

      coord ← texture coordinates of node   

      ncoord ← texture coordinates of neighbornode 

      texturederivatives ←   differentiate coord, ncoord 

      avgderiv ←  avgderiv    texturederivatives 

    derivatives←  reconstruct avgderiv 

 texture ←   texture coordinates, object ID, material ID, like in standard virtual texturing 

 inf ,  sup ←   use texderivatives  to find the inf and sup texture mipmaps  

 IF  inf  not stored  

  inf ←   closest stored mipmap level  

 IF  sup not stored 

  sup ←   closest stored mipmap level  

 physicalcoordinates  ←    texture coordinates, inf ,  sup  

 texturedata  ←   sample virtual texture with physicalcoordinates  

 IF  using lighting 

  visibility ←    determine visibility through shadow maps or ray tracing over CIV  

  color ←   perform illumination with intersected scene lights  

 STORE color in place of texture coordinates, flag  index as shaded 

RETURN  position ,normal ,color ←  node ←   index 
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4.2. Correct Illumination 

The correct illumination module is not directly concerned with real-time rendering, as it 

presents a correct path traced rendering solution. While it is not a real-time solution, the correct 

illumination pipeline runs interactively on off the shelf hardware, and which will become real-

time with more performant hardware. 

The correct illumination modules uses ray tracing acceleration structures in order to 

accelerate the operation of tracing rays, which dominate the rendering time for tracing algorithms 

[Hav14]. While the module uses certain approximations to speed up the rendering process, the 

light transport is performed exactly, in the limits of photorealistic computer rendering. The 

algorithms used in this module can run both on the CPU and on the GPU. 

The module rendering process contains three large stages: construction and management 

of ray tracing acceleration structures, light flux importance sampling and bidirectional path 

tracing.  

In the construction and management of ray tracing acceleration structures stage Bounding 

Interval Hierarchies (BIH) are used for the exact tracing of rays. A variant of conservative 

inexact voxelization can be used as a secondary acceleration structure, with which rays are 

quickly tested for surface-cluster interaction before being fully traced. Thus by using two 

acceleration structures the complexity of tracing a ray is amortized. 

In the correct illumination module images are rendered with a modified bidirectional path 

tracing algorithm which traces rays with amortized complexity. The algorithm uses a novel 

importance sampling mechanism, named Light Flux Importance Sampling (LFIS), which 

approximates the flux of light in the scene, and uses this approximation to guide unproductive 

paths to the vertices of light paths. Compared to the state of the art methods [Vea97] [Cli05] 

[Bir12]  Light Flux Importance Sampling is faster and stores significantly less memory. 

The bidirectional path tracer uses both light flux and amortized visibility to quickly 

produce images, with an algorithm that can run on both CPU and GPU.  

4.2.1. Acceleration structures 

In tracing rendering algorithms the rendering time is dominated by the visibility 

determination operations [Hav14]. Because of this the acceleration data structures used as 

support for tracing have to be implemented with the utmost care for performance.   

The acceleration structures create scene geometry trees based on either space partitioning 

or object partitioning, a choice which stems from the fundamental acceleration structure question: 

to partition the space that contains the objects or to partition the objects into sets. Hybrid 

structures combine space partitioning with object partitioning. While the 2.2.4 chapter from the 

state of the art discusses all the acceleration structure topics relevant to rendering, a short 

comparison is given here, as background for the usage of the Bounding Interval Hierarchy (BIH). 

Space partitioning acceleration structures cluster the scene objects based on space 

subdivision. Rendering space partitioning structures include grids, perspective grids [Hun08], 

hierarchical grids, hierarchical hash-grids [Sch09], 1.5D and 2.5D grids [Har12], binary space 
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partitioning trees [Fuc80], image space pyramids [Had98], quad/octrees, sparse quad/octrees 

[Lai101] [Sim12] and kd-trees[Ben75] [Moo91].  

The kd-tree structure is commonly used in rendering due to its performance and advanced 

partitioning metrics such as the surface area heuristic [Wal06],  and the binned surface area 

heuristic [Dan10]. The greatest problem of this class of structures it that primitives are 

partitioned along with space, making the scene geometry trees artificially large and data access 

coherency suffers. Also the scene geometry trees need to be reconstructed for dynamic geometry. 

Inexact space partitions, like the one done with grids, suffer from high storage requirements, 

because they use coherently but inefficiently. 

Object partitioning acceleration structures cluster the scene objects based on their shape 

and proximity, and usually work with bounding volumes. Rendering object partitioning 

structures include object trees, B-trees, R-tree, sphere trees, AABB trees, bounding volume 

hierarchies, many partitioning metrics [Wal072] [Ern07] [Dam081] and variants [Sti09] [Pop09] 

[Dam08] [Tsa09], spatial kd-trees [Ooi87] [Zac02], h-trees and ah-trees [Hav06] and bounding 

interval hierarchies [Wäc06]. Object partitioning acceleration structures suffer from overlapping 

of sibling nodes.  

In this thesis the bounding interval hierarchy (BIH) variant of the spatial kd-trees is used 

as the tracing acceleration structure, a choice motivated by several useful properties of BIH. The 

BIH is constructed through object partitioning, subdividing objects into potentially overlapping 

nodes, with two splitting planes. The splitting planes are parallel to one of the dominant axes.  

BIH has very fast tracing performance compared to other object partitioning acceleration 

structures, because it stores its children in an implicit order, thus the tree traversal can quickly 

access the child closest to the ray origin, similar to how a kd-tree is traced. Furthermore BIH 

traversal adapts to empty space, as shown in Figure 67. 

BIH has the lowest memory footprint out of all the object partitioning algorithms, 

because it stores only critical data, bitwise compressed, and the majority of the data is 

determined implicitly (during traversal, from parent splitting planes). It stores the axis and the 

leaf information in a compressed binary format, cheaply reconstructing each node bounding box 

on traversal. The total memory cost for a BIH node is only 12 bytes, which is much less than the 

node cost in other object partitioning structures. This information is depicted in Figure 67. 

 

Figure 67 Bounding Interval Hierarchy Traversal. Bounding Interval Hierarchy (BIH) leaf nodes store pointers to 

the scene geometry primitives and the other BIH nodes use two splitting planes to partition the enclosed objects. The 

splitting planes are parallel to one of the dominant axes, as shown in right side of the image. This splitting strategy 

results in 3 object partitioning cases: one in which a node is perfectly partitioned, one in which the nodes overlap, 

and one in which empty space remains between the child nodes. This last case is used to accelerate tracing by 

skipping the empty space. 
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Because BIH doesn’t need to load object bounding boxes on space traversal, as it 

computes them implicitly, it exhibits excellent bandwidth consumption and data coherency. 

Tracing the acceleration structure can be done either trough a traversal which uses a stack, or 

through a stackless traversal. Stackless traversals are particularly useful on the GPU, since the 

storage and bandwidth consumption for stack maintenance are very expensive, therefore 

stackless traversal consume significantly less storage and bandwidth per ray. 

 Stackless kd-tree traversal techniques [Fol05] [Pop07]  are not suitable for object 

partitioning schemes because object partitioning nodes overlap [Lai10]. [Lai10] uses fixed sized 

buffer for local storage and a bitwise trail mask to represent the current ray tree traversal. 

Because the local storage for ray traversal is limited, ray traversal is performed through trail 

restarts, in which the bitmask trail is used to quickly guide the ray through the already traversed 

path. On the other hand the trail restarts make this method visit more than twice the nodes a stack 

based traversal would visit. [Hap11] uses parent links for each node but this increases storage 

requirements and needs to re-evaluate traversal order for revisited nodes. [Afr14] extends 

bitwise traversal to MBVH and makes traversal restart-less. Ray stream traversal bundles many 

rays in a stream and traverses them coherently [Bar14]. Acceleration structure-less traversals are 

a recent development [Mor11] [Kel11] [Nab13] [Afr12], but the extra costs during tracing make 

them inapplicable to interactive tracing.  

The BIH tracing pseudocode is based on MBVH2 from [Afr14], which uses the while-

while kernel introduced by Aila in [Ail09] [Ail12].  The method uses a 32bit or 64bit bitwise 

stack, called the bitstack, which stores 0 when the sibling of the current node doesn’t need to be 

traversed and 1 when the sibling has to be traversed. The stack push and pop operators are 

implemented through binary shifting. The pseudocode for ray traversal is: 

INTERSECT(ray) 

 node  ← root 

 bitstack  ← 0 

 WHILE true 

  IF  node  is inner      // NODE INTERSECTION 

   intersect ray  with node  children 

   IF  any child is intersected  

    bitstack  ← bitstack    1 

   IF  a single child was intersected  

    node  ← that child  

   ELSE 

    node  ← nearest child 

    bitmask  ← bitmask    1 

   CONTINUE 

  ELSE       // LEAF INTERSECTION 

   intersect ray  with leaf primitives  

   shorten ray  if intersection found  

  WHILE bitstack   1 = 0     // BACKTRACK 

   IF  bitstack = 0 

    RETURN surface intersection data 

   node ← parent of node 

   bitstack ← bitstack   1 

  node ← sibling of node 

  bitstack ← bitstack   1  
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4.2.2. Amortized Visibility Determination 

The cost of ray-based visibility determination operations can be lowered through 

coherent ray-packets [Bou07] [Bou08] [Ove08], which can’t be used by path tracing, and 

through imperfect geometry representations like voxelizations, which make the tracing operation 

approximated and not analytical. Tracing over voxel representations can greatly decrease the 

quality of the renderings, if the voxel representations have insufficient resolution. 

The idea of amortized visibility is to combine two acceleration structures, one exact 

(analytical) and one approximative (voxel based) and to trace costly exact rays only when the 

approximative rays shows an apparent clear path between traced points.  

Approximative rays can never determine whether a surface-ray interaction takes place, 

but they can conservatively query the potential ray surface interactions along an already 

established ray. Thus, amortized visibility can never be used to create new path segments, as this 

can only be accurately handled analytically. On the other hand amortized visibility can be used 

for visibility determination queries on already available potential path segments. An example of 

such usage is to test the visibility between already established entities such as: rays connecting 

path vertices with light vertices in bidirectional path tracing, rays connecting directly sampled 

lights with surfaces, and so on.  

In such cases amortized visibility is used to ascertain if two points are probably visible or 

not. If the probability is high enough an exact visibility determination ray is traced over the 

bounding interval hierarchy, as described in Chapter 4.2.1. The exact ray receives the probable 

conservative intersection events from the approximative ray, and partitions the ray into multiple 

segments which are traced together. Therefore, during the single BIH traversal for all the ray 

segments, not all the BIH nodes that would normally be evaluated have to be visited, only those 

intersecting the ray segments.  

Therefore, in the worst case cost of the amortized visibility for ray tracing, the cost for a 

ray traced with both approximated and exact tracing methods is approximately equal to the cost 

of ray fully traced with exact tracing. But the total cost for tracing all the rays in the path tracing 

algorithm with this amortized technique is lower than the total cost with only exact tracing, 

because the approximative rays quickly filter out statistically improbable connections.   

The correct illumination pipeline can use any voxelization algorithm to create the 

imperfect representation of the scene geometry. One option is to use the conservative inexact 

voxelization algorithm (CIV) presented in Chapter 4.1.2.   

Because a binary scene geometry representation consumes little memory (134MB for a 

detailed       representation) and it is generated very fast in           , with CIV, or 

              , with the state of the art, the benefits outweigh the costs.  

Tracing with approximative and exact rays is presented in Figure 68 along with a 

visualization of a BIH structure for a small scene, in which the objects are colored in dark gray. 

The Bounding Interval Hierarchy is represented with the same color encodings as the one used in 

Figure 67, red for left splitting planes and blue for right splitting planes. The depth of the BIH 

nodes is encoded in shades of green, darker being closer to leafs. 
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Figure 68 Amortized Rays in 2D. In the upper part of the image the Bounding Interval Hierarchy (BIH) for a small 

scene is displayed. The red lines depict the left partitioning plane and blue lines depict the right partitioning plane, 

keeping the color coding from Figure 67, in which BIH is presented. Objects are represented with gray. The depth of 

the nodes is represented with increasingly dark shades of green. The lower part of the image shows approximated 

tracing over the same scene, using a voxel representation for the scene. This is used to determine if there exists the 

potential for a clear path between points, for which an exact ray is then traced. If the potential is considered low, as 

would be for A → B then the costly exact ray would not be traced. If the potential is high, like for C → D, an exact 

ray is traced, which uses intersection data from the approximated ray, in order to test the intersection with less BIH 

nodes. 

While amortized sampling shouldn’t be used on all traced rays, as previously described, 

when used it can be considered as a form rejection importance sampling, because it pays the 

costs of the expensive analytic ray-scene intersection test only for the rays which are very likely 

to collect radiance. Amortized tracing can also be used to approximately compute expensive 

effects such as participating media. 

 

The voxel representation used for amortized tracing can also be used to compute skeleton 

importance sampling. On the other hand, Light Flux importance sampling is global importance 

sampling method which is both faster and more reliable than skeleton importance sampling. 
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4.2.3. Light Flux Importance Sampling  

The real problem with tracing rays is not necessarily their cost, which can only be 

minimized to a certain extent but the sheer number of rays generated during any path/ray/photon 

based algorithm. Decreasing requires more sophistication than raw intersection test efficiency 

and it is done through importance sampling. Importance sampling generates visibility 

determination rays which are much more likely to explore relevant surface and light interactions, 

and therefore to accumulate radiance and to be contribute to the final visual result. Radiance 

accumulation is very importance since path tracing requires many samples to converge, and the 

noise is easily observable in under sampled images, such as the ones found in real-time 

rendering, and shown in Figure 71, in the 4.2.4 subchapter.  

Importance sampling strategies can be performed at many levels, but a simple taxonomy 

can be observed: local sampling methods, path sampling methods and global sampling methods. 

Local sampling methods can be combined through multiple importance sampling [Vea97]. Local 

importance sampling methods include general variance decreasing strategies such as 

pseudorandom low discrepancy series sampling [Pha10], adaptive sampling [Dam09], which 

can be used for a variety of things such as pixel sample generation, BSDF probability 

distribution function importance sampling, direct lighting [Pha10], resampled importance 

sampling [Tal05], which uses existing samples, volumetric sampling [Kul12], which can be used 

to sample rays for scattering events. Eye reprojection [Hen11] and radiance filtering [Sch12] and 

radiance filtering can also be considered local sampling methods. 

Path space importance sampling methods include metropolis light transport [Vea97], 

primary space metropolis light transport [Kel02], energy redistribution [Cli05], manifold 

exploration [Jak12], gradient domain metropolis [Leh13] and multiplexed metropolis [Hac14]. 

All these methods use different mutation strategies on the entire path, to generate new radiance 

rich mutated paths. Vertex connection merging [Geo12] and path space regularization [Kap13] 

can also be considered importance sampling methods, as they try to maximize the connectivity of 

subpaths generated with bidirectional path tracing [Laf93]. Light field reconstruction [Leh11] 

can also be considered a path space importance sampling method as it reconstructs paths from 

light fields, basically importance sampling the path space of previously traced paths.  The 

purpose of path space algorithms is to find productive paths, even in hard to sample light 

transport situations. Path space algorithms can inherently sample local events (surface interaction, 

scattering, etc.).  

Global importance sampling are based on skeleton importance sampling methods [Bir12] 

[Cha13], which globally explore the scene to find potentially radiance rich areas. The strategy of 

this importance sampling family is to find the most productive empty space, which can then be 

easily linked to the lights and camera. The productive empty space is usually near the 

skeletonization of the empty space in the scene. Because the strategy is global, it is much more 

efficient in transporting light in extremely difficult scenes like those containing holes or barely 

opened doors. Bidirectional Importance [Laf93] sampling can be itself considered a global 

importance sampling method, because it samples paths from both camera pixels and scene lights 

and links the generated subpaths into full light transport paths. 

Light flux importance sampling (LFIS), also named light flow importance sampling, is a 

new global importance sampling, designed to be used with bidirectional path tracing. The idea 

is inspired by flow maps, which are maps that describe the flux of fluids. The light flux map is 
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extremely similar as a concept, as it describes the flux of light in the scene. Light flux 

importance sampling differs from the state of the art by creating a light flux map (LFM) which 

can be queried to quickly determine a source of light in any area of the scene. The source of light 

can be any scene light or any light vertex generated by light tracing.  

The light flux map is implemented as a tridimensional grid. It is populated by generating 

a small number of samples for each light and generating light paths for these samples. The light 

paths segments are voxelized, inside the tridimensional grid of the light flux map. Each cluster 

over which a light path is rasterized holds a reference to the scene light or light vertex from 

which the light originated. If a cluster is already populated, the radiance coming from the light 

vertex source of the newly voxelized path segment is compared to the one coming from the 

stored light vertex, and the vertex with the greatest radiance is kept. The light flux map thus 

contains sparse information about the scene light transport. A tridimensional push-pull process, 

akin to the one used in Conservative Inexact Voxelization in chapter 4.1.2 is used populate the 

entire map, guaranteeing a light connection for each cluster of the light flux map. A bit flag is 

kept for the approximated entries. 

Thus, the light flux map enables indirect light importance sampling, by being able to link 

any light vertex spawned by random walks originating from the light. The light sources are 

modified to store sufficient data in order to evaluate the radiance for the entire path from which 

they originated. For each camera path vertex generated inside the light flux cluster, a linkage is 

generated to one of the referenced light vertices. 

In the light tracing pass of the bidirectional path tracing algorithm, the light flux map 

entries which were flagged as approximated are updated when a light is found inside the flagged 

entry, either as a light segment or as a vertex. After a true, un-approximated, reference is stored 

in an entry, the entry is flagged as final and will not be sampled anymore. Thus, while the light 

flux map starts as a raw approximation of the scene it converges to an exact solution. Therefore, 

light flux enables a very fast connection between the path tracing vertices and light tracing 

vertices generated in bidirectional path tracing, which brings BDPT closer to real-time rendering.  

Compared to path importance sampled path tracing algorithms, such as metropolis light 

transport [Vea97], primary space metropolis light transport [Kel02], energy redistribution 

[Cli05], manifold exploration [Jak12], gradient domain metropolis [Leh13] and multiplexed 

metropolis [Hac14], the light flux method is much faster in producing paths that contribute to the 

visual results, and it does not need any complex, storage and computational intensive mutation 

process. Light flux has minuscule storage costs as compared to vertex connection merging 

[Geo12] and path space regularization [Kap13]. Compared to the other global importance 

sampling method, skeleton importance sampling [Bir12] [Cha13], the light flux map is much 

more exact because it directly samples light paths, and it adapts to the illumination conditions of 

the scene. Skeleton importance sampling samples the scene based on the supposition that high 

energy will be concentrated in the empty areas of the scene, but this estimate isn’t always 

accurate and it often leads to an oversampling of the empty space of the scene.  

A weakness of the presented method is that the map can generate bad light linkage when 

it is extremely under sampled, like right after the sampling stage, such as linking to a light that is 

directly occluded. The number of such events is extremely small compared to the number of 

useful connections, and the map converges rapidly. The light flow sampling algorithm is 

displayed in Figure 69. 
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Figure 69 Light flux importance sampling. This algorithm stores light flux information inside a tridimensional grid, 

where each entry references the light vertex bringing the most radiance, here shown as the direction from it. Initially 

the algorithm starts with a seeding process, in which a small number of light paths is generated for each light and the 

generated light path segments have their flux information stored in the flux map, as depicted in the upper image. The 

stored data is then interpolated in a tridimensional push-pull process, generating an approximated flux of light for all 

entries, as depicted in the lower image. The upper image also presents an optimization of the light flux algorithm, 

which can be used to better generate light paths in the light tracing pass of the BDPT. Each light stores the direction 

of the seeding sample which generated the most light vertices which were visible from the camera. The difference 

between the best direction seeding light path and the rest of the seeding light paths is shown in the surface contacts: 

the best direction light path has green surface contacts while the other light path has red surface contacts. The 

direction of the best light path is then importance sampled during light tracing.  

 The pseudocode for the light flux map creation is the following: 

 



R e n d e r i n g  m a s s i v e  s c e n e s  i n  r e a l - t i m e  

 

174 

 

 

PREREQUISTE 

create voxelization  for approximated tracing, can use CIV 

allocate lightfluxmap and lightfluxmipmaps  

 

LIGHTFLUX SEEDING (scenelights) 

Reinitialize lightflux,  flag all clusters to empty 

scenelights ← Ø 

FOR light in scene IF light is considered relevant (radiance, distance to camera) 

  scenelights ← scenelights + light 

FOR light in scenelights 

 samples ← generate a number of samples with pseudo random series (Halton/Sobol/vdCorput) 

 bestdirection ← direction of first sample 

 maxssprojections← 0 

 FOR sample in samples 

  lightvertex ← sample 

  numssprojections, recursion depth ← 0 

  ray ← sample position, sample direction 

  WHILE recursiondepth < Threshold 

   surfacehit ← trace until next surface contact 

   clusters ← clusters from lightfluxmap which were traced over 

   FOR cluster in clusters 

    IF cluster empty 

     cluster ← radiance and reference to previous lightvertex 

     cluster ← flag contents to exact 

    ELSE 
     storedradiance ← radiance of stored in cluster 

     radiance ← previous lightvertex radiance  

     IF radiance > stored radiance 

      cluster ← radiance and reference to previous lightvertex 

   lightvertex ← generate new light vertex, at surfacehit 

   ray ← ray, surfacehit data 

   projection ← randomly project  lightvertex to screen space  

   IF projection is unoccluded 

    numssprojections ← numssprojections+1 

  IF numssprojections > maxssprojections 

   bestdirection ← current sample direction 

   maxssprojections ← numssprojections 

RETURN lightfluxmap (sparse) 

 

LIGHTFLUX PUSHPULL (lightfluxmap) 

mipmaplvl ← 0 

WHILE mipmaplvl < (highest lightflux mipmaplvl-1) 

 FOR cluster (texel) in mipmaplvl+1 

  lightvertex← light vertex with most radiance among the four children from mipmaplvl 

  cluster←  lightvertex 

 mipmaplvl← mipmaplvl+1 

mipmaplvl← highest lightflux mipmaplvl 

WHILE mipmaplvl > 1 

 FOR cluster(texel) in mipmaplvl 

  FOR childcluster (texel in mipmaplvl-1) of cluster IF childcluster not exact  

    childcluster ← store the lightvertex from cluster 

mipmaplvl← mipmaplvl-1 

RETURN lightfluxmap (approximated) 
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LIGHT FLUX ADDITION DURING LIGHT TRACING 

FOR lightpath in paths generated by light tracing 

 IF using only light vertices 

  extrasamples ← vertices in lightpath 

 ELSE  
  extrasamples ← vertices in lightpath, generate vertices over lightpath segments 

 clusters ← lightflux clusters intersected by extrasamples 

 FOR cluster in clusters IF cluster not exact 

  cluster ← radiance and reference to previous lightvertex 

  cluster ← flag contents to exact 

 

Light flux importance sampling is compared to the state of the art importance sampling 

methods in Table 12. Light flux importance sampling can be combined with other importance 

sampling methods through multiple importance sampling [Vea97]. 

Importance Sampling Method & 

Sampling Space(s) 

Efficient with 

bad starting 

samples 

Computation 

Complexity 

Required 

Storage  

Requires 

Vertex 

Mutations 

Efficient 

Specular Path 

Exploration 

Explicit 

knowledge 

of light data 

adaptive sampling 

(local/general) 
low low low no no no 

BSDF sampling 

(local) 
no low none no yes no 

direct lighting 

(local) 
no low none no no yes 

resampled importance sampling 

(local/existing samples) 
no low low no no no 

volumetric sampling 

(local, path) 
no medium low no no no 

eye reprojection 

(local, camera) 
no low low no no no 

radiance filtering 

(local, camera, path) 
no low medium no no no 

temporal light field reconstruction 

(local, camera, path, temporal) 
no high medium yes no no 

metropolis light transport 

(local, path) 
medium high high yes medium no 

primary space metropolis transport 

(local, path) 
high high high yes medium no 

energy redistribution 

(local, path) 
high medium high yes medium no 

manifold exploration 

(local, path, manifold) 
medium high high yes v. high no 

gradient domain metropolis 

(local, path, gradients) 
high high high yes high no 

multiplexed metropolis 

(local, path) 
high high high yes v. high no 

vertex connection merging 

(local, path) 
high high high no high no 

path space regularization 

(local, path) 
high high high no high no 

Bidirectional 

(local, path, global) 
low medium high no no yes 

Skeleton 

(local, global) 
medium low medium no no no 

Light Flux - this algorithm 

(local, path, global) 
high low medium no no yes 

Table 12 Path tracing sampling strategies.  The table compares the Light Flux with other importance sampling 

algorithms or processes. Light Flux importance sampling exhibits desirable properties for fast light transport, with 

the exception of the exploration of difficult specular paths, which need special importance sampling mechanisms. 
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4.2.4. Bidirectional Path Tracing 

Bidirectional path tracing (BDPT) is the path tracing variant with the highest quality that 

does not need heavy path mutation in order to transport light, and is therefore sufficiently 

compatible with many core architectures in order to obtain low interactivity levels. The 

bidirectional path tracing algorithm runs in two stages: the light tracing stage and the path tracing 

stage. The light tracing stage samples the lights and generates light paths through the scene, 

directly sampling the lights. Usually, in BDPT the path tracing stage samples the camera and 

generates camera paths through the scene. If the GPU implementation of the current pipeline is 

used, the path tracing stage can use the geometry-buffer data for the first camera path vertex, 

which introduces a tiny amount of bias but speeds up rendering and eases the integration 

between the geometry processing chapter and the correct illumination pipeline.   

The generated light and camera paths are then combined, creating full light transport 

paths, from the scene lights to the camera. Both the lights and the camera pixels are sampled 

with pseudorandom low discrepancy series like Halton series [Pha10] and are stochastically 

terminated with Russian Roulette [Pha10]. The connection between the two stages is done with 

an acceleration structure, like a hierarchical cluster grid or a spatial hierarchical hash gird 

[Sch09], as used in [Geo12]. 

The bidirectional path tracing algorithm can be integrated tightly with the previously 

presented Light Flow importance sampling mechanism. As depicted in Figure 69, the seeding 

stage of the light flow map can be used to approximately determine the most productive 

sampling direction per light, by using the direction of the sample that generated the path with the 

most screen space visible light vertices. The computed direction can be then used as a minor 

importance sampling mechanism, which generates extra light paths around the determined 

productive direction. 

The presented correct illumination pipeline is based on a bidirectional path tracer that 

uses light flux importance sampling to explicitly and indirectly sample the scene lights and 

bidirectional scattering distribution function (BSDF) importance sampling, which creates 

samples based on probability distribution of the BSDF. These sampling mechanisms are 

combined with MIS [Vea97], as they would otherwise decrease local variance but increase 

global variance. The combination function is the power heuristic introduced by [Vea97]: 

       
 

  
          

       

        

 

   

 

   

           

 

   

                   
          

 

            
 
   

   

Where   is the number of importance sampling strategies,    is the number of samples 

for each sampling strategies,         is the estimated function,          is the sampling 

probability, and          is the power heuristic function. If    , the resulting weighting 

function is called the balance heuristic. 

Adaptive importance sampling, eye reprojection importance sampling and radiance 

filtering are used to importance sample data at the camera level. The BDPT algorithm is visually 

presented in Figure 70, with the most relevant sampling methods. 
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Figure 70 Bidirectional path tracing with light flux. In the upper part of the image, the light tracing pass of BDPT is 

displayed, which stores light vertices in an acceleration structure, shown in yellow. The light tracing algorithm 

sometimes generates lucky samples that directly light the screen, as shown in blue. The light tracing pass is 

importance sampled with the most productive light direction found in the light flux map construction step, shown in 

green. The bottom part of the image displays the path tracing pass of BDPT, which is explores the scene through 

camera paths (blue), which collect radiance. Different radiance collection algorithms are used, shown above with 

numbers 1,2,3,4,5. 1 and 3 are direct connection between a vertex path and a light path. 2 is the light flux importance 

sampling which is used on unproductive paths to quickly find light connections (3).  4 shows eye reprojection, in 

which the vertices of the traced camera paths are projected on the screen, along with their collected radiance. 5 

displays radiance filtering, in which the pixels directly sample the first camera path vertices from neighboring paths. 
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While not used in this thesis, the quality of the connection between light tracing and path 

tracing can be further improved with connection streams, like those used in streaming path 

tracing [van11], a modified sampling strategy such as the one presented in [Bog13] or through 

path regeneration [Nov10]. Path mollification [Kap13] and vertex connection merging [Geo12] 

can be used for offline rendering. 

 The presented bidirectional path tracer can use two strategies for lightflux map extra 

sampling. The first strategy is to fill the approximated lighflux map entries in the vicinity of light 

vertices generated in the light tracing stage. The second, more exact but much more expensive 

strategy is to fill all the approximated lightflux map entries which enter in contact with light 

paths from the light tracing phase. This can be achieved through tridimensional segment 

rasterization over the lightflux map, and will produce a high quality lightflux map.  The 

pseudocode for the light flux enabled light tracing BDPT algorithm is the following: 

BDPT LIGHT TRACING 

hashgrid ← allocate spatial hierarchical hash grid, hashgrid ← Ø 

scenelights ← all scene lights 

lightfluxmap ← LIGHTFLOW SEEDING with scenelights   //LIGHTFLUX SEEDING 

lightfluxmap ← LIGHTFLOW PUSHPULL lightflowmap 

WHILE scenelights not empty      //GENERATE SAMPLES 

 light ← pop scenelights 

 samples ← generate samples for light 

 lightflow_direction_samples ← generates samples for light using lightflow light direction 

 samples ← samples   lightflow_direction_samples 

 WHILE samples not empty     // LIGHT TRACING  

  sample ← pop samples 

  pathlength ← 0 

  path ← sample 

  previousvertex ← sample 

  ray ← create ray with light sample 

  WHILE pathlength < max path level   // MAX LENGTH 

   surface_intersection_data ← INTERSECT ray 

   vertex ← create light vertex with surface_intersection_data 

   store vertex in hashgrid 

   path ← path   vertex 

   pathlength ← pathlength + 1 

   bsdfsample ← sample BSDF 

   ray ← create ray with bsdfsample 

   IF lightfluxmap is sampled during light tracing  // LIGHTFLUX SAMPLES 

    IF sampled with vertices 

     cluster ← lightflux cluster for vertex 

     IF cluster approximated 

      cluster ← previous vertex, flag as not approximated 

    ELSE IF sampled with segments (very expensive!) 

     segment ← vertex   previousvertex   

     emptyclusters ← INTERSECT segment with lightflux   

      approximated clusters  

     WHILE emptyclusters not empty 

      cluster ← pop emptyclusters 

      cluster ← previous vertex, flag as not approximated 

   previousvertex ← vertex 

   IF random (0,1)< extinction probability  //RUSSIAN ROULETTE 

    BREAK 
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 The camera path tracing stage of the BDPT algorithm samples the scene like a normal 

path tracer, but also looks to connect each path vertex to a light vertex generated by the light 

tracing pass, in order to created complete light transport paths. This connection is done through 

explicit paths, in which a camera path vertex directly connects, or is in a very close vicinity of a 

light vertex, or through implicit paths, which use connectors suggested by the light flux map. 

 Russian Roulette (RR) [Pha10] is used to stochastically terminate long paths, and it is an 

unbiased estimator since each path that survives the Russian roulette is weighted in order to 

compensate in expected value, as done in this equation: 

                                          
       

                
         

 Adaptive importance sampling can be used to generate more camera paths, especially for 

paths starting in pixels prone to aliasing. These pixels can be determined with gradients like in 

[Leh13], which are extremely cheap to obtain if the camera path tracer is implemented starting 

from the deferred G-buffer. Another adaptive algorithm is based on the hierarchical automatic 

stopping condition presented in [Dam09], in which the screen is subdivided into tiles, over 

which path tracing phases are performed. After each path tracing phase the newly created tile 

image is compared to the existing tile image and if the error is under a very small threshold the 

tile is terminated. Otherwise, if the error is small enough the tile is split into multiple tiles, which 

then follow the same hierarchic process. If the error is large, the tile is not split, the radiance 

from the current path tracing pass is accumulated and a new path tracing pass over the tile is 

initiated. This technique is adapted to the correct illumination rendering pipeline, but instead of a 

hierarchic process which requires CPU synchronization a simpler micro-tile only structure is 

used, where samples are generated for each micro-tile until convergence is obtained. The error 

metric used by [Dam09] is adapted to: 

          
 

 
  

   
    

      
 
   

 
     

    
  

   
    

 
   

 

 

 

   

 

 Where   is the total number of pixels in the tile,   
 ,   

 
 and   

  are the values for the red, 

green and blue channels which were determined in the last path tracing pass over the tile and    
  , 

  
 

 and   
  are the already accumulated values for the red, green and blue channels. 

 Eye reprojection is a cheap performance improver, which uses the existing camera paths 

bring additional radiance to the camera, by projecting each camera path vertex onto the screen 

and transporting radiance. In this thesis eye reprojection is used only at micro tile level, in order 

for this algorithm to be compatible with adaptive sampling and to avoid GPU races. Radiance 

filtering follows the same principle of sample re-usage as eye reprojection, but instead of 

projecting camera path vertices onto the screen it performs micro path mutations on the paths 

created by the neighbor camera path tracing samples. The neighbor paths are mutated to 

terminate on the current sample and not on the neighbor sample, re-using the radiance transport 

computed by the neighbor samples. Both sampling strategies are displayed in Figure 70. Sub 

pixel reconstruction for ray-tracing can be used if the BDPT is implemented with a deferred 

renderer [Chi12].  

 The pseudocode for the BDPT camera path tracing stage is: 
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BDPT PATH TRACING 

scenelights← scene lights  

lightfluxmap, hashgrid←  BDPT LIGHT TRACING 

microtiles ←separate the screen into microtiles  

FOR tile in microtiles        //ADAPTIVE SAMPLE 

 converged ← false 

 sampler ← create Halton series low discrepancy sampler from camera and pixel 

 FOR pixel in microtile 

  pixelaccumulatedcolor ← 0 

 WHILE not converged 

  samples ← generate camera samples with sampler in microtile  

  projectedsamples← Ø 

  FOR sample in samples      //TRACING 

   pathlength ← 0 

   path ← sample 

   ray ← create ray with sample 

   samplecolor ← 0 

   previousvertex ← sample 

   contribution ← 1 

   WHILE pathlength < max path level   //MAX LENGTH 

    surface_intersection_data ← INTERSECT ray 

    vertex ← create light vertex with surface_intersection_data 

    path ← path   vertex 

    pathlength ← pathlength + 1 

    entry ← hashgrid entry for vertex 

    IF entry not empty    //EXPLICIT LINK 

     connected ← false 

     index ← random index from 0 to entry size 

     WHILE not connected 

      lightvertex ← select light vertex at index 

      lightray ← ray from vertex to lightvertex 

      IF no INTERSECT lightray 

       samplecolor ← contribution, vertex, lightvertex 

       BREAK 

      ELSE 

       index←index+1 

    normal, bsdf, mis ← surface_intersection_data 

    IF lightflux importance sampling   //INDIRECT LINK  

     lightfluxcluster ← get lightflux cluster //MIS LIGHTFLUX 

     light← get light from lightfluxcluster 

     lightray ← ray from vertex to lightvertex 

     IF no INTERSECT lightray 

      Lightfluxestimator ← MIS 

      samplecolor ← contribution, vertex, lightvertex 

      BREAK 

    IF direct light importance sample   //MIS DIRECT LIGHT  

     light← pick a light from scenelights 

     lightray ← ray from vertex to sampled point on light 

     IF no INTERSECT lightray 

      lightestimator ← use ray, normal, mis  

      directcolor ← evaluate path & lightvertex 

      samplecolor←samplecolor + lightestimator *directcolor 

    IF bsdf importance sampling    //MIS BSDF  

     bsdfestimator, ray ← use ray, normal, mis to sample bsdf  

     contribution ← contribution   bsdfestimator 

    IF eye reprojection && samplecolor>0 //EYE REPROJECTION 

     camerasample ← sample camera in microtile 
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     projectedvertex ← project previousvertex on camerasample 

     projectedray ← create ray from previousvertex to projectedvertex 

     IF no INTERSECT projectedray 

      projectedcolor ← projectedray, previousvertex, vertex 

      projectedsamples ← projectedsamples   projectedcolor 

    IF random(0,1) < extinction probability //RUSSIAN ROULETTE 

     BREAK 

    ELSE 

     contribution ← contribution  
 

        
 

    previousvertex ← vertex 

   END WHILE 

  END FOR 

   

  FOR sample in samples      //RADIANCE FILTERING 

   FOR neighborsample in samples 

    path← path of neighborsample 

    firstvertex←first vertex in path 

    secondvertex←first vertex in path 

    projectedray ← create ray from sample to firstvertex 

    IF no INTERSECT projectedray 

     projectedcolor←projectedray, firstvertex, secondvertex 

     projectedsamples ← projectedsamples   projectedcolor 

  pixeltotalcolor ← 0 

  pixeltotalweight ← 0 

   

  FOR pixel in microtile     //SAMPLE FILTERING 

   FOR sample in microtile 

    sampleweight ← determine sample weight, based on screen space distance 

    pixeltotalweight← pixeltotalweight + sampleweight 

    pixeltotalcolor ← pixeltotalcolor + samplecolor 

   IF pixeltotalweight > 0 

    pixelcolor ← pixeltotalcolor / pixeltotalweight 

   ELSE 

    pixelcolor ← 0  

   IF using deferred renderer    //SRAART 

    extrasamples← sub pixel reconstruction antialiasing 

    pixelcolor← average with extrasamples      

   pixelerror ← compute with error between pixelcolor and accumulatedcolor  

  microtileerror← 0 

  numpixels← number of pixels in microtile 

   

  FOR pixel in microtile   //ADAPTIVE SAMPLING CONVERGENCE 

   pixelerror ← error or pixel 

   microtileerror ← microtileerror  + pixelerror  

  microtileerror← microtileerror/ numpixels 

  IF microtileerror < convergence threshold 

   converged←true 

  ELSE     //ADAPTIVE SAMPLING ACCUMULATION 

   FOR pixel in microtile 

    FOR sample in pixel 

     accumulate samplecolor in pixelaccumulatedcolor 

 The BDPT algorithm with the presented sampling algorithm creates the images in Figure 

71 interactively. The figure also shows that the light flux importance sampling method 

speeds up light transport, especially for difficult to sample global light paths.  
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Figure 71 Interactive BDPT with light flux importance sampling. The presented bidirectional path tracer produces 

the above images interactively, on consumer hardware GPUs. The images show that light flux sampling is very 

productive for all light paths, as it generates light-camera paths very fast which ensure faster image convergence.  

 Figure 72 presents results obtained with rendering times outside interactivity.  

 

Figure 72 Offline bidirectional path tracing. The presented correct illumination can be used in offline mode to 

produce photorealistic results. Classic global illumination rendering scenes are shown in the figure. 

 Due to the very low memory usage and the fast connection between light vertices and 

path vertices, the light flow importance sampled bidirectional path tracing is an algorithm 
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designed for the GPU, which can be used to produce interactive previsualisations for offline 

rendering.  

 Fast and accurate previsualisations are critical in CAD modeling, because the final 

renderings use extremely large sample counts and are thus too expensive for interactive 

modeling. 

4.3. Post Processing 

Post processing is performed independently of the illumination rendering pipeline, and 

both the approximate illumination pipeline and the correct illumination pipeline can be post 

processed. The post processing stage implements many filters, which improve the visual result of 

the rendering by either enhancing it perceptually or by augmented the rendered image. Some of 

the implemented filters are shown in Figure 73. 

 

Figure 73 Post processing. This image shows various post processing algorithms such as edge detection in the upper 

left corner, perception enhancing in the upper right corner, micro ambient occlusion in the right lower corner. 

Because the pipeline is GPGPU computed, it can benefit from explicit caching methods, which enable the 

implementation of very wide kernels, such as the blur kernel used in the lower left corner. 

The post processing stage works as a completely GPGPU stage, which uses outputs 

produced by illumination pipeline, such as depth, normals or color. These values are read into 
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tiles, which act as small caches, and which greatly speed up data access, because all the filters 

are implemented as kernels over some vicinity of image space. 

The filters implemented in the post processing module are tone mapping, high dynamic 

range rendering, gamma correction, depth of filed, edge detection, motion blur and perception 

enhancing. They can be categorized into two types: perception enhancing filters and rendering 

enhancing filters. The rendering enhancing filters are particularly important, because they 

improve the approximated illumination visual results with motion blur and bokeh depth of field, 

as described in [McI12] and [Gue14]. 

A notable omission from this sub-chapter is the decoupled sub pixel reconstruction anti-

aliasing algorithm, which is a post processing algorithm seamlessly integrated in the deferred-

based in the approximated rendering illumination pipeline. 
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5. CONCLUSIONS 

This thesis has introduced a modular rendering pipeline based on several novel real-time 

and interactive rendering techniques. The presented real-time algorithms are based on the 

principles of decoupling and bandwidth reduction, and can handle a large number of light paths. 

The correct rendering path runs at the edge of interactivity. The contributions are presented in 

detail in chapters 3 and 4. 

The most important contributions to real-time rendering which are presented in this thesis 

are the virtual rasterization and antialiasing algorithms for opaque and transparent objects, the 

hierarchical culling algorithm, the conservative inexact voxelization method and its applications 

to approximative low and high frequency light transport. Other contributions include a variant of 

the marching cubes algorithm specialized for large datasets, a hierarchical impostor system using 

virtual texturing, a small rasterization task generator, measurement metrics for deferred 

algorithms, an approximative order independent transparency algorithm and a geometry selection 

method. 

The correct rendering path introduces light flux sampling, a novel global importance 

sampling method, which adapts to scene light transport faster than the other global importance 

sampling methods. The correct rendering path also amortizes the cost of some of the visibility 

determination rays, by using the conservative inexact voxelization algorithm.  

The rest of the chapter continues with a short description for each introduced algorithm 

and with an overview of the potential research directions that continue the ideas discussed in this 

thesis. 

5.1. Summary of Contributions 

In this small sub-chapter each contribution is shortly described.  

The indirect rendering solution used in this thesis is based on a serialization method for 

the marching cubes algorithm, which enables running the algorithm on the GPU, for very large 

datasets. The algorithm is described in chapter 3.2.1, and also published in [Pet11]. 

A hierarchical impostor method is presented in chapter 3.2.3, which creates impostors for 

entire scene tree nodes. Compared to state of the art methods, this technique operates at scene 

level and it is integrated within a virtual texturing based streaming system while also being 

parallax mapping aware. It is then used for scene rendering scalability and anti-aliasing. 

 This thesis introduces a GPU task generator, which, compared to all the other state of the 

art task generators and schedulers, is capable of working within the rasterization thread scheduler. 

Because of this, the task generator can be used to augment the performance of rasterization-

based rendering algorithms. This task generator is described in chapter 3.3, and published in 

[Pet14]. It is then applied to a hierarchical view frustum culling algorithm in chapter 3.4. The 

task generator is used to generate and solve culling tasks which appear during the culling scene 

tree traversal. 
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 The multi frame culling algorithm culls objects hierarchically, over multiple frames 

without CPU control besides the initialization synchronization, and without any pre-processing 

like occlusion impostors. On the other hand if such impostors are available, it can be integrated 

with hierarchical depth occlusion to benefit from. The algorithm can be also be integrated with 

other hierarchic or non-hierarchic algorithms, such as hierarchical depth occlusion, though it can 

benefit from the latter if it is available. The algorithm can also be implemented using dynamic 

parallelism. Moreover, the method introduces a multi-frame culling mechanism based on the 

solid angle obtained from the camera orientation. By culling objects for multiple frames, the 

algorithm significantly lowers computational costs. 

 Novel measurement metrics for deferred algorithms are provided in this thesis, in chapter 

3.5.1, and they are used to compare all the relevant deferred and decoupled algorithms. They are 

also published in [Pet15]. By using these methods a developer can easily select the most suitable 

deferred algorithm, depending on the constraints of the rendering problem and on the 

deployment hardware strengths and weaknesses.  

 This thesis introduces virtual rasterization rendering methods for both opaque and 

transparent objects. Both algorithms use virtual texturing to completely decouple texture fetching 

from geometry processing.  

 The opaque objects are rasterized with virtual deferred (VD), presented in Chapter 3.5.2. 

The shading part is presented in Chapter 4.1.4. Virtual deferred is a novel type of deferred 

algorithm, which combines the benefits of single geometry pass deferred rendering with the 

useful properties of virtual texturing and multi-pass deferred algorithms. In doing so, virtual 

deferred possesses the best deferred metrics for bandwidth, shading and geometry processing, 

while also being easy to incorporate in a streaming solution. The method was published in 

[Pet151]. 

 Decoupled sub pixel reconstructed anti-aliasing (DSRAA) is a new method which is 

inspired by the sub geometric reconstruction anti-aliasing (SRAA), improving it by performing 

the sub-geometric reconstruction as a sample matching method. This antialiasing method does 

not introduce further storage and bandwidth costs and has cheaper reconstruction costs than 

SRAA. It is also used in combination with virtual deferred, to render antialiased rasterized 

opaque objects, as discussed in chapter 4.1.5. 

 Virtual deferred is also adapted for transparent object rendering. The thesis introduces 

Virtual A-Buffer (VA-Buffer), also named Virtual Order Independent Transparency (VOIT), in 

Chapter 3.6.1. The shading part is offered in Chapter 4.1.6. VOIT modifies the GPU variant of 

the A-Buffer algorithm with virtual deferred principles, lowering the bandwidth and storage 

requirements. By relaxing the greatest constraint of the A-Buffer algorithm, VOIT is able to 

handle scenes with increased material complexity. Moreover VOIT shades adaptively, based on 

the opacity of each pixel, thus it shades and textures only the nodes which are guaranteed to have 

a visual impact in the final image. Furthermore, VOIT scales much better than A-Buffer when 

high quality results are needed and can be used to compute antialiasing without storing multiple 

samples per fragment. The method is also adapted for specular light transfer. 

 Another novel order independent transparency algorithm is also introduced, which 

modifies occupancy maps with depth distributions, adaptively increasing the depth resolution for 

each pixel. The method is named distribution occupancy maps and it is presented in chapter 3.6.2. 
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Each pixel stores a small resolution depth occupancy map, which is used to approximate the 

depth distribution over the pixel. Using this depth distribution, the full resolution occupancy map 

has its sampling points modified, to better adapt to the fragments rendered over the pixel. While 

this technique is not applicable to sharp geometric features, because of the approximated per-

pixel opacity, it can still produce very good results for fuzzy objects, such as participating media 

and particle systems. 

 A selection algorithm is presented in chapter 3.7, which integrates seamlessly in any 

rasterization process. The selection algorithm improves upon state of the art methods, being able 

to select anything renderable, include alpha culling, the instances of instanced geometry, 

transient geometry generated with hardware tessellation, or alpha occlusion. The method was 

published in [Pet13]. 

 Conservative Inexact Voxelization (CIV) is a novel type of imperfect voxelization, which 

exchanges correctness for speed. It is introduced in chapter 4.1.2. Compared to the state of the art 

voxelization solutions CIV has a drastically lowered complexity. Instead of working at a triangle 

level it works directly on objects, which are approximated, diced and stored in a hierarchic voxel 

representation. A push-pull process is then applied to the hierarchic voxel representation, which 

quickly updates the content for all levels of the hierarchy. The CIV structure is designed for 

tracing approximative rays, such as the ones used in approximative global illumination or 

stochastical collision rays. CIV integrates seamlessly into deferred pipelines as the depth samples 

from the depth buffer can be back projected to create extra geometric information for the objects 

inside the visualization frustum. 

 The CIV method is then used to relax the visibility operator in the rendering equation, 

acting as a visibility determination structure for virtual light generation. Because the CIV 

contains more data closer to the visualization volume, it permits tracing with an adaptive 

visibility operator, which is highly accurate inside the visualization volume and coarse outside it. 

Virtual lights are generating with random walks through the CIV, starting from the scene lights, 

like in any instant radiosity variant. The illumination with virtual lights is then performed with a 

deferred lighting algorithm. CIV is also used to trace local shadow. Compared to the state of the 

art methods, this enables fast diffuse light transport without any precomputation or special cases 

for animated or moving objects, as discussed in Chapter 4.1.3.1. 

 CIV can also be used in conjunction with approximated screen space specular light 

transport algorithms, to augment the approximated methods in their many fail cases. This is 

presented in Chapter 4.1.3.2. 

 This thesis also provides algorithms for rendering methods which are only at the edge of 

interactivity as of today, but will be used on consumer hardware for real-time rendering in the 

future. Photorealistic images are rendered with a bidirectional path tracer, which amortizes the 

cost of visibility determination operations through the imperfect but conservative visibility 

computed with CIV. Because CIV is also used to approximate the visibility operator for the real-

time global illumination solution presented in this thesis, the two rendering paths - correct and 

approximate - are easily interchangeable.  

 The correct illumination solution introduces a new type of importance sampling, light 

flux sampling, which quickly approximates the flow of light in the scene and uses this 

approximation to quickly create productive paths. Compared to other state of the art methods, it 
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does not need to use a metropolis process or scene-wide geometry skeletonization to generate 

high-energy paths. Furthermore, for scenes with normal light transport, it creates paths much 

faster than the other sampling algorithms. Light flux can be considered an indirect light 

importance sampling mechanism, as it indirectly samples lights with a connection probability 

comparable to direct importance sampling. 

 Light flux importance sampling and amortized visibility are then used in a bidirectional 

path tracer to create photorealistic images. The bidirectional path tracer also employs state of the 

art algorithms such as adaptive sampling per tile, multiple importance sampling, radiance 

filtering, eye reprojection sampling, Russian roulette extinction, sample filtering and explicit 

connection testing through a spatial hash grid. 

5.2. Conceptual Contributions 

 The decoupled algorithms presented in this thesis completely separate visibility 

determination, texture fetching and shading, in the context of rasterization rendering. This is 

performed without storing a very large number of samples or needing to synchronize a dynamic 

programming solution like in [Rag11]. Decoupled solutions ease aliasing analysis, frame rate 

stability and analysis and software development. 

 Conservative inexact voxelization is a unique type of voxelization because it works in 

           instead of working in              , as do the other state of the art algorithms. 

Approximative light transport over the presented conservative inexact voxelization data structure 

is a reliable solution for real-time transport of low frequency light, offering a true real-time 

solution for many lights shadowing.  The rendering algorithms presented in this thesis use 

conservative inexact voxelization to solve low frequency light transport in real-time, but, like all 

other rendering solutions, including voxel cone tracing [Cra09], fail to produce high quality 

specular light transport, especially caustics, leaving place for improvement. The adaptation of the 

conservative inexact voxelization acceleration structure to screen space high frequency light 

transport mechanics offers perceptually pleasing specular transport, through the augmentation of 

the screen space algorithm with information needed for its fail cases. This is done without the 

harsh requirements of sparse octrees: streaming, storage and bandwidth consumption catalyzed 

be resolution requirements, and expensive voxelization.  

 The concept of perception influenced degradation of the visibility operator in the 

rendering equation, as introduced by conservative inexact voxelization, can lead to comparable 

results with the current [Cra09] [Mar14] [Gan14] or emerging [Bik07] [Bik13] interactive high 

frequency light transport solutions, but with only a fraction of the computational costs. This is 

especially valuable for storage and bandwidth poor hardware. 

 From a non real-time standpoint, the novel light flux importance sampling method has 

shown that links between paths can be constructed efficiently without much computation, and 

that the light distribution in the scene can be progressively approximated and harnessed for more 

efficient transportation algorithms.  
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