

Proiect KNOWLEDGE - POSDRU/159/1.5/S/134398

Dezvoltarea resurselor umane din cercetarea doctorală și postdoctorală: motor al societății bazate pe cunoaștere

UNIVERSITATEA POLITEHNICA DIN BUCUREŞTI
Facultatea Automatică si Calculatoare

Departamentul de Calculatoare

Nr. Decizie Senat 237 din 02.09.2015

TEZĂ DE DOCTORAT
Redarea de scene masive 3D in timp real

Rendering massive 3D scenes in real-time

 Autor: Ing. Alexandru Lucian Petrescu

 Conducător de doctorat: Prof. dr. ing. Florica Moldoveanu

COMISIA DE DOCTORAT

Preşedinte Prof. dr. ing. Adina Magda Florea de la Universitatea POLITEHNICA din Bucureşti

Conducător de doctorat Prof. dr. ing. Florica Moldoveanu de la Universitatea POLITEHNICA din Bucureşti

Referent Profesor dr. ing. Vasile Manta de la Universitatea Tehnică „Gheorghe Asachi” din Iaṣi

Referent Profesor dr. ing. Ṣtefan Pentiuc de la Universitatea „Ştefan cel Mare” din Suceava

Referent Conferenţiar dr. ing. Irina Mocanu de la Universitatea POLITEHNICA din Bucureşti

Bucureşti

RENDERING MASSIVE SCENES IN

REAL-TIME

A Dissertation

Submitted to the Faculty of Automatic Control and Computers

of

University POLITEHNICA of Bucharest

by

Alexandru Lucian Petrescu

In Partial Fulfillment of the

Requirements for the Degree

Of

Doctor in Computer Science

September 2015

University POLITEHNICA of Bucharest

Romania

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. 1

FINANCIAL ACKNOWLEDGEMENTS ... 1

ABSTRACT .. 2

LIST OF PUBLICATIONS AND RESEARCH PROJECTS .. 3

SYMBOLS AND ACRONYMS .. 4

1. INTRODUCTION .. 9

1.1. Real-time Rendering .. 9

1.2. Motivation and Objectives ... 11

1.3. Contributions .. 14

1.4. Thesis Overview ... 17

2. STATE OF THE ART .. 21

2.1. GPU Evolution ... 21

2.2. Data Representation ... 24

2.2.1. Raw Data ... 24

2.2.2. Raw Data Compression... 25

2.2.3. Progressive Data Representations ... 26

2.2.3.1. Subgeometric Data .. 29

2.2.4. Acceleration Structures ... 31

2.3. Rendering Concepts ... 36

2.4. Rendering algorithms ... 39

2.5. Rasterization ... 42

2.5.1. Visibility and Occlusion Culling .. 43

2.5.2. Geometric Antialiasing ... 44

2.5.3. Direct Illumination .. 45

2.5.4. Shadows .. 48

2.5.5. Transparency ... 51

2.5.6. Motion ... 52

2.6. Approximated and screen space methods .. 53

2.6.1. Screen Space Ambient Occlusion ... 54

2.6.2. Image Based Lighting ... 56

2.7. Reyes .. 58

2.8. Ray tracing ... 59

2.9. Path tracing ... 64

2.9.1. Essentials... 64

2.9.2. Multidimensional integrals and Path Tracing ... 64

2.9.3. Improved Sampling ... 66

2.9.4. Path Space Algorithms .. 67

2.9.5. Accelerated Tracing .. 69

2.10. Photon mapping .. 72

2.11. Many lights methods .. 74

2.11.1. Generating Virtual Lights.. 75

2.11.2. Illumination with Virtual Lights ... 77

2.11.3. Scalability .. 80

3. GEOMETRY PROCESSING ... 82

3.1. Asset Definition.. 84

3.2. Streaming ... 85

3.2.1. Virtual Data ... 86

3.2.2. Indirect Rendering .. 88

3.2.3. Hierarchical Impostors .. 92

3.3. Task Generation for Rasterization.. 96

3.4. Hierarchical GPU Culling .. 100

3.5. Opaque Rasterization ... 107

3.5.1. Analyzing Deferred Rendering ... 111

3.5.2. Virtual Deferred .. 114

3.6. Transparent Rasterization ... 120

3.6.1. Virtual Order Independent Transparency ... 121

3.6.2. Distribution Occupancy Maps .. 127

3.7. Atomic Geometry Selection ... 131

4. ILLUMINATION ... 136

4.1. Approximate Illumination Stage .. 139

4.1.1. Light transport for Dominant Lights ... 139

4.1.2. Conservative Inexact Voxelization ... 141

4.1.3. Light transport for Secondary Lights .. 146

4.1.3.1. Light transport for Low Frequency Light ... 146

4.1.3.2. Light transport for High Frequency Light ... 150

4.1.4. Opaque shading ... 152

4.1.5. Decoupled sub pixel reconstructed anti-aliasing .. 156

4.1.6. Transparent Shading ... 161

4.2. Correct Illumination ... 166

4.2.1. Acceleration structures.. 166

4.2.2. Amortized Visibility Determination ... 169

4.2.3. Light Flux Importance Sampling .. 171

4.2.4. Bidirectional Path Tracing .. 176

4.3. Post Processing ... 183

5. CONCLUSIONS... 185

5.1. Summary of Contributions ... 185

5.2. Key Results .. 188

REFERENCES ... 189

LIST OF FIGURES

Figure 1 Massive scenes. .. 10
Figure 2 Proposed Rendering Architecture... 19

Figure 3 The hardware graphics pipeline in SM5. .. 22
Figure 4 Abstract modern GPU Architecture. .. 23
Figure 5 Triangles and voxels comparison. .. 25
Figure 6 Complex Impostors. ... 28
Figure 7 Acceleration structures. .. 35

Figure 8 Rendering algorithms. .. 41
Figure 9 Culling algorithms. ... 44
Figure 10 Abstract deferred rendering. ... 46
Figure 11 Decoupled sampling. .. 47
Figure 12 Volumetric shadow maps. .. 50

Figure 13 Stochastic rasterization. .. 52
Figure 14 Spherical Harmonics. ... 53

Figure 15 SSAO sampling. ... 55
Figure 16 SSGI. .. 57

Figure 17 Reyes. ... 58
Figure 18 Ray tracing.. 63

Figure 19 Path tracing. .. 71
Figure 20 Photon Mapping. .. 74
Figure 21 Virtual Light Generation. ... 77

Figure 22 Virtual Light Types. ... 79
Figure 23 Geometry Processing Overview. .. 82

Figure 24 Rendering assets. .. 85

Figure 25 Paging System. ... 86

Figure 26 Virtual texturing. .. 87
Figure 27 Surface Reconstruction. .. 89

Figure 28 Chunked Marching Cubes. ... 90
Figure 29 3D for Medicine. .. 91
Figure 30 Hierarchical Impostors. .. 93

Figure 31 Rendering Hierarchical Impostors. ... 95
Figure 32 Task Generation on the GPU. ... 97

Figure 33 Task Generation Results. .. 99
Figure 34 Coherent Hierarchical Culling. ... 100
Figure 35 Hierarchical Depth Culling. .. 101
Figure 36 Hierarchical GPU Culling. ... 102

Figure 37 Multi frame culling. .. 104
Figure 38 Hierarchical GPU Culling Results. ... 107
Figure 39 Depth Precision. ... 108

Figure 40 Wrinkled Surface Rendering. ... 109
Figure 41 Why deferred. ... 111
Figure 42 Virtual deferred G-Buffer. .. 114
Figure 43 Virtual deferred Results. ... 117
Figure 44 Virtual deferred Per Pixel Storage Analysis. .. 118
Figure 45 Virtual deferred Per Pixel Bandwidth Analysis. .. 119

Figure 46 Order Independent Transparency. .. 121
Figure 47 Virtual Order Independent Transparency - algorithm. ... 122

Figure 48 Virtual Order Independent Transparency – state of the art comparison. 125
Figure 49 Virtual Order Independent Transparency – applications. ... 126
Figure 50 Distributed occupancy maps. .. 128
Figure 51 Distribution Occupancy Maps Results. .. 130

Figure 52 Object Selection.. 131
Figure 53 Atomic Geometry Selection Marching. .. 133
Figure 54 Other uses of selection.. 135
Figure 55 Illumination Overview.. 136
Figure 56 Ray traced shadow maps. ... 140

Figure 57 Conservative Inexact Voxelization... 142
Figure 58 Varying Visibility Operators With Conservative Inexact Voxelization. 145
Figure 59 Virtual lights generation. .. 148

Figure 60 Scene lights acceleration structures. ... 149
Figure 61 Secondary lights visibility. ... 149
Figure 62 Illumination with virtual lights. .. 150
Figure 63 Screen space cone tracing. .. 151

Figure 64 Decoupled sub-pixel reconstructed antialiasing. .. 158
Figure 65 Decoupled sub-pixel reconstructed antialiasing Results. ... 160

Figure 66 Virtual order independent transparency with a cluster grid. 164
Figure 67 Bounding Interval Hierarchy Traversal. ... 167
Figure 68 Amortized Rays in 2D. ... 170

Figure 69 Light flux importance sampling. .. 173
Figure 70 Bidirectional path tracing with light flux. .. 177

Figure 71 Interactive BDPT with light flux importance sampling. .. 182

Figure 72 Offline bidirectional path tracing. .. 182

Figure 73 Post processing. .. 183

LIST OF TABLES

Table 1 Texture Block Compression. ... 25
Table 2 Rendering as sorting. ... 39

Table 3 Chunked Marching Cubes Memory Usage. ... 91
Table 4 Task Generator for Rendering Results. .. 99
Table 5 Deferred Algorithms Comparison - I. .. 113
Table 6 Deferred Algorithms Comparison - II. .. 113
Table 7 Virtual deferred and the state of the art. .. 117

Table 8 Comparison of selection algorithms. ... 135
Table 9 Conservative Inexact Voxelization Storage Requirements. .. 144
Table 10 CIV and the state of the art. ... 144
Table 11 DSRAA and antialiasing algorithms. ... 160
Table 12 Path tracing sampling strategies. ... 175

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

1

ACKNOWLEDGEMENTS

 I am grateful for the help and guidance of my advisor, Prof. Dr. Florica Moldoveanu.

Under her supervision I increased my understanding of computer graphics beyond the topics of

real-time rendering, I had many interesting theoretical and practical research opportunities and I

learned how to properly do research.

 I am also grateful for the research insights, opportunities and guidance offered by Prof.

Dr. Michael Wimmer and Prof. Dr. Werner Purgathofer during my internship at Vienna

University of Technology.

 I would like to thank my colleagues Dr. Ing. Alexandru Egner, Msc. Ing. Mihai Francu,

Conf. Dr. Ing. Alin Moldoveanu and Dr. Ing. Anca Morar for many interesting research

discussions, for their support and their useful suggestions. I am particularly grateful to my

colleague, Dr. Ing. Victor Asavei, as he introduced me to computer graphics and his

recommendations, help and counsel were extremely helpful during my doctoral studies.

 Many thanks go to Horea Caramizaru, for the numerous discussions about algorithms,

complexities and acceleration structures and for helping me improve my knowledge of how to

match different computer science methods to practical rendering problems.

 Special thanks go to Károly Zsolnai for introducing me to the world of global

illumination, and for recommending me a large number of influential scientific works that

shaped this field.

 The 3D models used in the images generated for this thesis are freely available at the

Stanford 3D scanning repository, the Google 3D Warehouse, AIM@Shape, the Utah 3D

animation repository, Crytek and at the McGuire Graphics Data Archive.

 I am most grateful to my family, for their complete support, understanding and love,

without them this would have been impossible.

FINANCIAL ACKNOWLEDGEMENTS

 The work has been funded by the Sectoral Operational Programme Human Resources

Development 2007-2013 of the Ministry of European Funds through the Financial Agreement

POSDRU/159/1.5/S/134398.”

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

2

ABSTRACT:

In this thesis a novel rendering pipeline is presented, which can handle a large number of

light paths in real-time, using innovative techniques that decouple the rendering process into

several modular and memory efficient components. Several contributions are presented and

compared to state of the art algorithms, which are used or can be used in the context of real-time

rendering. This original rendering pipeline can render both high quality images in real-time and

correct, photorealistic images offline. The contributions of the thesis are categorized into

geometry rendering methods and illumination methods.

The geometry rendering algorithms modify state of the art rasterization methods to better

handle large scenes by decoupling non geometric bandwidth, originating from texture data, from

geometric computations. This drastically reduces the bandwidth consumption and is

implemented for both opaque and transparent objects, in novel algorithms named virtual deferred

and virtual order independent transparency. These rendering methods are directly integrated into

a virtual texturing system. Opaque rasterized objects are antialiasing with a novel antialiasing

method for deferred rendering, which improves upon the state of the art sub geometric

reconstruction antialiasing methods. Transparent objects are shaded and textured adaptively.

Moreover, all geometric rendering is culled with a novel hierarchical method, which culls

objects for more than a single frame. The culling algorithm uses GPU task generation to walk the

scene tree and hierarchical impostors to lessen geometric aliasing. Other geometric rendering

contributions include a distribution based variant of occupancy maps, which adaptively samples

the occupancy, measurement metrics for deferred and decoupled algorithms, a variant of the

marching cubes algorithm designed for massive datasets and a new geometry selection method.

 This thesis introduces both exact and approximative illumination methods. The

approximative methods decouple the low and high frequency transport of light, handling each

type differently. Conservative Inexact Voxelization is a new imperfect voxelization method,

with a construction complexity much lower than the state of art methods, and benefits from

deferred geometry information. This voxelization method is used to relax the visibility operator

in the rendering equation, acting as a visibility determination structure for virtual lights based

illumination. The visibility operator for tracing inside the introduced voxelization structure is

perception adaptive, being almost accurate inside the visualization volume and coarse outside of

it.

 Novel algorithms are presented for rendering solutions which are only at the edge of

interactivity as of today, but which will be used on consumer hardware for real-time rendering in

the future. The correct rendering pipeline generates images with a bidirectional path tracer,

which uses a novel type of importance sampling. The light flux importance sampling introduces

a map, which can quickly link unproductive paths to light vertices generated by light tracing. It is

a global sampling method which is much more exact than skeleton importance sampling, the

only other global importance sampling method for path tracing. From a computational standpoint,

light flux importance sampling is also cheaper.

Keywords: real-time rendering, decoupled rendering, bandwidth reduction, complex scenes,

global illumination

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

3

LIST OF PUBLICATIONS AND RESEARCH PROJECTS :

Lucian Petrescu, Anca Morar, Florica Moldoveanu, Victor Asavei, “Real time

reconstruction of volumes from very large datasets using CUDA”, in the 15th International

Conference on System Theory, Control, and Computing (ICSTCC), 14-16 October, pp 1-5,

ISBN: 978-1-4577-1173-2, 2011

Anca Morar, Florica Moldoveanu, Victor Asavei, Lucian Petrescu, Alin Moldoveanu,

Alexandru Egner, “GPGPU Based Non-photorealistic Rendering of Volume Data”, in Control

Engineering and Applied Informatics (CEAI), vol.15, no. 1, pp. 45-52, 2013

Lucian Petrescu, Moldoveanu Florica, Moldoveanu Alin, Morar Anca, Asavei Victor,

“Efficient Picking Through Atomic Operations”, 19th International Conference on Control

Systems and Computer Science (CSCS), pp 66-70, ISBN: 978-1-4673-6140-8, 29-31 May 2013

2013

Lucian Petrescu, Moldoveanu Florica, Victor Asavei, Moldoveanu Alin, Oana Ferche, “A

GPU Task Generator for Rendering” in ICSTCC 2014 - 18th International Conference On

System Theory, Control and Computing, pp. 562-567, ISBN: 978-1-4799-4602-0, October, 2014.

Lucian Petrescu, Florica Moldoveanu, Victor Asavei, Alin Moldoveanu, “Analyzing

Deferred Rendering Techniques”, in Control Engineering and Applied Informatics (CEAI),

accepted, to be published.

Lucian Petrescu, Florica Moldoveanu, Victor Asavei, Alin Moldoveanu, “Virtual

deferred rendering”, in 20th International Conference on Control Systems and Computer Science

(CSCS), pp 373-378, ISBN 978-1-4799-1780-8, DOI 10.1109, 27-29 May, 2015.

Lucian Petrescu, Florica Moldoveanu, Victor Asavei, Alin Moldoveanu, “Guarded Order

Independent Transparency”, The Scientific Bulletin of University POLITEHNICA of Bucharest,

Series C, Electrical Engineering and Computer Science, pp 3-14, Vol. 77, Iss. 1, ISSN 2286-

3540, April, 2015.

Personalized implants for hip arthroplasty (SABIMAS, PNCDII-Joint Applied Research

Projects, 2008-2011), http://se.cs.pub.ro/SABIMAS/

http://se.cs.pub.ro/SABIMAS/

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

4

SYMBOLS AND ACRONYMS

 – area

 – bits per pixel

 – bytes per pixel

 – diffuse reflection, in Heckbert notation

 – eye, camera, in Heckbert notation

 – irradiance

 – bidirectional reflectance distribution function

 – glossy reflection in Heckbert notation

 – light(s), in Heckbert notation

 – radiance

 – wavelength

 – normal

 – hemisphere

 – object(s)

 – radiant flux or power

 – position

 – probability distribution function

 – photo (pixel) sensor

 – pixel

 – radiant energy

 – hemisphere

 – specular reflection, in Heckbert notation

 – sample per pixel

 – time

 – position

 – direction

A-Buffer – antialiased area averaged accumulation buffer

AABB – axis aligned bounding box

AGAA – aggregate G-buffer antialiasing

AGS – atomic geometry selection

AO – ambient occlusion

ASM – adaptive shadow maps

ASSM – adaptive soft shadow mapping

ASSAO – alchemy screen space ambient occlusion

AVSM – adaptive volumetric shadow maps

b-SAH – binned/bucketed surface area heuristic

BDPM – bidirectional photon mapping

BDPT – bidirectional path tracing

BDRT – bidirectional ray tracing

BIH – bounding interval hierarchy

BIR – bidirectional instant radiosity

BRDF – bidirectional reflectance distribution function

BRT – backwards (camera) ray tracing

BSDF – bidirectional scattering distribution function

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

5

BSP – binary space partitioning

BSSRDF – bidirectional scattering surface reflectance distribution function

BTDF – bidirectional transmission distribution function

BV – bounding volume

BVH – bounding volume hierarchy

C&PD – clipping and perspective divide

CHC – coherent hierarchical culling

CIV – conservative inexact voxelization

CPU – central processing unit

CRT – camera (backwards) ray tracing

CS – compute shader

CSAA – coverage sampling anti-aliasing (alternative EQAA)

CSM – cascaded | convolution shadow maps

CSSM – camera space shadow maps

DSRAA – decoupled Subpixel reconstruction antialiasing

DACRT – divide and conquer ray tracing

DEAA – distance to edge antialiasing

DLAA – directionally localized anti-aliasing

DOF – depth of field

DOM – deep opacity maps

DOP – discrete oriented polytopes

DRT – distributed/distribution/stochastic ray tracing

DR – decouple rendering

DS – domain shader

DDS – deep deferred shading

ERPT – energy redistribution path tracing

EQAA – enhanced quality antialiasing

ESC – early split culling (BVH)

EVH – early volume heuristic (BVH)

ESM – exponential shadow maps

EWA – elliptical weighted average

FFAO – far field ambient occlusion

FPS – frames per second

FOM – Fourier opacity map

FRT – forward (light) ray tracing

FS – fragment shader

FSAA – full screen anti-aliasing

FU – GPU functional unit

FXAA – fast approximate anti-aliasing

G-Buffer – geometry buffer

GBAA – geometry buffer anti-aliasing

GI – global illumination

GPU – graphics processing unit

GPGPU – general purpose computation on graphics processing units

GS – geometry shader

HBAO – horizon based ambient occlusion

HDR – high dynamic range

HIZC – hierarchical Z culling

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

6

HRBVH – hybrid rasterized bounding volume hierarchies

HRT – Heckbert ray tracing

HS – hull shader

IA – input assembler

IBL – image based lighting

IR – instant radiosity

IS – importance sampling

QBVH – quad bounding volume hierarchy

LEAN – linear efficient antialiased normal (mapping)

LDR – low dynamic range

LFIS – light flux/flow importance sampling

LFM – light flux map

LOD – level of detail

LSAO – line sweep ambient occlusion

LSM – logarithmic shadow maps

LRT – light (forward) ray tracing

LSPSM – light space perspective shadow maps

MB – motion blur

MBR – maximum bounding rectangles

MBVH – multiple bounding volume hierarchies

MC – Monte Carlo

MCMC – Markov Chain Monte Carlo

MCRT – Monte Carlo ray tracing

MIR – metropolis instant radiosity

MIS – multiple importance sampling

MLAA – morphological anti-aliasing

MSAA – multisample anti aliasing

MLT – Metropolis light tracing

MVAOIS – multi-view ambient occlusion with importance sampling

NFAA – normal filter anti-aliasing

NOHC – near optimal hierarchical culling

OIT – order independent transparency

OM – output merger

OOBB – object oriented bounding box

OSM – opacity shadow maps

PA – primitive assembler

PB – photon beams

PBR – point based rendering

PCSS – percentage closer soft shadow

PM – photon mapping

POM – parallax occlusion mapping

PPB – progressive photon beams

PPM – progressive photon mapping

PRT – packet ray tracing

PS – pixel shader

PSM – perspective shadow maps

PSSM – parallel split shadow maps

PSSMLT – primary sample space Metropolis light transport

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

7

PT – path tracing

PVS – potentially visible sets

PWAA – phone wire antialiasing

R – rasterizer

RBVH – rasterized bounding volume hierarchies

RC – (volume) ray casting

RCSM – relaxed cone step mapping

RGSM – Reconstructable geometry shadow mapping

RIS – resampled importance sampling

RR – Russian roulette

RSAA – resampling anti-aliasing

RSM – reflective shadow map

RTW – rectilinear texture warping

SAH – surface area heuristics (KD, BVH)

SAO – scalable ambient occlusion

SAT – summed area tables

SBAA – surface based anti-aliasing

SDSM – sample distribution shadow maps

SH – spherical harmonics

SIMD – single instruction multiple data

SIMT – single instruction multiple thread

SM – Shader Model

SMP – Streaming Multiprocessor

SMAA – sub pixel morphological antialiasing

SO – stream output

SPPM – stochastic progressive photon mapping

SPSM – sub-pixel shadow mapping

SRAA – Subpixel reconstruction anti-aliasing

SRAD – sub pixel reconstruction antialiasing for deferred rendering

SS – screen space

SSAA – supersampling antialiasing (FSAA)

SSAO – screen space ambient occlusion

SSBC – screen space bent cones

SSCT – screen space cone tracing

SSDO – screen space directional occlusion

SSDM – screen space displacement mapping

SSGI – screen space global illumination

SSLR – screen space local reflections

SSPCSS – screen space percentage closer soft shadows

SSPM – screen space photon mapping

SSRT – screen space ray tracing

SSS – sub surface scattering

SSSSAA – screen space super sampling antialiasing

T - tessellator

TCS – tessellation control shader

TES – tessellation evaluation shader

TF – transform feedback

TSM – trapezoidal shadow maps

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

8

TXAA – temporal antialiasing

VAL – virtual area lights

VBL – virtual beam light

VD – virtual deferred

VL – virtual light

VA-Buffer – virtual A-Buffer (VOIT)

VOIT – virtual order independent transparency (VA-Buffer)

VOSS – volumetric obscurance in screen space

VPL – virtual point light

VRC – volume ray casting

VRL – virtual ray light

VS – vertex shader

VSL – virtual spherical light

VSM – variance shadow maps

VT – virtual texturing

WRT – Whitted ray tracing

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

9

1. INTRODUCTION

1.1. Real-time Rendering

Computer graphics and vision is an established field in computer science. Its primary

goal is the analysis, synthesis and manipulation of visual data, focusing on mathematical and

computational aspects rather than aesthetics. It is used in a multitude of applications in areas

such as medicine, surveillance, architectural design, recreational activities, video processing, and

remote presence systems and data analysis.

The main objective of computer vision, also known as visualization, is to present

predefined data in a manner which emphasizes properties of interest, such as: trends in data

mining, tissue appearance in medical applications or tensions in structural components in

engineering stress simulations. Computer graphics, commonly known as rendering, is primarily

involved in the efficient generation of images without emphasizing content, with the ultimate

goal of photorealism. Among its applications are special effects for movies, architectural

visualizations and procedural generation.

Real-time rendering is a specialized topic in the field of computer graphics. It attempts

to recreate the same visual results as general computer graphics methods, but does so prioritizing

interactivity, with the final purpose of maintaining the illusion of continuous virtual reality.

Humans visually perceive their surroundings as a sequence of images which are unconsciously

reconstructed by the brain into motion [Wat13] [Hum09] . In order for an image based process

to properly create a convincing illusion of reality, the number of generated frames per second has

to be sufficiently high. Because of this, real-time rendering algorithms usually generate more

than 30 frames per second (FPS). The FPS rate is generally higher, usually greater than the

refresh rate of the output monitor. Compared to the long processing durations of time unbounded

rendering, real-time rendering has to produce photorealistic images on a much lower

computational budget, therefore algorithm design, optimization and hardware utilization

maximization represent key subjects in this specialized topic. Real-time rendering has a large

number of practical applications, especially in performance critical fields such: aviation and

military simulators, video games or previsualisations.

Besides needing to render the scene a high number of times per second, real-time

rendering must also be stable. If some of the rendered frames take much longer than the others to

finish, then the illusion of continuous virtual reality is ruined, even if the average frame time

stays within the expected budget.

Massive scenes, also named multi-scale scenes contain many objects of unevenly

spatially distributed objects, of varying sizes and properties. Such scenes are very common in

rendering because they depict regular types of vistas, like the natural or urban views rendered in

Figure 1.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

10

Figure 1 Massive scenes. These images show renderings of massive scenes, also called multi-scale scenes. These

scenes contain a large number of unpredictably positioned objects. Rendering such scenes in real time is very

difficult, especially if they contain a large number of dynamic objects. The purpose of this thesis is to introduce new

algorithms, which are better suited to rendering such scenes in real-time. The image on the right was rendered with

Blender [Ble15].

Massive scenes contain a great variety of content, for example, the left image of Figure 1

contains water in the foreground and the mountains with all the crevices in the background. The

water ripple details are measured in millimeters, while the mountains are measured in kilometers.

This is a common example for the great disparity in the scale of the objects. Massive scenes are

usually so large that the assets can’t be loaded entirely into GPU memory. Out of core algorithms

are required to constantly stream the assets pertaining to the objects and lights, which are

implicated in the generation of the final image. This process is repeated per frame, independently

of the chosen rendering pipeline. The streamed data can be represented in a compressed or not

native format, thus it might need to be processed or reconstructed before rendering.

Because of the extreme size of the represented scenes, their storage and representation

into memory is an important subject. In rendering, objects can be represented through polygons

and textures, voxels, bounding trees or analytically. Data is frequently transformed into

rendering compatible data, such as triangles, sparse voxel structures or intersection trees.

Because many important rendering algorithms use special data formats, data that does not match

a certain representation has to be converted. This process is extremely costly and is mostly

performed outside real-time rendering. It can be performed interactively [Che13] [Lau09] or

even in real-time [Eis08], but with steep computational costs which would leave little resources

for performing effective rendering.

There are many types of base algorithms used in rendering, but few are truly applicable in

real time rendering of multi-scale scenes. In general, rasterization is used for real time rendering

of massive scenes. Hardware rasterization is used in all consumer graphic card rendering

pipelines [Seg15]. It only solves the problem of camera and scene intersection, without covering

lights-objects interactions, global illumination (GI), analytic anti-aliasing or analytic surface

representation. Inspired by Reyes rendering [Coo87], micropolygon rendering [Tat10] [Eis10] is

a special case of rasterization that adds analytic anti-aliasing and analytic surface representation

capabilities to standard rasterization. Stochastic rasterization [Mcg10] enhances the basic

rasterization pipeline with the abilities to handle motion and defocus blur. Both stochastic

rasterization and micropolygon rendering dramatically increase the quality of rasterization

rendering, but their costs are relatively steep for current consumer hardware.

Even if real-time rasterization based algorithms are vastly inferior from a quality

standpoint when compared to time unbounded global illumination techniques, the computational

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

11

cost of complete global illumination algorithms is still too high for consumer hardware.

Solutions such as stochastic ray tracing [Bik07], path tracing [Bik13] [van11], beam tracing

[Cra09], photon mapping [Mar13], progressive light-cuts [Dav12] or other many-light global

illumination solutions [Dac14] are getting closer to real-time, but they do so with severe

performance requirements. They also have increased costs in scenes with dynamic objects,

caused by the long update times in intersection acceleration structures.

The previously mentioned global illumination algorithms are separable. Programmable

multisampled rasterization generates exactly the same lights-objects interactions as the set of first

rays in ray tracing, the first beams of beam tracing or as the first set of path segments in path

tracing. Because of this, the majority of high performance real-time rendering is performed at

least partially with rasterization based techniques. The rasterization rendering stage is then

followed by a global illumination stage, which interprets the results of the rasterization stage as a

first step in the global illumination method.

This decoupling permits different sampling and filtering rates in these stages, thus each

stage possesses different aliasing levels. If the entire rendering process, containing both the

rasterization stage and the GI stage, is considered a sampling process, by using different

sampling rates for the different stages the entire process is effectively importance sampled. The

human eye can easily detect even very low differences in spatial representations, because

contours and edges are extremely important in visual perception [Sha73], therefore the aliasing

from the rasterization stage is much more important to mitigate than the aliasing from the global

illumination stage. This perception difference is a significant advantage, because rasterization

algorithms are significantly less demanding than GI algorithms from a computational standpoint.

Rendering the global illumination stage at a lower sampling rate can be done without

dramatically decreasing the perceptual quality of the rendered image.

1.2. Motivation and Objectives

The main objective of this thesis is to introduce a novel rasterization based rendering

pipeline for massive scenes, which minimizes storage and bandwidth consumption, provides

stable runtime performance and decouples the majority of the involved algorithms.

Because real-time rendering is a relatively novel research field and due to the tremendous

growth in hardware capabilities in the last decade there are still many problems lacking

acceptable answers and many algorithms that can be optimized or modified to efficiently run on

the GPU. Even though the rendering equation is separable [Kaj86], rendering algorithms are

usually monolithic and suffer from high coupling, therefore they can be hard to maintain and

even harder to properly analyze. Finding new methods to decouple sub processes and sub stages

of rendering methods can offer new insights into algorithm design and performance tradeoffs.

High coupling and high maintenance costs represent one of the motivations of this thesis, and

that is to find new ways to increase the degree of modularity between the many components

involved in generating the final image in rendering.

Increasing the speed of the rendering process is not sufficient if the variance in frame

duration is too large. The frame rate stability of the rendering is just as important as its speed.

Performance spikes are frequently caused by long operations with irregular occurring patterns

such as data streaming and conversion. Developing faster data reconstruction algorithms offers

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

12

the incentive of decreased frame duration variance, by minimizing the costs of data conversion

into rendering compatible formats. Stability is one of the most important properties of real-time

rendering. If the frame time variance is sufficiently high, then the entire purpose of real-time

rendering is unsatisfied. In order to maximize stability, the causes of the performance

fluctuations have to be easy to detect. Furthermore, the causes have to be sufficiently decoupled

in order for such a measuring process to be applicable. Among the objectives of this thesis is the

introduction of measuring metrics for the rasterization based rendering techniques.

Storage space, access efficiency and bandwidth consumption are in general the most

performance critical aspects of real-time rendering. Since the processing power of GPUs is

increasing at a rate higher than that of their memory, the importance of memory usage efficiency

will continue to increase. Storage space is a serious problem especially with stochastic

algorithms like those involved in OIT [Jan10] or stochastic rasterization [Mcg10], where a large

number of samples is needed for the stochastic process to reach an acceptable error level. The

same problem appears in global illumination algorithms [Bik07] [van11] and in many types of

deep deferred rendering techniques [Mar14] [Bar11]. One objective of this thesis is to provide

improved algorithms that minimize memory storage for opaque and transparent objects in

rasterization rendering.

Rasterization is almost always involved in the real-time rendering process, because of its

cache oriented primitive intersection acceleration structure, a bidimensional grid called raster.

Because of its nature, simple rasterization rendering is very limited in producing all light-object-

camera interactions, and usually represents only a part of an advanced rendering pipeline.

Rendering opaque objects with rasterization can solve occlusion with the help of the z-buffer

algorithm. The z-buffer algorithm has been improved since its introduction through [Gre93]

[Joh05]. The A-buffer algorithm [Car84] was the first to consider globally handling multiple

objects intersected per pixel, decoupling fragment ordering from fragment shading. Partially

inspired by the A-buffer, the deferred rendering algorithms family [Dee88] [Ols11] [Ols12] is

the dominant choice in rasterization based rendering of opaque objects. Deferred algorithms are

so successful because they decouple light-object intersection processing from visibility

determination, dramatically decreasing the computational costs of rendering.

Decoupled algorithms [Rag11] [Lik12] [Bur13] are advanced types of deferred

techniques, which further decouple the sub-stages of the rendering. Virtual texturing [Eph06]

improves the performance of rendering by streaming only the obligatory information for the

rendered frame. It does this by decoupling direct texture access and filtering through a system of

virtual paging, inspired from operating systems paging solutions. Although there has been a

wealth of research on the topics of rasterization based opaque object rendering and stage

separation, there are still opportunities to further improve resource re-usage and to decouple

the algorithms used in state of the art rendering pipelines.

Real-time rendering is deployed to multiple platforms frequently, therefore hardware

variation is usually expected. Because of this variation, not all deployment platforms offer the

best performance with the same rendering algorithm. Furthermore, power variation on the same

platform can have the same effect, especially in power critical environments. Measuring

performance in real-time and consequently adapting the rendering path has proven to be a

complicated task, because of the many different potential performance bottlenecks. There is a

clear motivation for the definition of advanced metrics that would allow separate analysis of

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

13

these bottlenecks, and which would provide unbiased performance information on the rendering

pipeline.

Rendering can be a considered a large sampling process, in which the objects and lights

of the scene are intersected with rays, paths, beams or pixels. The final image that is outputted on

the screen represents the reconstruction of the sampled virtual reality. As all other

reconstructions in sampling processes, rendering suffers from aliasing.

Since the rendering process is generally composed of many sub-processes, there are

many sources of aliasing, each with different solutions. Pure geometric anti-aliasing can be

tackled through progressive representations, such as level of detail representations of the

geometric assets and impostors, but this can easily lead to temporal aliasing, which happens

during level of detail transitions. Pixel level anti-aliasing can be tackled by state of the art

algorithms such as the ones presented in [Jim11]. Exact global solutions – applicable for the

entire scene - exist, but only for voxel based rendering [Cra09]. Furthermore, voxel based

solutions need very large amounts of memory for a low alias result. A global geometric anti-

aliasing solution for primitive based assets would greatly decrease aliasing in rendering.

Correctly rendering transparent objects in rasterization is a difficult problem. The

problem was first tackled in [Por84]. Exact methods [Car84] are very costly to implement in

real time rasterization based rendering, therefore inexact algorithms [Liu09] [Sin09] [Jan10]

represent the best solutions for this problem. Stochastic solutions [End10] [Sal11] have excellent

results, but require a large number of samples to reach acceptable error levels or even specialized

hardware [Sal14]. Solving this problem with lighter bandwidth consumption would greatly

increase the performance of rasterization based real-time rendering of transparent objects.

Tree traversal on the GPU [Lai10] [Ail12] is used in many global illumination algorithms,

but is generally restricted to GPGPU methods. Tree traversal has critical applications in

occlusion culling [Mat08] [Gut06] [Mat15], but the current tree traversal methods do not

maximize GPU capabilities. In rendering, tree traversal isn’t as general as in other fields,

therefore there is a lot of room left for the specialization of the tree structures. Providing at least

partial GPU tree traversal techniques for rasterization based rendering would boost

performance.

 Global illumination (GI) for real-time rendering remains an unsolved problem. There

are many algorithm classes that tackle the GI problem: photon based, many lights based, path

based, ray based, cone based, ray-packet based, irradiance cache based and so on. Despite this

multitude of solutions, their applications in real-time rendering are minor, therefore the need for

fast, inexact, global illumination algorithms has not been satisfied. Porting and adapting

scattering prone processes such as global illumination methods to GPGPU environments has

proven to be a large area of research, with many opportunities for algorithm development.

 Furthermore, this adaptation has led to the usage of tree data structures that trade

balancing for spatial awareness. The area of real-time inexact global illumination is, at the

moment, one of the most important and researched topics in rendering.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

14

1.3. Contributions

This thesis introduces a new rasterization based rendering pipeline, emphasizing

decoupling and memory usage efficiency. This rendering pipeline decouples draw submission

from state submission, visibility determination from texture fetching, texture fetching from

shading, and post processing from texture fetching. It does this while also supporting a large

number of light paths. The presented pipeline contains many novel contributions, ranging from

improvements over previous algorithms to completely distinct rendering methods. Compared to

the state of the art rasterization based rendering pipelines, the presented pipeline is significantly

more efficient in solving high bandwidth rendering problems, such as those appearing in the

rendering of massive scenes.

A hierarchical impostor method is presented, which creates impostors for entire scene

tree nodes. Depending on the camera position and orientation, these impostors are updated into a

virtual texture based cache system. For performance considerations, high level nodes in the scene

tree need to be pre-computed. The impostors contain depth, normals and color information,

which can be used for high quality distant object rendering, in order to reduce geometric and

texture aliasing, using the same principle as texture mipmaps. Like all other impostor techniques,

this method drastically decreases processing costs, by greatly simplifying scene complexity.

Compared to state of the art methods, this technique is integrated with the virtual

texturing streaming mechanism and it operates at scene level and not at an object level, by

maintaining an impostor per scene node. An impostor is either streamed or re-computed,

depending on a view threshold defined by the distance to the camera and the angle of view.

Geometric aliasing is largely solved using this type of impostors, and, compared to level of detail

systems, impostors have a superior filtering mechanism, and therefore the flickering effects are

minimized. The proposed solution also does not have the large storage requirements often found

in state of the art voxel based techniques.

The need for task generation during rasterization is tackled in this thesis with a special

type of non-recursive task generator, which functions in parallel with the normal rasterization

rendering process. By using the GPU hardware for geometry amplification to create geometry

which isn’t rasterized but acts as tasks, the proposed method enables the generation of many light

rendering tasks, in parallel with the rasterization process.

This task generator is then particularized for culling, laying the foundation of a novel

culling algorithm. This method uses the task generator to create tasks, which explore a scene

hierarchy. At each level in the hierarchy the node is view frustum culled and if the node is visible,

new tasks are generated for the children nodes. Compared to the state of the art method, the

improved coherent hierarchical culling algorithm [Mat08], this method is less exact and explores

more nodes in the hierarchy, but is completely autonomous from CPU control. The proposed

method also utilizes the massive parallelism of modern GPUs. While the culling algorithm is not

designed with occlusion impostors in mind, it can benefit from them, as it is easy to integrate

with hierarchical-Z culling [Zha97] methods. Furthermore, the introduced culling algorithm uses

a novel concept of culling objects for multiple frames. This is achieved by making the generally

correct assumption that camera rotations are not instantaneous in 3D interactive applications.

The camera orientation is then represented as a solid angle, and the maximum camera rotation

speed is used to determine the smallest number of frames necessary for an object to reach the

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

15

view frustum. Thus, the new culling algorithm culls objects for a number of frames, which leads

to lower overall computational effort.

 Novel measurement metrics for deferred algorithms introduced in this thesis. Since the

state of the art offers a very large number of deferred rendering variants, correct selection of the

suitable method can sometimes be difficult, especially because real-time rendering software is

usually deployed on a large number of varied platforms. The novel measurement metrics provide

a clearer picture, by providing a means of comparison between the existing methods.

Virtual deferred (VD) is a new type of deferred algorithm, which combines the

mechanics of single geometry pass deferred rendering with those of virtual texturing, in order to

obtain the best measurement metrics for high bandwidth high complexity rendering problems.

Because of this, virtual deferred is especially suitable for complex scenes. Virtual deferred uses

virtual texturing to stream only the data required for rendering. Since the majority of rendering

pipelines aimed at complex scenes have a streaming mechanism, the proposed method only

seems to have an additional cost. The benefit of combining virtual texturing and deferred

rendering into virtual deferred is that rendering with this algorithm minimizes the bandwidth cost

for complex materials, while processing the geometry only once, improving on the poor

bandwidth performance of single-geometry pass state of the art deferred algorithms. Furthermore,

virtual deferred also lowers the allocated memory for the geometry buffer, decreasing storage

requirements.

With virtual deferred, both the bandwidth consumption and geometry buffer memory

costs scale better than with state of the art single-geometry pass methods. Because of virtual

deferred, the introduced rendering pipeline completely decouples texture fetching and shading

bandwidth from visibility determination. The shading stage does not use rasterization, it is a

completely GPGPU process. All the texture fetching is performed in a cached mode, through

compute shader work tiles. If this stage is followed by an optional post-processing stage, the

kernel participating pixel neighbors can benefit from the shading results stored in the work tile

cache.

Correctly rendering transparent objects is especially difficult for rasterization based real-

time rendering because the process requires ordering the fragments on a per-pixel level instead of

just approximating the opacity function. While approximation methods can produce acceptable

results for some types of rendering situations, there are times when handling transparency

exactly is required. Virtual Order Independent Transparency (VOIT) modifies the state of the

art GPU A-Buffer algorithm. Like virtual deferred, VOIT uses virtual texturing and is aimed at

decreasing the bandwidth and allocated memory for scenes with many high-bandwidth objects.

Compared to the state of the art, VOIT scales better in scenes with complex materials and many

lights.

Besides Virtual Order Independent Transparency, a fast approximate order

independent transparency solution is provided, which modifies the state of the art occupancy

maps method. This proposed technique improves occupancy maps with distributions, by keeping

a depth distribution for each pixel. This depth distribution is used to adjust the depth occupancy

map, creating more precision in the areas which contain objects on the depth axis. Because of

this artificially increased resolution, the opacity function over depth is better approximated. In

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

16

contrast to the original occupancy maps algorithm, the proposed method is much better suited to

non-uniform object distributions, such as those found in real-life scenes.

A new selection algorithm is introduced, which optimally solves the problem of object

selection in real-time rendering. The introduced algorithm is able to handle hardware instancing,

high depth complexity scenes and alpha culling, either for a single pixel or for an entire screen

area. The algorithm can handle the transient geometry created by hardware tessellation, making

it easy to work with displaced geometry. The method can also correctly select fuzzy objects such

as particle systems and other transparent objects, based on their visibility. This property is

achieved by correctly performing transparent rendering, and taking into account alpha occlusion.

Conservative Inexact Voxelization (CIV) is a new inexact voxelization algorithm,

which lowers the complexity of the voxelization operation from the number of primitives in the

scene to the number of objects. This imperfect result is obtained by quickly dicing the bounding

boxes of the objects into cuboids, which are stored in a hierarchic voxel representation of the

scene. A push-pull process is used to translate the opacity information across all layers of the

hierarchic representation. Other already available data, such as directly visible geometric features

stored in the depth buffer, or impostors, can be back projected inside the highest resolution level

of the hierarchic representation.

Conservative Inexact Voxelization is an inexact voxelization method, aimed at providing

approximate but conservative information about the geometrical nature of a scene. It offers

sufficiently precise information for different visibility determination operations. This property is

used to alter the rendering equation, changing the exact visibility operator to an inexact but

conservative visibility operator. This operator is then used in a modified instant radiosity

method, which creates a large number of virtual lights through random walks in the voxel

representation of the scene, starting from the scene lights. After a sufficient number of virtual

lights is generated, the scene is illuminated with them, in a process analogous to deferred

algorithms.

Compared to the state of the art methods, this enables fast diffuse light transport without

any precomputation or special cases for animated or moving objects. While this method only

supports diffuse light transport, it can be used together with fast specular light transport

algorithms such as screen space cone tracing.

A new antialiasing algorithm is introduced which is compatible with deferred rendering.

Decoupled sub-pixel reconstructed anti-aliasing (DSRAA) decouples visibility determination,

the bandwidth of attribute samples and shading. Compared to the state of the art methods, it

consumes the minimal amount of bandwidth required for accurate, non-morphological sub-pixel

geometry reconstruction. Because the presented algorithm is not morphological, it does not

suffer from strong temporal artifacts and it does not need temporal resampling to adjust the final

result. The algorithm is most similar to sub pixel reconstructed anti aliasing (SRAA). Compared

to the state of the art method, which uses a bilateral filter based approach for sub-geometric

filtering, the presented technique uses a more accurate neighbor matching method.

The path tracing algorithm family is barely at the edge of interactive rendering, and while

it is still impractical for real-time rendering, due to the computational limits of consumer

hardware, it has reached the point of relevancy. The thesis renders photorealistic images with a

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

17

bidirectional path tracer and introduces a contribution to the path tracing field: light flux

importance sampling (LFIS). The thesis first presents a procedure, through which the

Conservative Inexact Voxelization is used to amortize the cost of visibility determination

operations, which are responsible for much of the rendering time in path tracing. Thus the

presented technique decreases the overall cost of tracing rays. The second contribution is an

innovative importance sampling mechanism, which is used to guide paths to high energy areas.

By using these novel techniques, the final path traced image is obtained faster.

Lastly, a new variation of the GPU marching cubes algorithm is introduced. It

serializes the processing of a large dataset, enabling the computation of the marching cubes

algorithm on very large datasets, which would otherwise be impractical on consumer hardware.

The original dataset is cut into chunks, which are reconstructed serially and are then stitched.

1.4. Thesis Overview

The thesis is divided into 5 chapters: Introduction, State of the Art, Geometry Processing,

Illumination and Conclusions. This chapter, Introduction, describes the particular field of the

thesis, real-time rendering of very large and complex scenes. It then describes the motivation of

the thesis and the objectives which catalyzed the presented research. The chapter then shortly

presents the original contributions of the thesis and finishes with the thesis overview, this

subchapter.

The State of the Art chapter provides an ample and detailed description of the applicable

or potentially applicable algorithms for real-time rendering. It starts with a short description of

the evolution of GPUs and GPGPU computing, followed by a conceptual discussion of the

choices and consequences of different types of data representations. Since the nature of this

thesis implies a very large volume of rendering information, the chapter continues with the

presentation of all the relevant acceleration structures used in rendering.

The State of the Art chapter also presents high level rendering concepts and insights into

the nature of the rendering process, from basic elements of radiometry to high level design

problems such as solving rendering as large sorting process of visibility determination operation.

The chapter ends with seven sub-chapters, which discuss the largest rendering algorithm families

in a concise and encompassing manner: rasterization, image (screen) space methods, Reyes, ray

tracing, path tracing, photon mapping and many light methods.

The next two chapters, Geometry Processing and Illumination, present the research work

and the resulting contributions. These chapters largely decouple geometry processing and

illumination algorithms, in a manner similar to deferred algorithms. Furthermore, while the

Geometry Processing chapter is based on rasterization rendering, the Illumination chapter is fully

implementable as GPGPU. Through this decoupling, the thesis provides the framework for

implementing a robust rendering pipeline.

The Geometry Processing part of the pipeline performs geometry operations such as

direct visibility determination, culling, asset definition and streaming, opaque and transparent

rasterization rendering or indirect rendering. In this chapter the rendering asset format is defined,

which is based on instances and modifiers. The streaming mechanism used by the proposed

rendering pipeline is described, and new variation of the GPU marching cubes algorithm is

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

18

presented. The hierarchical impostor cache contribution is also described here. The entire

streaming mechanism is based on virtual texturing and virtual meshes.

The Geometry Processing Chapter continues with the description of a novel task

generator, which is able to use the rasterization scheduler, and thus is able to function in parallel

with rasterization algorithms. This task generator is then specialized for a new culling algorithm,

which enables hierarchical culling for a very large number of objects, without CPU interference.

The chapter continues with the analysis of existing rendering algorithms for opaque

objects, in the context of rasterization, for which novel measurement methods are provided. It

then presents virtual deferred, a novel type of deferred algorithm. Compared to state of the art

deferred and decoupled algorithms, the virtual deferred method is designed for complex

materials, such as those found in large, varied scenes.

Virtual deferred principles are also adapted to transparent object rendering, giving rise to

the virtual order independent transparency algorithm, which is a memory efficient variant of the

A-Buffer. Besides virtual order independent transparency, the Geometry Processing chapter also

presents a novel approximate transparency algorithm, which improves the state of the art

occupancy maps with per pixel distributions. The chapter ends with a novel selection algorithm.

Many of the outputs computed by algorithms in this chapter are used as inputs for the algorithms

in the Illumination chapter. The relationship between the algorithms presented in both chapters is

depicted in Figure 2.

The Illumination Chapter contains two rendering paths, one that performs approximate

global illumination, shading and post processing and one that computes correct global

illumination. The chapter starts with the approximate path, with a presentation of how dominant

lights are selected and how shadow maps are used to represent the visibility of each object found

in the frustum of each light. This process is accelerated with the culling algorithm from the

Geometry Processing chapter.

A novel acceleration structure is then presented, the Conservative Inexact Voxelization

algorithm, which can be used to quickly and conservatively query the scene geometry. This

structure is used to relax the visibility operator in a modified instant radiosity framework, which

is used to generate a large number of virtual lights.

The chapter then presents how these virtual lights are stored together with the scene lights

in a secondary lights acceleration structure. The chapter continues with the shading stage, where

data is cached in compute shader tiles, and illumination is evaluated with the dominant lights, by

using their shadow maps, and with the secondary lights stored in the acceleration structure, by

intersecting them with the modified G-buffer produced in the Geometry Processing chapter and

then using shadow rays inside the conservative inexact voxelization representation to query the

visibility for each light. Screen space cone tracing is then used to approximate the specular light

transport.

The chapter also presents a novel decoupled sub pixel reconstructed anti-aliasing method,

and ends with a short post processing module.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

19

Figure 2 Proposed Rendering Architecture. Geometry Processing and Illumination are the two chapters of the thesis

which describe the novel contributions, and they are also the two large stages of the proposed rendering pipeline.

This image shows how the various algorithms described in this thesis are combined into a rendering pipeline. The

contributions introduced by this thesis are colored in green. For architectural design reasons the Culling and

Conservative Inexact Voxelization modules have been drawn twice. The proposed rendering pipeline decouples

lighting and shading, which are implemented in the Illumination stage, from all the rasterization based algorithms

and geometry streaming, which are implemented in the Geometry Processing stage. The Geometry processing stage

includes contributions to opaque and transparent object rasterization, geometry selection or culling. The illumination

stage contains two alternative rendering paths, one for approximate illumination and one for correct illumination.

The approximate illumination path computes low frequency light transport and approximates high frequency light

transport. It approximates the visibility operator through conservative inexact voxelization, a very fast imperfect

voxelization method. The correct illumination path can be used to compute high quality visual reference results and

it runs at very low frame rates on the GPU. It uses bidirectional path tracing, in which the Conservative Inexact

Voxelization is used to approximately determine visibility before paying the cost for high quality visibility rays,

amortizing their cost. The BDPT uses Light Flux Importance Sampling, which is a novel type of importance

sampling that very quickly connects the light tracing and path tracing steps of the BDPT through high energy space

exploration, indirectly importance sampling lights. The BDPT also uses state of the art algorithms such as adaptive

sampling, multiple importance sampling, sample filtering, eye reprojection and radiance filtering.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

20

The Illumination chapter also contains an alternative illumination path. While this

alternative path can’t run in real-time on current consumer hardware and its GPU

implementation is at the edge of interactive rendering, it can be used to produce visual reference

results.

The alternative path presents an adaptation of the bidirectional path tracing algorithm,

which uses the Conservative Inexact Voxelization algorithm introduced for the approximate

global illumination pipeline. The CIV is used to amortize the cost of visibility determination

operations, which usually consume more than 90% of the rendering time. By first searching

approximately and only then searching exactly, the bidirectional path tracer uses a visibility

determination process with a lowered complexity. Because of this, the bidirectional path tracer

produces visual results faster. The bidirectional path tracer uses a novel type of importance

sampling, light flux importance sampling, which creates an imperfect map of the flux of light in

the scene, similar to a flow map for fluids. The light flux map is then used to guide paths

towards vertices produced by the light tracing stage of the bidirectional path tracer.

The thesis ends with the Conclusions chapter, where the impact of the newly introduced

methods is reviewed.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

21

2. STATE OF THE ART

2.1. GPU Evolution

Graphics Processing Units (GPU) are dedicated parallel processor architectures which

were initially optimized for accelerating graphical computations. GPUs have evolved from the

need to process an ever increasing number of vertices and fragments per frame, at least 30

frames per second. Because of this extremely large number of operations which lack an explicit

order, GPUs evolved into massively parallel fully programmable architectures which excel at

executing a large number of floating point operations [McC11]. Initially, each type of graphical

computation used specialized hardware [Cla82], but modern GPUs have unified architectures

[NVI12] [Man13], where the same computational resources are used for all types of operations.

The only exception is with extremely specialized, performance critical operations, such as

texture fetching, Z-buffer visibility determination or hardware tessellation.

The computational powers of GPUs have grown orders of magnitude higher than those of

CPUs. This evolution prompted domains unrelated to rendering to start solving their

computational problems on the GPU, giving rise to general purpose computation on graphics

processing units (GPGPU) and greatly enhancing the field of computer graphics in the process.

Real-time rendering transitioned from an exclusively rasterization based method to a composite

process involving both rasterization and GPGPU.

The original GPUs were modeled as a set of stages in a hardware graphics pipeline. The

hardware graphics pipeline transforms vertices from a tridimensional space defined by the user

into pixels in a bidimensional space on the screen, a process called rasterization. Throughout

the last 20 years this pipeline has evolved from the initial design into a long pipeline with many

highly specialized, programmable stages.

These evolutions were made in steps, where new standards named Shader Models (SM)

[Seg15] progressively supplemented the pipeline with new stages. The current Shader Model is 5

and it specifies 13 rasterization graphics pipeline stages, out of which 5 are programmable. It

also specifies a Compute Shader (CS) stage outside of the rasterization pipeline that can be used

for GPGPU. This thesis is written with the OpenGL nomenclature, but also offers the Direct3D

names for completeness.

The hardware rasterization pipeline starts with the Input Assembler (IA), which takes the

vertex data from memory and assembles with it tridimensional vertices. This is followed by the

Vertex Shader (VS), which is a programmable stage where each vertex created by the IA is

transformed. The transformed vertices are sent to the Primitive Assembler (PA) stage, where

they are then combined with the topology, which is read from memory.

PA outputs primitives to the next, optional, superstage that handles hardware tessellation.

It contains 4 sub-stages, out of which 2 are programmable. The Tessellation Control Shader

(TCS), also named Hull Shader in Direct3D, is a completely programmable stage that takes the

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

22

primitives outputted by the first PA stage and computes tessellation factors. These tessellation

factors are then used by the Tessellator (T), which creates new vertices and topology. These new

vertices are then transformed in the Tessellation Evaluation Shader (TES), also named Domain

Shader (DS) in Direct3D. The transformed vertices and the topology created by T are then

assembled in a second Primitive Assembler (PA) stage.

The output from the last executed Primitive Assembler stage acts as input for the

Geometry Shader (GS), which is another optional programmable stage, which processes each

primitive. It is the only stage where primitive topology can be modified. The output from the GS

can be optionally streamed into memory through the Transform Feedback (TF) stage, named

Stream Output (SO) in Direct3D.

The output from the GS is then sent to the Clip and Perspective Divide (C&PD) stage

which culls primitives completely outside the visualization volume. The primitives that pass this

stage are rasterized into fragments by the Rasterizer (R). The vertex attributes are interpolated by

the rasterizer in perspective correct manner [Low02].

The resulted fragments can be processed by a hierarchical variant of Z-buffer algorithm

[Gre93] before or after the Fragment Shader (FS) stage, named Pixel Shader (PS) in Direct3D.

Depending on several factors such as transparency rendering state settings, the Early Tests (ET)

stage can discard fragments before they are shaded. The rasterization pipeline ends with the

Output Merger (OM) stage where fragment tests are performed and the output is composited and

written into the framebuffer.

A short overview is provided in Figure 3.

Figure 3 The hardware graphics pipeline in SM5. The programmable stages are colored in green. The Compute

Shader (CS) can be used to perform GPGPU work. The hardware graphics pipeline begins by assembling the input

geometry and topology in the Input Assembly (IA) stage and then processes each vertex in the Vertex Shader (VS).

The processed vertices are then combined with the topology in the first Primitive Assembly (PA). The next four

stages implement hardware tessellation. The Tessellation Control Shader (TCS), also named Hull Shader (HS)

determines the hardware tessellation parameters, and then the Tessellator (T) creates the new vertices and their

topology. The Tessellation Evaluation Shader (TES), also named Domain Shader (DS) transforms the newly creates

vertices and the next Primitive Assembly (PA) stages links the new vertices with the tessellator created topology,

which are then converted and transformed by the Geometry Shader (GS). The GS output can then be streamed into

memory buffers with the Transform Feedback (TF), also named Stream Output(SO). The GS output can also

continue in the Clipping and Perspective Divide (C&PD) stage, and then be rasterized into fragments by the

Rasterizer (R). The fragments are tested in the Early Tests (ET) stage and are then processed by the Fragment

Shader (FS), also named Pixel Shader (PS). The processed fragments are then outputted to the framebuffer in the

Output Merger (OM) stage.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

23

When GPUs transitioned to the unified shader model, every shader program began

running on the same type of resource, a very lightweight GPU thread. GPUs are dedicated to

efficiently solving massively parallel coherent computational loads, like fluid simulation or

linear systems. Because of this, each GPU thread uses vectorized instructions. Further widening

the data, GPUs use a special type of SIMD-like instructions, called SIMT, single instruction

multiple thread, where each thread in a thread group executes the same instruction.

These threads are very cheap to create and destroy, have a small number of registers and

have no heap in which to allocate local memory. Functional Units (FU) are the building block

of hardware GPU architectures, and they contain one or more GPU threads. GPU cores are

composed of many FUs along with a very lightweight thread scheduler and a small shared

memory chip. Within a core, threads are grouped into warps (Nvidia), wavefronts (AMD-ATI) or

groups (Intel) and they are run together on SIMT hardware. A Streaming Multiprocessor (SMP)

contains many GPU cores, and the GPU has many SMPs. A simplified abstraction of GPU

architecture is provided in Figure 4.

Figure 4 Abstract modern GPU Architecture. The GPU contains many cores, each composed of a large group of

Functional Units (FU), which in turn contain one or more GPU threads. Each GPU core contains a thread scheduler

and a small amount of shared memory.

 Since GPU architectures are Single Instruction Multiple Thread they have very high

latency when threads encounter long instructions, for example a texture fetch which needs 400-

1000 cycles to complete, because all the threads in the active thread group have to wait after it.

GPUs architecture attenuates these long waits by using latency hiding mechanisms. The most

relevant latency hiding mechanism is lock step running, in which the same core is responsible for

running more than a single work group of threads per core. When one group of threads

encounters a long waiting instruction the core saves the state and switches to a new group, to not

waste computational cycles. This concept is similar to the hyper-threading done by CPUs.

 Because of the SIMT model and the limited amount of cache memory with which GPUs

come, running branching code is very problematic, because all threads have to run both branches.

When in-thread group branching occurs the code paths executed by the threads diverge. This is

named code path divergence.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

24

Even with latency hiding mechanisms like lock step execution and an increasing number

of caching methods, latency is still limited by bandwidth. Therefore, bandwidth and not

computational power is usually the greatest bottleneck for GPUs.

Dynamic parallelism is a recent development of GPGPU programming models [NVI15]

[KHR14], where GPU tasks can generate other GPU tasks themselves. This is unfortunately

limited to a small number of consumer graphics cards. Current and newly introduced drawing

APIs [NVI12] [Seg15] [Mic15] [AMD15] [Vul15] are also evolving to a more general, stage-

less and low level approach.

There have been initiatives [Wal01] [Pur02] to create hardware for other rendering

algorithms besides rasterization, but data coherency is not favorable. Also, many core

architectures exhibit better efficiency per watt [NVI15]. This is an important economic reason

for the success of many core architectures.

2.2. Data Representation

2.2.1. Raw Data

Real-time rendering is a performance critical process, which works with a very large

amount of data, therefore efficient data representation is vital. It is far from ideal to convert data

from one format to another during rendering. Moreover, memory bandwidth and consumption

are very often the performance bottleneck in many-core architectures; therefore the data

representation of the assets used in real-time rendering has to exhibit excellent locality and size.

Last but not least, data is streamed from the system memory into GPU memory, along with state

information. When this takes place, it is usually accompanied by long synchronizations that lead

to pipeline stalls. Thus, state transfers should be minimized.

The assets displayed in real-time are usually only representations (not scans) of real-life

objects. Therefore, the assets represent a virtual, low resolution, sampled version of the real

objects. This sampled data has to be stored in some sort of data structures. In rendering, asset

data can have representations based on curves, triangles, voxels, functions or points, depending

on the type of application. Curves are commonly used in modeling applications like CADs,

points are used in applications that reconstruct topology from a sampled set. Functions are very

computationally heavy representations and frequently real-life objects can only be represented by

a large number of functions, therefore they are not the most practical representations and are

used for exceptional cases. Triangles and voxels have seen the most success in real-time

rendering, although points are used in some important algorithms, where high frequency

information is not very important [Rit08] or completely unknown [Kha06].

The great difference between triangles and voxels is that triangles are a more analytical

approach to data representation, with a much smaller representation error, and with a very low

memory footprint. Voxels can represent real-life objects with the same error only by using a

large number of samples, which causes them to be ineffective from a memory consumption

standpoint. On the other hand voxels have excellent locality and have a regular topology which

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

25

makes it extremely easy to find neighbors, thus they are suited to a large number of mass parallel

algorithms and architectures. A simple visual comparison is offered in Figure 5.

Figure 5 Triangles and voxels comparison. The triangles need much fewer space samples to accurately represent the

same object. On the other hand voxels don’t require graph-like structures for finding neighbors and are more cache

friendly structures, thus they have a lot of applicability on SIMT architectures. Voxels also have an implicit LOD

structure, while the computation of LODs is a difficult problem for triangular representations. In approximative

intersection problems voxels can be just as good as triangles. In direct rendering problems the difference in the

quality of the reconstruction of the original geometric signal is very large.

2.2.2. Raw Data Compression

Multi resolution scenes require large amounts of memory to represent a large number of

objects and interaction media, and the majority of assets have to be compressed. The

compression method must have very fast decompression complexity, while the compression

complexity isn’t considered critical, as the majority of assets go through non real-time pre-

processing. Scene objects can be represented through meshes, a combination of meshes and

textures or textures only.

Algorithm BC1/ DXT1 BC2 /DXT3 BC3/DXT5 BC4 BC5 BC6 BC7

Data Type RGB +1bit A RGB+4bit A RGBA G 2 x G RGB float RGB(A)

Compression (byte/px) 0.5 1 1 0.5 1 1 1

Palette Size 4 4 4RGB+8A 8 8 per channel 8-16 4-16

Line Segments 1 1 1RGB+1A 1 1 per channel 1-2 1-3

Table 1 Texture Block Compression. State of the art Block Compression (BC) algorithms use different strategies to

compress texture data. The compression rate varies drastically due to the variety of encoded texture data: intensity

gradient (G), RGB format, RGBA format, RGB and binary alpha representation or high dynamic range (HDR) RGB.

Textures can be compressed with a large number of block algorithms. This is based on

the assumption that colors vary slightly over small vicinities. Even if variable rate encoding

produces the best results, real-time decompression considerations have made all block

compression algorithms to be fixed rate encoded. DXTC/S3TC [Iou99] compression and Block

Compression (BC) [Khr15] encode image information in 4x4 blocks. In each compression BC

algorithms define a color vector between 2 endpoints, which represent the extents of the pixel

values in color space. This color vector is named line segment. The original image pixel values

are represented in a short binary representation over the line segment, which creates a small

colorization palette. Greater palette sizes increase memory requirements and compression rate

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

26

but increase compression accuracy. BC6 and BC7 are complex algorithms and can use multiple

segments and palettes. A comparison of BC algorithms is offered in Table 1.

Generalized Triangle Meshes were introduced in [Dee95] and can be compressed through

lossless algorithms, but the decompression costs are extremely high for real-time rendering

[Hop96]. Mesh simplification [Coh98] can create low resolution representations, thus the

algorithm can be considered a lossy compression method.

Deferred Rendering [Dee88] is a very popular technique in real-time rendering, which

stores frame data into a screen wide multi-layered buffer. While some of the stored data can be

compressed in an application dependant manner through a decrease in the number of storing bits,

normals need proper encoding. A short overview of existing methods is offered in [Pra15].

Normals can also be compressed with look up tables or as octahedron-normal vectors [Mey10].

In real-time rendering general compression is mostly applicable to streaming data. The

majority of compression solutions are based on Lempel-Ziv (LZ) [Ziv77] inspired variants such

as DEFLATE [Kat91] for general zip or LZ4 [Col15], which offers extremely fast compression

and decompression. LZ4 has the option of running in constant space, which makes it ideal for

fast decompression of large volumes of data.

2.2.3. Progressive Data Representations

Rendering is itself a sampling process, which takes objects from tridimensional

coordinates and transforms them into projections of bidimensional coordinates on a grid.

Independently of the rendering algorithm, the display process samples the geometry and color of

the objects of the scene and constructs a view of them on the output monitor. Sampling distant

objects can be a very costly process, therefore prefiltering is preferred in rendering, and therefore

objects are generally pre-filtered in progressive data representations to minimize the

computations which are required for their distant rendering.

Triangular based representations of objects are called meshes, and can have levels of

detail (LOD) [Hop96] [Hop99], which are low sampled representations of the objects’ geometry.

The samples are taken at different distances and decrease the geometric detail with the increase

in object distance, in order to decrease aliasing caused by undersampling detailed meshes. They

are chosen for rendering depending on quality metrics like screen projection size or distance to

the near visualization plane. Triangular meshes can also be imperfectly approximated into

textures [Los03], which have their own LOD mechanism.

The images used as textures with the triangular based representations of meshes have

mipmaps, which are hierarchical level of detail structures. While superior filtering methods like

Summed Area Tables (SAT) or Elliptical Weighted Average (EWA) exist, the cheap bilinear,

trilinear or anisotropic filtering methods implemented in hardware have provided sufficient

quality for real-time rendering.

Voxels have tridimensional mipmaps, which provide superior quality metrics compared

to the tridimensional LODs. From the standpoint of scene sampling the voxel representation is

much more efficient because of its mipmaps, which represent the object with a small number of

pre-filtered samples, effectively sampling entire parts of objects with few memory reads. On the

other hand, the reconstruction of mesh LODs is a complicated process. Another important aspect

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

27

of voxel use in real-time rendering is the fact that voxelized geometry is usually implemented as

tridimensional textures, for which GPUs have specialized filtering hardware, which leads to very

efficient queries. Furthermore, voxel based simplified representations of the scene are resolution

independent, making memory consumption and rendering times both lower and predictable.

Because of these properties, voxelization has many uses in computer graphics and has been

thoroughly explored as a fast and inexact object representation. Voxelization can be sparse

[Cra09], conservative [Cra14], based on imperfect shadow maps [Wym13], or it can computed

through rasterization as a set of slice/opacity/occupancy maps [Eis06] [Eis08].

Fractals are natural progressive representations and are easy, but expensive, to evaluate

analytically. Fractals are often used to augment real data with quasi-random fine detail, named

procedural noise. Procedural noise was first used in computer graphics as Perlin noise [Per85],

which interpolates random samples across a multidimensional grid. This method was later

refined into Simplex Noise [Per01], which uses a simplex instead of grid and thus decreases

complexity from to , where N is the number of dimensions. Techniques such as

Wavelet noise [Coo05] and Gabor noise [Lag09] build upon the Perlin and Simplex noises by

improving antialiasing in low frequency sampling patterns.

Triangular representations of geometry can also be approximated through impostors,

which are lightweight memory wise and computationally, but are useful only for far away

objects. Impostors can be used to great effect in scenes with controlled movement. There are

many types of impostors.

Billboards [Ger88] are represented with a very small number of quads and can be

aligned to always face the camera, but they can’t successfully represent surface detail or parallax

effects. Correct rotationally invariant impostors can’t be obtained without some form of multi-

view representation. Billboard clouds [Dec03] can be used to attenuate artifacts approximating

an object through many billboards, instead of one. Heightmaps, bump maps and normal maps

can be applied to billboards to increase surface detail. Billboards have also been used in the

implementation of approximate volumetric effects. The omni-directional relief impostors

[And07] uses a form of iterative parallax mapping with billboard clouds, in order to better

represent surface detail.

True impostors [Ris06] introduces the idea of layered object representation to impostors.

In this technique the original mesh is projected into a texture, where each channel holds a

different depth sample, in a similar way to depth peeling. Therefore, a single texture can hold up

to 4 different depth samples of a mesh, roughly approximating it. Then, the mesh is rendered as a

simple impostor which performs a variant of ray-marching as shading. In the ray-marching stage

the intersection between the view ray and the surface is much more accurate than intersecting a

billboard cloud.

3-view impostors [Har10] uses distance fields to quickly traverse a coarse volumetric

representation of the mesh. The volumetric representation is stored in 3 min-max maps, taken

from the 3 canonical axis views. Each map stores the minimum and the maximum depth value

per view, along with a maximum step with which the ray can be advanced, similar to relaxed

cone stepping [Pol07]. Rendering with 3-view impostors is done by bounding the impostor

within a box and sphere tracing it. The distance advanced between samples is decided using

queries from each view.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

28

Volumetric billboards [Dec09] are voxel structures, which can be traced with any form

of ray-marching or tracing. Compared to the previously discussed impostors they can handle

level of detail and scattering with much better results. Bundling of different impostors has been

explored in [Ume05] and [OHa02], but only in the context of large homogenous systems such as

flocks of birds of clouds.

Spheremaps and cubemaps are an important data structures in rendering because they

are frequently used to sample or encode the environment of one or a group of objects. Because

they are used for sampling, cubemaps offer a cheaper solution since they can be sampled

uniformly, while the uniformly sampled spheremaps would suffer from distortion at the poles.

Therefore, correct spheremaps would require extra computational effort to compute sample

positions and minimize representation artifacts.

Polycubemaps [Tar04] are a surface approximation technique based on cubemaps,

where a surface is parameterized to a set of cubemaps, similar to an axis aligned bounding box

(AABB) tree, which can then be displaced to reconstruct the surface. The advantage of this

technique is that it has an inherent level of detail system because all the parameterized

displacement is written into a single displacement texture, therefore all texture LOD algorithms

are applicable. Other advantages of this structure are that it can represent concave surfaces and

that the displacement texture can be streamed like any other texture through virtual texturing

mechanisms [Eph06].

Rasterized bounding volume hierarchies (RBVH) [Nov12] are impostor trees which

inexactly describe the scene as bounding volume hierarchy of height fields, generalizing

polycubemaps for rendering. RBVH represent geometry inexactly by finding sub-surfaces that

are easy to express as parametric inside the geometry and then represent them as parameterized

heightfields. When this is hard to achieve the RBVH can be transformed into a hybrid RBVH

(HRBVH) which keeps the actual triangles and not heightfields at leaf level. A short comparison

between complex impostors such as cubemaps, polycubemaps and RBVH is given in Figure 6.

Figure 6 Complex Impostors. Cubemaps approximate an object by projecting it onto 6 planes. Polycubemaps take

this concept further, by first creating a parametrization of the object onto an AABB tree structure and creating

displacement maps for the AABB tree which can be used to inexactly reconstruct the original surface. Compared to

cubemaps, polycubemaps can handle concave surfaces. Rasterized Bounding Volume Hierarchies (RBVH) map the

surfaces on an object to heightfields, and create a tree hierarchy over them. RBVHs can be considered as a

generalization of polycubemaps. Lower side of the image is from [Nov12]. Right upper side is from [Tar04].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

29

Comprehensive descriptions of massive scenes are done through storing all the

information of a scene in hybrid hierarchies governed by scene managers. These representations

are often application driven, and interoperability between such applications is difficult [Ber11].

Instance based scene definition is a relatively novel concept, which has only been tried

with families of objects [Bar08] and not with entire general scenes.

Very detailed asset representations for distant or unimportant objects are not necessary,

as the same visual result can be obtained with lower resolution variants of such assets.

Streaming mechanisms such as virtual texturing [Eph06] and virtual meshes are used to load in

memory only the most relevant data for rendering.

2.2.3.1. Subgeometric Data

An important part of scene description is that objects often exhibit minute detail. Scenes

described entirely through voxels can be perfectly sampled through algorithms like [Cra09] but

those that contain geometry information require a method to correctly represent subgeometric

detail.

Displacement mapping is the simplest form of subgeometric rendering. The original

mesh is tessellated to a new resolution and the newly created vertices are displaced with a

displacement map. This technique is very easy to implement in SM5 rasterization pipelines.

The disadvantage of this method is that tessellating geometry increases geometric aliasing, which

can be very difficult to efficiently solve without oversampling like Reyes based renderers. Hard

to sample surfaces that exhibit geometric detail not represented in geometry can be difficult to

properly render, because sampling geometric detail over the frequency of the geometric

representation is not a straightforward problem. Such surfaces are also named wrinkled surfaces.

Rendering wrinkled surfaces is performed through subgeometric algorithms, also known

as surface algorithms, which transform information from the surface tangent space into

tridimensional space and use it in shading. The tangents space computations can be bypassed

with derivative maps [Mik10]. Various real-time algorithm have been used to adaptively

tessellate surfaces with implicit displacement data, such as Phong Tessellation [Bou081], PN-

Patches [Vla01], Gregory Patches [Loo09], or Semi-Uniform Adaptive Tessellation [Dyk09].

Microfacet based reflectance models [Coo82] simulate wrinkled surfaces by

incorporating the surface geometric variations into the shading model. Similar to microfacet

based reflectance models, fractal surfaces can be evaluated analytically, which solves the

problem of sampling.

Wrinkled surfaces can be convincingly rendered with a small number of samples. Bump

mapping [Bli78] treats wrinkled surfaces as a base geometric surface and a wrinkle function,

which can be encoded in heightmap. The heightmap can then be evaluated multiple times in a

vicinity of the surface sampling position. The multiple wrinkle function evaluations can be used

to approximate the modified normal at the surface sampling point. Normal mapping [Coh98] is

a variation of bump mapping, where the entire normal approximation algorithm is pre-processed,

and its results are stored in a normal map, which is then queried during rendering. Compared to

bump mapping, normal mapping requires less map sampling and has increased precision, but

requires transforming the normal from the normal map space into tridimensional space.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

30

Parallax mapping [Kan01], also known as offset mapping and virtual displacement

mapping, modifies bump mapping to account for steep view angles, where the displacement is

increased, simulating the effect of parallax.

Iterative wrinkle surface methods provide realistic, high quality renderings, but are

significantly more expensive than the previously presented techniques. Dynamic Parallax

occlusion mapping (POM) [Bra04], also known as iterative parallax mapping, relief mapping

and interval mapping, is an iterative approach to wrinkled surface rendering. The algorithm uses

mipmapped queries within a binary search over the ray that intersects the surface, to quickly and

accurately find the intersection point. Because of the tracing nature of the algorithm a significant

number of samples is sometimes required, but the computations are ameliorated because the

process is projected in two dimensions, tracing the ray directly over the wrinkled surface

heightmap. The algorithm was improved with soft shadows, efficiently implemented through

adaptive sampling [Tat06]. Parallax mapping can be offset limited [Pre06] to mitigate the

unpleasant “texture swimming” effects that take place at grazing view angles.

Relaxed cone stepping [Pol07] uses an expensive preprocessing step to compute the

largest ray advance per pixel of the heightmap, making the tracing faster, but using a different

type of map, named cone step map. A detailed analysis of wrinkled surface rendering is

provided in [Mik08]. [Nog12] offers a comparative analysis.

Iterative wrinkle surface methods can be accelerated with the secant surface

intersection technique, which finds a more accurate intersection point without using binary

search. Instead, it performs iterative ray-segment intersections between the surface intersecting

ray and the segment determined by the upper sampled bound and the lower sampled bound, as

described in [Ris07].

Parallax mapping can be implemented in screen space, as shown in Screen space

displacement mapping [Lob08] (SSDM). This technique projects the rendered normal onto the

screen and then multiplies the projected normal with the displacement map value, creating a

displacement vector. Then, a 3-4 level mipmap is created over the displaced vectors, over which

each framebuffer pixel is displaced in an iterative process.

While the previously presented techniques were concerned with correct surface

representation, correct surface shading also requires adequate normal filtering. The same

problem of subgeometric detail is now applied to the normal and not the surface. The problems

of geometric detail aliasing can easily be seen in high frequency lighting effects such as high

specular reflection variation caused by incorrectly filtered normal maps. This effect is named

shimmering or sparkling. Simple but ineffective or incorrect solutions are adaptive sampling,

temporal coherent resampling, using tone-down functions to ease-out the effect over distance or

even caching supersampled lighting in a virtual textured solution, basically enhanced lightmaps.

Linear Efficient Antialiased Normal (LEAN) [Ola10] Mapping is a filtering method

which takes into account the problems of normal filtering. It permits normal map composition

and offers correct results, but does so at a high storage cost, saving tangent space information per

normal map. Cheap Linear Efficient Antialiased Normal (CLEAN) Mapping [Bak11] decreases

the memory costs to half by sacrificing anisotropy support. A normal map specular aliasing

solution is also explored in [Tok04].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

31

2.2.4. Acceleration Structures

Independently of the data representation chosen and of the type of rendering algorithm,

the very large numbers of objects found in rendering massive scenes bring about the need for

faster space sampling. This is achieved through acceleration structures that subdivide space,

which are used to query the scene and its objects in without accessing the raw data.

The rendered objects can be either static or dynamic in both form and topology. Static

form and static topology objects are the easiest to render, because their acceleration structures

can be precomputed. Objects with dynamic form or topology need to have their acceleration

structures rebuild. If represents the number of samples (triangles/voxels/points/etc) in an object

than completely building an acceleration structure can’t be performed in less than

complexity. Consequently, the acceleration structures for detailed objects with dynamic form or

topology are extremely costly to maintain, especially in real-time rendering, where the

computational budget is very tight.

 Rendering acceleration structures work by either partitioning the space that contains

the objects or by partitioning the objects into sets. While the obvious, most efficient, choice is

a hybrid representation, sometimes either one of the previously presented approaches can be

more efficient. Acceleration structures can also be classified by their neighbor access efficiency,

since this aspect is very important in heavy neighbor sampling problems like simulations (cloth,

fluids, etc) or scattering effects. Neighbor access efficiency isn’t as important in real-time

rendering as in these other computer graphics fields, because in general rendering samples space

in predictable ray shaped patterns. Correct scattering effects are too costly to properly simulate in

real-time rendering, therefore they are approximated with objects of uniform density, which can

be better handled by implicit neighbor acceleration structures such as grids.

 Another important aspect in acceleration structure design is construction direction:

bottom up, top down or hybrid clustering. The temporal aspect of an acceleration structure can

sometimes be very important, especially when it accelerates many dynamic objects. Temporal

coherence friendly acceleration structures provide non-rigid support for short duration

transitions, such as those found in object moving on a frame-to-frame basis.

The simplest acceleration structures used in rendering are grids. For example, the raster

is a bidimensional hierarchic grid, and it is used as an implicit acceleration structure in many

deferred algorithms [Ols12]. There are also specialized variants of grids like perspective grids

[Hun08], which deform the grid. Hierarchical grids are largely used in many space partitioning

problems. Grid representations are unreliable due to their finite precision of representation, and

thus grid algorithms are in general forced to oversample. On the other hand, grids exhibit

excellent memory coherency and can be used to easily access neighbors. Hierarchical hash-

grids [Sch09] are hierarchies of grid-like structures that handle many objects of different sizes

using hashed storage, keeping the grid neighbor query and update complexities, while

erasing the large memory requirements of grids, by storing only the buckets that contain data.

1.5D and 2.5D grids, also known as multilevel intervals and multilevel maps, are special types

of grids, where one or more dimensions are normally sampled and the extra dimension is very

sparsely sampled. This acceleration structure is often used in inexact intersection determination

[Har12] or in the representation of multi-layer large objects such as vegetation or terrains.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

32

 Binary space partitioning into a hierarchical structure is done by adaptively subdividing

space through arbitrary partitioning planes, which makes it very easy to surmount over empty

space in grid-style space partitions. On the other hand such an object partitioning scheme is

almost guaranteed to reference the same objects multiple times, increasing memory costs and

especially memory management. Binary Space Partitioning Trees (BSP) [Fuc80] recursively

subdivide the scene into convex sets of objects or triangles by using hyperplanes, and are then

used with front-to-back or back-to-front rendering. Image space BSP is the projection of the BSP

algorithm in 2D space.

Image space pyramids [Had98] subdivide space equally among a number of N

predefined children. Quadtrees and octrees are popular hierarchical space subdivision structures,

similar to image space pyramids. They subdivide space by partitioning each non-empty space

area into 4 or 8 equal subspaces. Their sparse variants, the sparse octree [Lai101] and the

sparse quadtree [Sim12] are often used to increase the efficiency of data storage, for example in

[Cra09]. They achieve this by minimizing the storage for empty space. In contrast to KD-trees

[Moo91], quadtrees and octrees do not subdivide optimally and thus they are dramatically less

balanced space partitioning structures. On the other hand quadtrees and octrees can be

implemented over grids, which offer quadtrees neighbor access complexity.

Space partitioning schemes have problems in the accurate representation of small object

which fall in unfavorable places for the space partitioning structure. For example, if an object or

primitive falls at the border between two space partitioning nodes, even if it is very small in size

it has to be stored either in the parent node or in both child nodes. Loose space partitioning can

be used, in which the structure nodes have their collision bounding size doubled, which

guarantees that any object will be stored in a node corresponding to its size. Loose, fuzzy or

dynamic octrees and quadtrees are octrees and quadtrees that implement this principle. While

this method greatly improves space partitioning management for dynamic scenes, it comes with

increased processing costs caused by overlapping computations.

Kd-trees [Ben75] [Moo91] are very similar to BSP trees in concept, but their

partitioning planes are always perpendicular to one of the canonical k-dimensional axes. In

contrast to octrees and quadtrees, the Kd-trees do not subdivide space in equal subspaces, but try

to subdivide space in order to maintain a balanced tree. The implicit Kd-tree is a variant of Kd-

tree which is defined over a bidimensional grid. Min-max Kd-tree is another variant of Kd-tree,

where each node in the tree contains the minimum and maximum extents of its children.

Quadtrees and Octrees can be considered particular types of multiple plane splitted KD-trees.

Kd-trees are usually constructed with a space partitioning heuristic. Surface area heuristic

(SAH) [Wal06], is a space partitioning heuristic for Kd-trees, which utilizes a greedy heuristic

function, in order to determine where to position the splitting hyperplane. The binned SAH (b-

SAH) [Dan10] uses a binning method to sample potential KD-tree splitting planes, decreasing

the time to construct a SAH KD-tree.

Partitioning object lists is a different approach to acceleration structure design. It

combines clustering and top-down or bottom-up design to create object lists, which are then

incorporated in a hierarchical structure. Since each object is referenced at most once, memory

management is predictable and simpler. Furthermore, this dual approach permits optimizations

for both high-level nodes, which are expected to contain general bounding data about the scene,

and for the low-level nodes, which will normally contain objects. Because partitioning object

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

33

lists bundle objects or primitives together, they and are not as rigid as Kd-trees and grids, and

they are favored for dynamic environments.

The bounding volumes (BV) for the low-level clustered nodes can either be axis aligned

bounding boxes (AABB), object oriented bounding boxes (OOBB), discrete oriented polytopes

(DOP), maximum bounding rectangles (MBR), convex hulls, spheres or capsules. In rendering,

the AABBs are the most popular type of bounding structure.

Object trees are generalizations of balanced binary-trees. B-tree nodes are trees that have

multiple children. Object R-trees cluster groups of elements into k-dimensional rectangles,

which represent the minimum bounding rectangle. Object Interval Trees is an ordered data

structure that holds intervals, making it easy to query all intervals that overlap a certain point.

Bounding volume hierarchies (BVH) are tree structures that wrap elements into

bounding volumes, as shown in Figure 7. These volumes represent the trees’ leafs, which are

then recursively wrapped to create the rest of the tree. BVH trees have a large number of

applications in rendering intersection problems such as culling and in tracing global illumination

algorithms. Like Kd-trees, BVHs can be optimized with SAH [Wal072], but they still suffer

from overlapping which makes them slightly inferior to KD-trees in the traversal of large scenes.

Early Split Culling (ESC) [Ern07] relaxes the requirement that each primitive must be only

once referenced by a BVH node and produces smaller bounding boxes by splitting all

inconvenient primitives, which lead to faster BVH traversal. Compared to ESC, the Edge

Volume Heuristic (EVH) [Dam081] splits only very expensive primitives, and provides more

stable and less optimized results compared to ESC. The SBVH [Sti09] [Pop09] uses spatial

splits on primitives in order to minimize the overlapping between children nodes, but it remains

an object list partitioning spatial subdivision structure because it splits space only at a per object

level. It can be considered as a BVH built with a SAH function that penalizes overlapping, as

described in [Pop09], and it has superior results compared to ESC and EVH.

There are many simple variants of the BVH such as the popular AABB-BVH, known as

an AABB tree or bounding box tree or hierarchical box trees, which use AABBs as BVs.

Another simple variant is the quad-BVH (QBVH) [Dam08] which uses four BVHs bundled

together and thus can easily be optimized for CPU SIMD. An AVX variant friendly of the BVH

tree is a generalization of QBVH, the Multi Bounding Volume Hierarchies (MBVH) [Tsa09],

which performs multiple intersection tests per tree node. MBVHs can be optimized for weak

coherency problems by bundling different BVHs with a space partitioning heuristic. An

interesting comparison between BVH and KD-trees for many-core architectures is given in

[Vin14].

Spatial KD-trees, also named SKD-trees [Ooi87], are similar to KD-trees but have 2

splitting planes per node in order to guarantee that each object is referenced just once, which can

be either overlapping or disjoint. Because this is done through a splitting axis and a single value,

which defines the two splitting planes relative to the parent bounding, the SKD-tree is more

memory efficient than normal KD-trees. On the other hand, the overlapping caused by nodes

makes SKD-trees inferior to KD-trees in traversal efficiency. Because of its properties the SKD-

tree is not a spatial subdivision structure but an object subdivision structure. The SKD-tree is

also called a BoxTree [Zac02]. There is also a bitwise compressed variant of SKD-trees named

Bounding Interval Hierarchy [Wäc06].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

34

The H-tree [Hav06] is a hybrid object subdivision structure that improves the empty

space handling of the SKD-tree. The H-tree has both SKD-tree nodes and BV nodes, and during

its construction always chooses the type of node based the projected better bounding. BV nodes

are often used in a H-tree to accelerate empty space traversal. The AH-tree is a variant of the H-

tree that can be constructed in for similar sized objects, with a worst case

complexity of for general objects.

Bounding Interval Hierarchies (BIH) [Wäc06] is a low bandwidth bounding volume

hierarchy. Similar to SKD-trees, BIH stores two splitting planes per node, therefore instead of

storing the BV (e.g. AABB) for each child, like a normal BVH would, the BIH stores only two

bounding boxes through shrewd bitwise codification. The nature of the BIH node and the

clipping axis are encoded in binary. The nodes of a BIH contain three integer numbers. The first

one contains the node type and clip axis encoding. The second and third integers store the

clipping planes displacements, in the case of a normal node, and pointers to the children, in case

of a leaf node. This structure makes the traversal of a BIH to be identical to that of a SKD-tree.

Because the clipping axis and the clipping value can determine 3 subvolumes, the extra case of

empty space has to be considered when intersecting the BIH with a ray, therefore, like SKD-trees

the BIH theoretically has a slightly inferior traversal efficiency compared to that of the KD-tree.

Conversely, due to its very small memory footprint, the BIH traversal is very close to that of

KD-trees. BVHs can be constructed fast on the GPU [Lau09], which improves their usefulness

for dynamic objects. Bottom up and top down construction of BVH is described in [Wal071].

Both space partitioning and object partitioning trees can be used as acceleration structures

for tree traversal, which can be done with or without a stack. GPU implementations work better

with stackless traversal, as memory allocation and cache coherency aren’t GPU strengths. [Fol05]

and [Pop07] present stackless traversal strategies for the kd-tree space partitioning structure.

Object partitioning tree traversal has also seen a lot of research recently: trail-restart traversal

[Lai10], parent links [Hap11], multi-BVH restart-less bitmask traversal [Afr14] and ray-stream

traversal [Bar14]. Stackless traversal is deeper analyzed in Chapter 4.2.1. Tree traversal without

acceleration structures [Mor11] [Kel11] [Nab13] [Afr12] is a recent trend in ray tracing, in

which the traversal dynamically constructs the acceleration structure during rendering.

Tree traversal of dynamic objects is more complicated. While static objects need not

have their spatial subdivision structures reconstructed, dynamic objects need proper handling.

Dynamic structured objects, such as those perfectly defined by any kind of tree can be handled

easily in ray intersection cases by inversely transforming the ray and then performing the

intersection. While this method increases the ray-structure intersection cost, it does not force the

reconstruction of the nodes. Unstructured dynamic objects, which can’t be perfectly represented

through trees, are best handled in a separate subdivision acceleration structure. This tree can

either be reconstructed per frame, or just partially, on demand, like in the method described in

[Wal03].

The AH-tree [Hav06] is an improvement over the H-tree, which decreases construction

complexity from to for limited size objects, while retaining

 for worst case scenarios. On the other hand, the AH-tree is inferior to the H-tree in

traversal efficiency.

Min-max variants of standard acceleration structures can be used as interval trees, which

can be used in any heavy sampling process to quickly approximate space. Dictionaries and

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

35

spatial hash structures are often used in the construction of spatial subdivision structures, but

they are rarely used in the rendering process. Other acceleration structures such as Voronoi

diagrams, Layered Depth Images [Sha98] or Thick Layered Depth Images [Rad14] which are

useful for fast neighbor determination and many screen space collision algorithms have rarely

been used in real-time rendering. A comparison between acceleration structures commonly used

in rendering is presented in Figure 7.

Figure 7 Acceleration structures. In rendering, space sampling is accelerated, usually with one of the depicted

acceleration structures. Acceleration structures can be classified into two types: space partitioners and objects list

partitioners. Space partitioners subdivide space efficiently, but suffer from increased memory usage because the

objects are referenced more than once. Grids are the simplest and most inefficient type of acceleration structure.

Perspective grids importance sample nearby space and can are especially important in planetary and terrain

rendering. Binary Space Partitioning (BSP) trees divide by general splitting planes. Quadtrees and octrees divide

space in 4 or 8 equal parts, but only when necessary. KD-trees are BSPs limited to axis parallel splitting planes.

Object list partitioners guarantee that each object is referenced only once, therefore have lower memory

requirements, but suffer from overlapping and less efficient traversal. BVHs bundle objects together in a hierarchic

tree, but suffer from overlapping. SKD-trees, also called BoxTrees, are KD-trees with two parallel splitting planes

per node, which also differ from KD-trees by being object list based, because they guarantee that each object is

referenced only once. H-trees are a hybrid between SKD-trees and BVH, using either bounding volumes or SKD

nodes, whichever offers better space culling per node. Bounding Interval Hierarchies (BIH) is a SKD-tree which

benefits from shrewd bit compression.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

36

2.3. Rendering Concepts

Rendering algorithms are just models that simulate light transport. While some rendering

algorithms are more physically correct than other, no rendering algorithm is perfectly physically

correct. The major reason for this is that many light transport phenomena are very hard to

perceive for human beings, therefore investing a large budget of computational resources in to

rendering them would be inefficient from a visual standpoint. Another reason is that perceptible

light transport can depend on energy transport specific to effects usually not simulated in

rendering, such as heat glowing or photosynthesis.

Drawing is performed by sampling the scene through a rendering algorithm, which

creates the final rendered image by accumulating light on the photo receptors of the virtual

camera. The virtual camera is described as a collection of virtual photo sensors which capture

light coming from the scene. These camera sensor-light interactions are then sampled and filtered

to determine the pixel colors. The scene can be sampled through a number of different light

transportation means, which include projections, rays, photons or paths, which are used to

transport light from the light sources to the camera.

These means can roughly or exactly simulate light-object direct and indirect interactions.

The interaction between light and an object is defined through a material, which describes how

the surface absorbs, transmits, reflects or emits light. The fundamental science used in rendering

is radiometry, which studies optical radiation. Compared to photometry, it studies

electromagnetic radiation beyond the human visible spectrum, which is represented by

wavelengths between 360nm and 830nm.

In an idealized light transportation problem in rendering, energy is transferred as wave

from a given light source to the objects of the scene. The energy, called Radiant Energy, is

measured in Joules () and defines the amount of light produced by a surface in give amount of

time. Since in rendering the purpose is to synthesize images and not to measure the scene energy,

a more useful measuring instrument is Radiant Power, also named Radiant Flux, . Radiant

flux measures the flow of radiant energy transferred through a surface in a unit of time, thus it

can be written as :

Radiant Power is measured in Joules per second (

), equivalent to Watts .

Irradiance measures how much Radiant Energy is coming to, passing through or emerging from

a surface, per unit of surface, per unit of time. It is measured in Watts per square meter (

), and

can be defined as:

Radiant Intensity, or Intensity, represents the angular density of Radiant Flux per unit

solid, angle, measured in Watts per steradian (

), defined as:

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

37

Radiance is the area and angular density of radiant flux per unit projected area, per unit

solid angle passing through, received at or emitted from a specified direction, on a point, on a

surface. It is measured in Watts per square meter per steradian (

) and defined as:

Since radiance is defined as a per direction function, it does not vary with distance.

Radiance coming at a surface is called incident radiance, while radiance leaving a surface is

called exitant radiance.

Reflection between incident radiance and a surface is handled through bidirectional

reflectance distribution functions (BRDF). The BRDF can be defined as:

 In order to be physically realistic, a BRDF must be positive, must obey Helmholtz

reversion-reciprocity principle and must conserve energy. Positivity means that a BRDF has to

reflect some of the incoming radiance. The Helmholtz reverse-reciprocity principle states that if

the direction of propagating light is reversed the same optical rules apply. Energy conservation

states that a surface can’t reflect more than what it can receive.

 Similar to the BRDF, the bidirectional transmittance distribution function (BTDF),

models the transmission of light through a surface. The bidirectional scattering surface

reflectance distribution function (BSSRDF) generalizes the BRDF and models the reflections

that take place when light interacts with a scattering reflection only material. The bidirectional

scattering distribution function (BSDF) is a further generalization of BTFD and BSSRDF.

Such functions are not analytical, but can be approximated through lobes, which need to

be measured with special instruments [Nga05]. For real-time rendering, these lobes can usually

be simplified to mirror reflection, glossy reflection and diffuse reflection, and have been

approximated by a large number of analytical and approximate models such as: Lambert

[Edw03], Torrance-Sparrow [Tor67] Blinn and Blinn-Phong [Bli77], Cook-Torrance [Coo82],

Minnaert [Min41], Ward [War92], Schlick [Sch98], Oren-Nayar [Ore94], Heidrich-Seidel

[Hei98], Ashikmin [Ash00], Kelemen-Kalos [Kel01], GGX [Wal07], Wrap [Slo11] or GTR

[Bur12]. A survey of existing distributions and how to combine them is presented in [Sch11].

The rendering process can be described as a recursive light transport equation, known as

the rendering equation, as defined by Kayija in [Kaj86]:

 In this equation the result represents the outgoing radiance in direction. It is

the sum between the emitted radiance in that direction, , and the incoming radiance on

the entire hemisphere , , weakened by the incident angle, , and then reflected by

the bidirectional reflectance distribution function, .

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

38

While traveling through non-void media light suffers from scattering events, because the

light’s photons interact with the particles from the media. In such media the light can be

absorbed, emitted, in-scattered or out-scattered. The equation for non-homogenous media light

propagation can be written as a sum of volumetric emission, absorbed in-scattering, out-

scattering (extinction) and absorption:

The in-scattering and out-scattering are based on phase functions, which represent the

probability distribution for scattering based on solid angle. They are similar to BSDF function,

but are defined for scattering media. Some of the most used distributions are isotropic and

Henyey-Greenstein [Hen41].

The Henyey-Greenstein is an anisotropic distribution and is accurately approximated by

Schlick [Sch93]:

The light transports simulated in rendering are very diverse, and in order to be sampled

efficiently they need specific sampling strategies.

The Heckbert notation [Hec90] considers the entire path traversed by the photons, from

the emitting light to the camera receptor, and it is used to easily differentiate between different

types light transfers. It uses regular expressions for path labeling, thus all paths can be written

like , where represents a light, a specular reflection, a diffuse reflection and the

eye (camera).

For example describes a path between a light and the eye while describes a path

between the eye and a light with two specular reflections, such as the paths that produce caustics.

The glossy reflection was added later, which represents a specular-like diffusion, which

reflects light in a lobe, instead perfectly. Thus, a path can also be described as

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

39

2.4. Rendering algorithms

A rendering algorithm simulates light transport by determining the interactions between

lights, objects and the virtual camera photo sensors, represented as pixels. These rendering

interactions can be simplified to simple, direct interactions. This follows the principle of global

illumination, where all the objects light the other objects. The fundamental operation in

determining the validity of direct interactions is visibility determination. This concept was first

explored as a visibility determination problem [Sut74], where the visibility determination

operation is considered the most basic and most important operation for rendering algorithms.

Thus, rendering interaction can be expressed as an unordered set of visibility

determination operations, and efficiently simulating the interactions is equivalent to efficiently

computing the generated visibility operations, which is a visibility determination sorting

problem. This in turn can be described as a searching problem. This aspect of rendering is

thoroughly presented in [Hav14]. Consequently, correctly sorting and then solving the generated

visibility operations is the most efficient method to simulate rendering interactions, as

highlighted in [Sut74] and [Hav14] : “Sorting and searching usually takes more than 90% of the

rendering time”. Different rendering problems are presented as searching problems in Table 2.

Rendering Problem Query Domain Search Space Answers Domain

Ray Shooting rays objects (intersection) points

Hidden Surface Removal rays objects points

Visibility Culling rays objects objects

Photon Maps points points points

Ray Maps points rays rays

Irradiance Caching points spheres spheres

Path Tracing paths objects (intersection) points

Table 2 Rendering as sorting. Different rendering problems are depicted as search problems. Ray shooting

algorithms like ray tracing search the scene objects with rays and produce intersection points. Hidden surface

removal methods search visible points on objects by ray queries. Visibility culling uses rays to search the object

space for visible objects. Photon maps use k-NN point queries into the point photon space, to determine which

points affect a point directly visible from the camera. Ray maps use point queries into a ray-indexing structure to

determine rays which are followed by photons. Irradiance caching uses points to search in the sphere space to

determine which spheres are cached. Path tracing searches the object space with paths, determining intersection

points.

This sorting process is actually a scene sampling process, where the scene objects, lights

and camera sensors are sought to be sampled in the most coherent order. These different types of

coherencies can be observed in different fundamental rendering problems: scanline (e.g. raster,

texturing), frame (e.g. temporal reprojection), object (e.g. back face culling, clipping culling),

depth (e.g. z-buffer, DFS tracing), list-based (e.g. BFS tracing, raster), face and edge coherence

(e.g. raster, BVH) or area coherence (e.g. photons, texturing). Rendering algorithms try to

capitalize on most of these coherencies to improve operations ordering and early decisions (e.g.

early-z, use of acceleration structures). Since different lighting effects are caused by different

phenomena, the majority of rendering algorithms use multiple coherencies, in effect multiple

importance sampling visibility operations. Therefore, rendering algorithms are interactions

samplers, not solvers, even though they use the results of previous interactions when sampling

for other interactions. The interactions are simulated in a physically plausible manner through the

use of BRDFs, BDTFs BSSRDFs or BSDFs, which are beyond the scope of rendering algorithms.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

40

Rendering algorithms are differentiated by the type of light paths they can simulate. All

rendering algorithms can handle direct light paths, which contain at most a single light-object

interaction. These algorithms are named direct illumination algorithms. Another name for them

is local illumination algorithms, because they require only local information in the rendering

process. The best rendering quality is found in global illumination algorithms, which handle all

types of light paths. Because such algorithms use scene wide information and light paths with

many light-object interactions, they are also called indirect illumination algorithms.

The ultimate goal of rendering algorithms is to efficiently create the necessary objects-

lights interactions required for generating photorealistic images. In some cases, rendering

techniques can combine aspects from different rendering algorithm families, and can be

equivalent from a result standpoint. Rasterization with customizable sampling points per pixel is

equivalent to ray casting, with the exception that ray-casting also provides the intersections in a

“front to back” order. Rasterization can provide the exact same order or produce the same

stochastically expected result through the use of Order Independent Transparency (OIT)

algorithms like [Bar11] [End10]. Even if the viewport is non-planar there are methods which

make rasterization equivalent to ray casting [Dav121].

Ray tracing samples space by shooting rays, path tracing samples space by using paths,

cone and beam tracing sample space by shooting volume rays and photon mapping samples

space by shooting and storing photons. Each of these space sampling strategies is aimed at

solving the same problem, that of global illumination. Some of the space sampling strategies aim

to optimize for the first intersection (rasterization), diffuse reflection (many lights methods),

specular light transport (photon mapping), or for maximizing lights-objects interactions (path

tracing). Because of these different aims, some rendering algorithms perform better than others,

depending on the scene and the degree of the correctness of the transport of light.

This space sampling process was first formally represented in the rendering equation,

introduced by Kayija in [Kaj86]. It formalized the rendering problem as an order dependent,

interaction determination and evaluation process.

The most important properties of the rendering equation are that it is recursive and

separable. Because it is separable, different algorithms can be used to evaluate its different parts,

for example rasterization can be used for the emissive and direct light reflection components,

while a more cache unfriendly but more efficient space sampling algorithm like path tracing can

be used to compute the rest of the equation. This is the best approach to obtain good performance,

because each stage of the rendering equation is handled by the most efficient algorithm for it.

A rendering algorithm is said to be physically correct if it generates the lights-objects

interactions necessary for the generation of a photorealistic image. Therefore physical

correctness in rendering is not in a physics connotation but in a perception one.

A rendering algorithm is called consistent if, with enough sampling, it produces a correct

expected result. A rendering algorithm is called unbiased if it does not introduce any regular

error in the radiance approximation. Biased algorithms do not necessarily produce wrong results,

as they can converge with enough sampling to the correct result, if they are consistent. On the

other hand biased algorithms introduce an error called bias, which can be perceived as a blur or

as a loss of high frequency visual information. This is usually done to reduce the variance found

in sampling hard to sample rendering problems, like caustics from point light sources.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

41

One of the most important aspects of algorithm design is data handling. Most direct

rendering algorithms use preprocessed data structures, which are rarely modified during

rendering. The most common data structures that suffer modifications are tree structures like

BVH, and even if their reconstruction has seen improvements in on-GPU generation [Lau09],

they are still rarely used because of the tight computational budgets in real time rendering.

Likewise, indirect rendering, where the rendered data is converted from one format to another,

is rarely used in real-time rendering because of its costs.

On a more fundamental level, data traversal patterns are by far the most important

data-related performance topic in rendering algorithms. Because all rendering algorithms are

sampling processes over the scene space and because GPU bandwidth is almost always the main

bottleneck, the most coherent sampling process is expected to have the best performance. This is

a major reason for the wide-spread adoption of the rasterization rendering algorithm.

Rendering algorithms can also be distinguished by design. Top-down approaches

integrate the most relevant majority of visual effects and need no other additional techniques to

correctly synthesize the rendered images. Bottom up approaches need additional algorithms to

provide good final results, but are much more scalable in computational cost.

Based on how they implement and sort visibility determination operations, through

various space sampling strategies, the many rendering techniques in computer graphics can be

separated into algorithm families: rasterization, screen space techniques, Reyes, ray casting, ray

tracing, path tracing, photon mapping and many light methods. While there is room for variation

for the space sampling strategy used by a rendering family, the basic principles are usually the

same. Some of these space sampling strategies are presented in Figure 8.

Figure 8 Rendering algorithms. Rendering algorithms provide the interactions between objects, lights and screen, by

using different sampling strategies, which exploit different visibility determination coherencies. Rasterization

projects space onto the screen, solving visibility determination operations with a bidimensional grid. Screen space

methods work in 2D, where neighbor sampling and mipmaps can be used to hierarchically determine approximate

visibility. Ray casting uses rays to determine visibility of objects on the screen. Ray tracing uses rays recursively,

sampling space beyond the first screen-object interaction. Path tracing considers the entire transport of light as paths,

which leads to many importance sampling opportunities. Many light and photon mapping methods transport light

throughout the scene by creating many small lights, named virtual lights (VL), which simulate light transport and are

then used as direct illumination sources.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

42

Rasterization algorithms intersect each rendered primitive by projecting it onto the pixels

of the screen. Their results can be used by screen space techniques to produce low quality

approximations of global illuminations. Reyes [Coo87] rendering takes each primitive, splits it

into smaller primitives which are then diced to micropolygons close to the size of a pixel. The

micropolygon vertices are shaded and then sampled to create the final color for each pixel.

Ray casting [App68] generates rays, going from the camera through each of the pixels of

the screen, which are used to intersect the scene. The final pixel color is obtained through the

accumulation of the color contributions from all the intersections. Ray casting is usually

employed in rendering transparent objects and scientific visualizations [Wei06]. Ray tracing

[Whi79] algorithms start like ray casting, with rays starting from the camera and going through

the pixels of the screen, but differ from ray casting because they can generate new rays when the

old intersect objects. Path tracing [Kaj86] takes the concept of ray tracing further, by linking the

new rays with the old rays into paths.

Photon mapping [Jen96] decouples lights-objects and camera-objects interactions by

shooting a large number of photons from each light and simulating the light transport with them.

After the photons are transported they are saved into a scene wide photon storage structure, a

final gather stage is used in which rays shot from the camera through each pixel intersect the

objects of the scene. At each intersection the lighting equation is evaluated, using the photons

stored in that area.

Many lights based methods, also known as virtual lights (VL), [Kel97] approximate

correct global illumination by generating virtual lights at each light-object interaction. The

virtual lights are then checked for potential interactions with the objects of the scene, recursively

spawning new virtual lights. All virtual lights are used for direct illumination in a final gathering

stage.

2.5. Rasterization

Of all rendering algorithms, rasterization simulates the smallest subset of light paths,

sampling only paths. On the other hand, it samples these paths with excellent data

locality. Because of this, rasterization based renderers need to employ a large number of

additional techniques to produce quality images, but, if implemented correctly, a rasterization

based renderer can produce photorealistic results. The complexity of managing all the additional

techniques makes rasterization renderers scalable, albeit difficult to maintain solutions. Thus,

rasterization can be considered a bottom-up approach to rendering, compared to ray-tracing or

path-tracing algorithms, which are top-down approaches.

The scene sampling process is based on a primitive-pixel intersection operator, which

loads each primitive in memory and intersects it in parallel with many pixels. Therefore,

rasterization is a SIMD friendly algorithm, which can easily be implemented in graphics drivers,

and this makes it the best method for determining direct visibility. While culling algorithms give

it the same visibility determination complexity of , identical to other

rendering algorithms like ray tracing or path tracing, rasterization exhibits the best general

performance in rendering visible objects. The only unfavorable performance case happens when

micropolygons are rasterized, because of low numbers of potential fragments, generating

rasterization tasks with few threads. Level of detail algorithms can be used to mitigate the

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

43

number of sub-pixel sized primitives, by rendering primitives of a suitable size. The data

locality in rasterization permits the algorithm to efficiently access memory for a large number of

pixels or sub-pixels, making hardware anti-aliasing practical.

Rasterization is also fully compatible with tile-based architectures, thus it is favored in

energy deprived environments. Since the raster is a grid structure, tiles can easily be integrated

within current hierarchical early rejection algorithms [Gre93] [Joh05] used in modern

rasterization. The negative side of rasterization is that it generates only a small number of light-

object interactions, making it impossible to implement correct global illumination without further

complexity. Rasterization provides the direct interactions between camera and objects without

order, making it difficult to represent basic phenomena such as transparency or translucency.

2.5.1. Visibility and Occlusion Culling

Because rasterization projects objects onto the screen it provides potential object-screen

interaction without order and without bounds, therefore extra work is usually performed for

occluded objects and for objects outside the visualization volume. Since rasterization uses the Z-

buffer algorithm for opaque objects, it uses an implicit form of culling called depth rejection.

Depth rejection ensures that each new fragment generated by a uniform distribution of objects

has statistical chance of

 to not be culled, where is the number of previously existing

fragments. For a large number of fragments per pixel the number of fragments that will pass

the culling test grows like the harmonic series to

 [Coz09]. This

complexity is further lowered with hierarchical depth rejection [Gre93] and guarantees the speed

of rasterization, since the majority of computational costs is in fragment processing. Hardware

vendors have brought many efficiency improvements to the Z-buffer algorithm like early

rejection, double speed depth-only rendering or depth compression [Coz09].

Thus, the rasterization Z-buffer algorithm has a linear geometry processing complexity

and a (sub)logarithmic fragment processing complexity, both of which have close to optimal

data access coherency. Even with this large number of optimizations, the Z-buffer algorithm can

suffer from floating point precision artifacts, which can be countered with multiple depth frusta

[Coz09], judicious minimum triangle separation and LODs.

Culling algorithms cheaply determine visibility, with the purpose of minimizing this

extra effort. Culling is itself a sampling process, as it samples the entire scene to find the best set

of potentially visible objects which will be then sent to be rendered on the monitor. Because of

occlusion, an exact match can’t be obtained without interleaving the culling algorithm with

rendering [Mat15].Static culling methods like potentially visible sets (PVS) [Dur99], portals and

anti-portals [Dur99] can be precomputed, or dynamically computed by amortizing the

computation on multiple frames, and have all seen wide adoption.

Hierarchical occlusion determination algorithms work by temporal information and

visibility queries. Coherent Hierarchical Culling (CHC) [Bit04] uses information from the

previous frames to test only a limited number of queries per frame. The algorithm was further

refined in Near Optimal Hierarchical Culling (NOHC) [Gut06] and in CHC++ [Mat08] with

statistical methods that bundle queries in order to minimize their costs. It was also adapted for

ray tracing in CHC++RT [Mat15]. Culling algorithms have been particularized for special

rasterization problems like shadow rendering in [Llo04] [Bit11].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

44

Fast inexact culling algorithms are usually based on easy to obtain rasterization

information like the depth buffer and other common screen space data. Hierarchical Z Visibility

[Gre93] is integrated in the rasterization hardware and it has also been adapted in a

programmable version where occlusion determination is based on testing the visibility of

extended screen space projected AABBs against the mipmaps of the depth buffer from the

current or previous frame.

Figure 9 Culling algorithms. Coherent Hierarchical Culling (CHC) variants are exact and test for visibility only

what might vary from the previous frame. Hierarchical Z (HIZ) methods extend AABBs in screen space and Z-test

the visibility in a hierarchical depth buffer. Compared to HIZ, N-buffer stores exponentially increasing maximum

depth vicinities, therefore it switches the HIZ hierarchy of maps into a map of hierarchies. Portals use multiple view

frustums to reduce the visible space.

The concept of using the projections of occluders in a 2D occlusion process has also

been tackled in Visibility Culling using Hierarchical Occlusion Maps [Zha97], where groups of

low resolution LODs of occluders generate occlusion maps, which are then mipmapped and used

like additional Z-buffers for visibility determination. Using multiple Z-buffers has also been

explored in Triple Depth Culling [Mar11], where the depth maps are filled in alternating

geometry passes. Instead of storing a hierarchy of maps N-buffers [Déc05] introduces a map of

hierarchies, where each level of the N-buffer contains the maximum depth for an exponentially

increasing vicinity. Hardware tessellation culling [Nie12] is a relatively novel field, currently

with no significant applications in real-time rendering. [Bar12] contains a review of image space

culling algorithms. There have also been culling hardware proposals [Has07], but as of now,

none are officially used in consumer hardware. Some culling approaches are showed in Figure 9.

2.5.2. Geometric Antialiasing

Compared to algorithms that use rays or paths to synthesize the final image, rasterization

does not have the option of analytic sampling per pixel. Therefore rasterization antialiasing has

seen a large number of methods that try to minimize geometric aliasing, which is caused by the

fixed sampling rate and pattern of the projected geometry. Super sampling antialiasing (SSAA),

also called full scene anti-aliasing (FSAA) linearly increases the number of samples taken from

the raster in order to create pixels. Multisampling antialiasing (MSAA) also does this, but it only

oversampling the visibility attributes of the geometry.

Fast Approximate antialiasing (FXAA) [Lot09] finds all edges in a post processing stage,

and then blurs them, to non-uniformly reduce high frequency detail and the aliasing caused by it.

Morphological antialiasing (MLAA) [Jim11] finds all edges in a post process, and then tries to

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

45

match sub-edge parts to hardcoded cases, which can then be anti aliased efficiently. MLAA is

refined in Subpixel Morphological antialiasing (SMAA) [Jim12] with better diagonal lines

support and a more accurate pattern matching mechanism. SMAA uses a precomputed texture to

correctly handle diagonal patterns and a velocity-weighted temporal reprojection [Neh07]

mechanism. The temporal reprojection is a case of amortized supersampling [Yan09], which is

used to increase the number of samples for moving objects, which are very difficult to antialias.

Subpixel reconstruction antialiasing (SRAA) [Cha11] is targeted at deferred renderers,

and combines sub-pixel visibility through supersampled G-buffers with single-pixel shading.

Subpixel reconstruction antialiasing (RSAA) [Res12] stores the results of geometric sampling as

binary results in a mask, which are then resampled with optimally precomputed coefficients for

each combination that can be stored in the mask. Aggregate G-buffer antialiasing (AGAA)

[Cra15] decouples geometry sampling rate from shading sampling rate by aggregating all

geometric contributions into an averaged set of surface descriptors (mean albedo, mean specular,

mean roughness). The averaging is done through distance functions.

Impostor [Ris06] [And07] [Har10] based algorithms can be rendered instead of real far

away objects. This can drastically lower the geometric complexity of the objects and thus reduce

geometric aliasing.

2.5.3. Direct Illumination

While culling algorithms lower the geometry processing complexity in rasterization, the

shading complexity is usually the main performance bottleneck. A low, or even constant shading

complexity can be achieved by deferred rendering [Dee88] [Sai90] algorithms, which are a

special group of rasterization based-rendering algorithms. They compute only the relevant

interactions between lights and objects, guaranteeing constant shading complexity. Without

deferred algorithms, rasterization can’t make thr difference between potential and relevant light-

object interactions, and it is forced to evaluate almost all possible combinations, greatly wasting

computational resources in a complexity problem, where is the number of lights and

is the number of objects. Deferred rendering uses explicit or implicit acceleration structures to

compute only the relevant light-object interactions, lowering the computational complexity to

 . It does so by using screen-wide acceleration structures, which consume a large amount

of GPU memory, named geometry buffers, or G-buffers.

Deferred rendering algorithms can be either single-geometry pass or multi-geometry

pass [Lee09]. In single geometry pass algorithms, deferred rendering algorithms process the

objects of the scene once, while in multi-geometry pass variants they process the objects many

times. There are also hybrid variants [van13] which try to balance geometry processing costs and

fragment processing costs.

Deep deferred shading (DDS) [Mar14], multisampled deferred [Thi09] and adaptive

super-sampling deferred rendering [Hol13] come in single-pass and multi-pass variants and try

to mitigate the large memory consumption problem anti-aliasing deferred rendering algorithms.

Interleaved sampling [Kel011] can be applied to deferred rendering [Seg06] in order to

minimize the number of shading operations. The initial geometry buffer is subdivided into a

number of smaller buffers. Each of the small buffers contains interleaved information from the

original G-buffer. Then, the lights are distributed over the sub-buffers and shading is performed

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

46

normally. Finally, a discontinuity sensitive buffer is used to correctly filter all the small lighting

buffers into a final full-resolution lighting buffer, which is then applied to the color buffer to

create the final image. The same technique was adapted for transparent objects in inferred

rendering.

Light indexed deferred rendering [Tre09] and list based light indexed deferred rendering

[Lau12] solve the problem of low contribution light-object intersection by storing all light

indices in a list and testing each interaction before evaluation. Tile based deferred rendering

[Ols11], cluster based deferred rendering [Ols12] and Forward+ deferred rendering [Har12] take

the concept of storing light index lists and improve upon it with hierarchic data structures like

tiles, clusters, or pseudo-clusters defined through depth masks.

Stream compaction for deferred rendering [Hob09] is an algorithm used to minimize the

GPU code path divergence in setups with many materials. Deferred++ [Bur13] is a tile-based

deferred rendering variant, where primitive indices and light indices are stored in tile-based lists.

The shading process loads the objects and lights for each tile, minimizing bandwidth and

memory requirements. In general, deferred rendering suffers from large memory costs and an

inability to represent global illumination effects and correct transparency. An abstraction of

deferred rendering is presented in Figure 10.

Figure 10 Abstract deferred rendering. Deferred rendering algorithms decouple visibility determination and shading.

They first determine the visible object(s) for each pixel. Afterwards they store the lights in an acceleration structure

(here tiles). In the end the algorithm intersects each pixel’s visible object(s) with the relevant lights, providing all

relevant light-object interactions.

Decoupled rendering (DR) [Rag11] takes deferred concepts further by completely

decoupling visibility samples and shading samples, through the use of a memoization cache. It

creates a many-to-one relationship between visibility samples and shading samples, which

dramatically improves efficiency in evaluating effects that require multiple shading samples per

fragment such as depth of field or motion blur. For example, a moving surface from a primitive

might be rasterized over a different number of pixels in a single time frame. This is very

common since no frame is instantaneous and objects will move during the frame time, creating

the visual effect of motion blur. The memoization cache is very expensive to implement, because

it has large memory requirements and it has to synchronize a lot of GPU data. Furthermore, the

algorithm requires special hardware in order to work at maximum efficiency. This technique

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

47

was adapted to deferred rendering in decoupled deferred rendering [Lik12], where a modified

memoization cache is used as compact geometry buffer. Similar to decoupled deferred rendering,

sort based deferred rendering for decoupled [Cla13] uses Morton-order encoded approximations

of primitives instead of a modified memoization cache. The principle of decoupled sampling is

described in Figure 11.

Figure 11 Decoupled sampling. The same texture data is needed for multiple pixels during the period of a single

frame, a common occurrence in scenes with fast moving objects. In order to correctly implement motion blur and

not pay excessive bandwidth costs, decoupled sampling checks visibility samples separately from shading data and

employs a single shading sample per pixel model. When it is first encountered, the shading sample is mapped in a

memoization cache, and then referenced from the cache, in a process which applies dynamic programming

principles to bandwidth rendering problems. Because the memoization cache is stored in cache memory, the access

costs and bandwidth are greatly reduced. Source: [Rag11].

Volumetric lighting takes into account scattering effects caused by non-vacuum media.

While it can be considered a form of indirect illumination, it is caused by direct illumination, and

therefore it should not be considered as a form of GI. Volumetric lighting is especially useful in

effects such as fog, light shafts (also known as god rays or crepuscular rays) among other effects,

where it is usually combined with procedural noise in order to increase medium irregularity.

Pure voxel based methods can be used to accurately implement volumetric lighting such as the

algorithm presented in [Cra09]. On the other hand, such effects require a very large number of

samples, which can quickly amount to an excessive consumption of bandwidth.

 In a rasterization context, volumetric lighting can be cheaply approximated with

geometric information from the lights, where a product between the viewing vector and normal

vector can be used to decrease lighting near edges [Cha15]. Volumetric lighting can also be

approximated in screen space, as a post process [Mit071]. Impostors have also been used in

inexact representations of scattering processes, where the volumetric object is represented as an

impostor cloud. Such representations lack convincing quality, because impostors do not interact

with the environment.

Volumetric lighting can be correctly implemented with shadow maps, by projecting the

ray onto the volumetric light shadow map and marching the shadow map [Tot09]. This

accumulates volumetric effects like absorption, emission, in-scattering and out-scattering by

using the visibility data from the shadow map. Interleaved Sampling [Kel011] can be used to

lower the complexity of marching a ray. It is based on the idea that neighboring pixels have

similarly marched camera-surface rays; therefore, pixels in that vicinity can use samples from

their neighbors. This is easily implementable in compute shaders or as post processing passes

because the resulting scattering convolution kernel is separable. [Eng10] observers that

scattering varies mostly in depth discontinuities and along epipolar lines and lowers the

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

48

complexity of ray marched scattering by interpolating epipolar samples. These samples are taken

by marching rays from the screen space projected light position to epipolar positions on the edge

of the screen space frustum. Extra attention is given to depth discontinuities. Epipolar

rectification [Fus00] can be used in combination with a 1D min-max map to quickly evaluate

volumetric lighting effects, as presented in [Che11]

 A different implementation of scattering effects can be done with Polygonal Light

Volumes [Bil10]. This method takes the shadow maps from scattering lights and displaces a pre-

defined grid over them, quickly creating accurate shadow volumes.

 Subsurface Scattering (SSS) defines the light transport in special media like skin or

marble, where photons enter and suffer multiple interior reflections before leaving the surface at

a point different from the point of entry. Effects such as translucency or backlight lighting are

caused by SSS. From a rendering standpoint, the surface-light interactions in SSS materials are

different from normal materials. The interactions are described by BSSRDFs, which are

generalized BRDFs with superior dimensionality. Because of the higher dimensionality SSS has

long been considered a high cost effect, and has been only lately brought to a reasonable

rendering complexity. BSSRDFs can be implemented with a light diffusion convolution kernel,

which composes the surface with the light diffusion. For isotropic media, this convolution kernel

is almost always a sum of Gaussian kernels.

The light diffusion that takes place in SSS was first tackled in real-time in [Bor03],

where instead of evaluating the convolution kernel, it was approximated in texture space, in the

form of many blurred color texture maps, which were then composited through a simple

weighted sum. Another algorithm [dEo07] uses Translucency Shadow Maps which are then

blurred and summed, approximating the sum of Gaussians in real-time instead of using texture

space for preprocessing like [Bor03]. Preprocessing can be used to approximate the thickness of

a geometric object, in a manner similar to measuring an internal ambient occlusion. This

precomputed thickness term was used to provide convincing results in [Bri11].

A novel approach towards SSS was offered in [Jim09], in which a screen space

convolution kernel is used to approximate the real surface kernel. A depth-discontinuity aware

filter is used to efficiently approximate the surface in screen space, in order to locally filter only

fragments generated by the same objects. This method was extended to be separable for a sum of

Gaussians in [Jim15].

2.5.4. Shadows

Shadows can be implemented through proxy geometry as shadow volumes [Cro77],

through rasterized images as shadow maps [Wil78] or through hybrid types of rendering

algorithms like ray tracing over rasterized data. Because shadow maps are implemented through

rasterization, they benefit from its data locality advantages, making shadow maps more efficient

compared to other solutions. Therefore, shadow maps have seen a wide adoption in shadow

rendering solutions for real-time applications, even if they are notoriously difficult to efficiently

implement, since they are a sampling process heavily dependent on the configuration of objects

and lights. Shadow maps have been thoroughly researched, which led to a large variety of

existing techniques.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

49

Perspective aliasing is due to the non-linear mapping between shadow map pixels and

camera pixels. Precision warping methods, like perspective shadow maps (PSM) [Sta02], light

space perspective shadow maps(LSPSM) [Wim04], trapezoidal shadow maps (TSM) [Mar04],

and camera space shadow maps (CSSM) [Kol12] and logarithmic shadow maps (LSM) [Llo06]

warp the light visualization frustum, increasing precision near the shadow caster or near the

camera. They are a simple form of adaptive sampling, in that they don’t treat shadow map

discontinuities or hard to sample cases in an analytical manner, they just warp the shadow map

resolution for a good general case.

Partitioned shadow maps, include cascaded shadow maps (CSM) [Dim07], parallel-split

shadow maps (PSSM) [Zha06] and sample distribution shadow maps (SDSM) [Lau11], and

separate the light visualization frustum into multiple frusta, distributing shadow map resolution

to better match the camera view. Partitioning techniques are very similar to precision warping

methods; they just use multiple maps instead of warping, and are thus less exposed to the large

number of problems that plague perspective warping shadow maps. On the other hand, multiple

frusta shadow maps variants require manual tuning and special filtering between partitions.

Perspective aliasing can correctly only be solved through correct adaptive sampling.

Adaptive Shadow Maps (ASM) [Fer01] store shadow samples in a hierarchic grid. The

hierarchic grid is then sampled and filtered during rendering. ASM are memory intensive

structures and require multiple rendering passes to completely fill. High Quality Adaptive Soft

Shadow Mapping (ASSM) [Gue07] is an adaptive sampling method that first computes a normal

shadow map, which is then used to create a hierarchical shadow map. The hierarchical map

stores minimum and maximum values of the normal shadow map in hierarchies represented with

mipmaps. It is then used together with the contours of occluders to determine the difficult

occlusion cases which take place at contours and depth discontinuities. These difficult occlusion

cases are then importance filtered, which greatly increases precision.

Rectilinear texture warping (RTW) [Ros12] augments shadow mapping by storing

additional maps which describe space warping on both shadow map axes. While the method can

produce results close to ray tracing, the bias of the distortion is not addressed. Moreover the

method requires highly tessellated scenes. RTW works by computing the importance of each

shadow map pixel and then by choosing the maximum importance value for each row and

column, which are stored in max maps. The max maps are then warped into warping maps,

which effectively provides adaptive sampling. The shadow map is used by projecting all vertices

onto the conventional shadow map, and then using the warping maps to warp the vertex onto

new coordinates.

Shadow maps can also be used in analytical reconstruction methods, which offer

superior results because they provide sub-pixel level accuracy. Reconstructable geometry

shadow maps (RGSM) [Dai08] offer an alternative storage for the shadow map, by encoding the

closest visible triangle instead of only its depth. This technique addresses both projective and

perspective aliasing but has problems in working with dense geometry and requires large

amounts of memory. Subpixel Shadow Mapping (SPSM) follows the geometry storage concept

from RGSM but uses a compressed representation for the shadow map, storing the vertices of the

closest triangle in each pixel of the encoded shadow map. It also stores depth derivates. Instead

of performing a simple comparison using the shadow map, SPSM performs ray-triangle

intersection for the shadows, and applies an analytical form of vicinity sampling called silhouette

recovery. Both RGSM and SPSM are not suited for scenes with high geometric complexity,

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

50

which would store more than one triangle per shadow map pixel. This would lead to a new type

of aliasing, caused by a shadow map pixel stores an aliased triangle.

Volumetric shadows are very hard to represent because they need more than one sample

per pixel. Deep shadow maps [Lok00], multiple depth shadow maps [Pag04], deep opacity maps

(DOM) [Yuk08], adaptive volumetric shadow maps [Sal10], opacity shadow maps (OSM)

[Kim01] and Fourier opacity maps (FOM) [Jan10] keep more than one sample per pixel in the

shadow map and are therefore able to represent volumetric effects. Adaptive Volumetric Shadow

Maps (AVSM) [Sal101] applies the idea of adaptive storing of signals [Sal11] to shadow maps.

 Epipolar rectification [Fus00] can be used in combination with a 1D min-max map to

quickly evaluate volumetric shadows, as presented in [Che11]. The algorithm creates depth maps

from light and camera views and then uses epipolar rectification to rectify the images. It then

uses a 1D min-max to create prefix sums for height field intersection, which are then used in a

render pass to quickly determine the amount of scattering. The algorithm is explained in Figure

12.

Figure 12 Volumetric shadow maps. Volumetric shadows can be implemented by taking depth images from light

and camera views, which are then rectified through epipolar rectification. A binary tree of the shadow map depths is

stored as a min-max tree, in order to approximate the occlusion for each rectified camera view direction ray. The

min-max tree is traversed during rendering to evaluate the light scattering. Image source: [Che11].

Shadow map filtering and sampling has also been thoroughly researched. Percentage-

closer soft shadows (PCSS) [Ran05], fast percentage closer shadow maps using temporal

coherence [Sch13] and screen space percentage-closer soft shadows (SSPCSS) [Bag10]

introduce efficient methods to shadow map filtering through simple kernels. Perception based

shadow filtering can be used to approximate the penumbra, by altering the kernel size based on

blocker depth and light size [Ran05]. Stochastic filtering methods such as exponential shadow

maps (ESM) [Ann08] and variance shadow maps (VSM) [Don06] further decrease the number

of necessary samples for correct filtering. Convolution shadow maps [Ann07] permit arbitrary

convolution filters over shadow maps, through prefiltered mipmaps.

Ray traced shadow maps [Sto15] can be implemented with conservative rasterization

by storing triangle indices instead of depth in a different type of deep shadow map. In the

shadow map pass the indices are stored with conservative rasterization, to guarantee each

potentially intersected primitive is saved. In the rendering pass, the modified deep shadow map is

ray marched and ray-primitive intersection tests are performed for each primitive index read in

the marching sampling points.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

51

Shadow maps techniques are usually combined, because many of the presented

techniques only improve shadow maps for certain aspects: cascades and warping techniques

importance sample the shadow map, variance and exponential methods improve depth

comparisons, percentage closer filtering and screen space filtering improve shadow map samples

filtering performance. Cascaded deep ray-traced shadow maps are an example of such a

combined technique.

Shadow maps suffer from performance problems because each light needs at least one

shadow map, point lights usually needing more [Osm06] [Ger07]. Imperfect shadow maps

[Rit08] introduced a real-time method for shadowing many lights, using depth image

reconstruction to approximate many low-resolution shadow maps. Efficient virtual shadow maps

for many lights [Ols14] can handle a large number of dynamic lights by using a cluster

acceleration structure to determine the shadow casters and receivers for each light, and then by

writing the result in an array of shadow cubemaps.

2.5.5. Transparency

Rasterization provides the interactions between camera and objects without order,

therefore transparent and translucent effects, which depend on interaction order, are not easy to

implement within it. Rendering of transparents in a rasterization context was first considered in

[Por84], as a series of fuzzy object compositions, which were mixed with an over operator.

There are many approximation methods, but they can’t offer correct results. Alpha to coverage

[Tar10] is a stochastic method which determines the expected color in transparent rendering by

representing the alpha as a number of samples which pass or fail, similar to hardware

multisampling.

Other methods [Mes07] [McG13] separate the order independent term from the order

dependent term. Depth peeling and dual depth-peeling [Bav08] use clipping planes to divide

the scene into multiple layers, which can then be used to correctly accumulate transparent

fragments, at the extra cost of greatly increasing geometry processing.

Correct transparent rendering within rasterization is achieved through A-Buffer variants

like [Car84] [Bar11] [Mau12] which employ sorting strategies and consume large amounts of

memory. Other correct results can be obtained through stochastic methods [End10], which use

many samples per pixel to compute the accumulated expected value, and through adaptive

methods [Sal11] [Sal14], which store high-fidelity approximations of combinations of multiple

fragments, but require special hardware.

Occupancy maps [Sin09] are a special type of transparency algorithm, because they can

excellently approximate depth distributions through the use of per-pixel depth masks, like a

bitwise depth peeling. Their only problem is that they can’t properly handle multiple objects per

pixel. Fourier opacity maps [Jan10] take the depth distribution approximation concept further,

by measuring the depth distribution in Fourier space and approximating it with a small number

of components. Fourier opacity maps can’t handle high frequency detail.

Refraction effects are usually handled in rasterization by multi-pass techniques, which

use information from previous passes to convincingly fake these effects. Correct global

illumination effects like reflections, refractions and shadows can be added to rasterization with

other rendering passes, or other algorithms. Screen space reflections, cubemap reflections and

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

52

impostor based techniques can be used for reflections and refractions, but, for a high quality

rendering, a superior algorithm is required.

2.5.6. Motion

Objects in motion are harder to render correctly, compared to static objects. In real life,

when a photograph is taken, the camera shutter exposure time is responsible for storing light

reflected by the photographed objects. When these objects move fast, they reflect light on a large

number of photoreceptors inside the camera and produce effects such as motion blur (MB). The

camera is also a lens based light sink, therefore the focal distance for which the camera is set

controls the level of precision with which light is captured. Objects that are very far from the

focal point suffer from lack of precision and blurring, in an effect named depth of field (DOF).

Figure 13 Stochastic rasterization. It enables motion blur effects by temporally sampling the primitives. Instead of

rasterizing many primitives and suffering from aliasing, Time Continuous Triangles (TCT) is used, which is a type

of primitive which bounds all the temporal samples of a triangle, akin to a temporal convex hull. Source: [Mcg10].

Stochastic rasterization [Mcg10] [Ake07] is a variant of rasterization in which frames

are not considered instantaneous. During the time required to render a single frame, the

rasterized projections of dynamic objects can travel a very small distance in screen space

coordinates. This effect is a close approximation to the real life motion blur. But in order to

represent such an effect a very large number of temporal samples are required, which can easily

lead to very long processing durations. Stochastic rasterization is able to represent this effect by

using compact temporal geometric representations, which approximate multiple time samples for

each rendered primitive. These continuous temporal primitives, called time continuous

triangles, as presented in Figure 13. While time continuous triangles reduce computation,

stochastic rasterization still has very high computational costs, and it is an interactive but not a

real-time technique.

Motion can also be efficiently implemented with post processing techniques. In [Gue14]

motion blur is implemented through a tile-based approach, storing the largest, dominant velocity

in a screen space region. Then the motion blurring is done in the direction of the local velocity,

which is obtained by interpolating the dominant velocities from the closest tiles. Tile boundary

discontinuities are treated by stochastically sampling the local velocity for pixels which lie at the

boundary of a tile. Depth of Field techniques have a lot in common with motion blur, because

they are based on the principles of quickly mixing multiple samples in a vicinity. The effect of

the aperture shape, known in photography as “Bokeh” varies from geometric at small aperture to

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

53

circular at high aperture. Bokeh can be rendered through point-splatting techniques or impostors

[Sou13] or more realistically through separable gather filters [McI12]

2.6. Approximated and screen space methods

Correct global illumination is extremely expensive to compute, thus many methods have

been developed to inaccurately approximate it. One of the simplest and less accurate methods to

approximate global illumination is to precompute incoming radiance for every object in the

scene. This can be inexactly represented through an environment map, where each entry encodes

the radiance for a direction relative to the object. Such a map is usually called a light probe or an

environment probe, and was researched first as a texture based technique [Bli76] and then as

cubemap [Bjo04]. The major disadvantage of such maps is that they fail to represent correct

radiance for high frequency concave geometry. They are also incompatible with dynamic

geometry. Parallax-projected cubemaps, or box-projected cubemaps, warp and combine the

precomputed radiance stored in cubemaps to better sample transitioning areas between

precomputed environments [Lag12].

Even with this approximation, correct evaluation of the incoming radiance for the

primitives of the objects requires a costly integration process, which requires heavy sampling in

the environment map. Spherical harmonics (SH) lighting [Ram01] [Now12] [Gre03] separates

the illumination equation into a sum represented in the spherical harmonics bases, akin to Fourier

analysis. The first 4 bases are plotted in Figure 14. Spherical harmonics lighting solves the

problem of sampling large environments at the cost of losing high frequency detail and it

requires a large pre-computation overhead.

Figure 14 Spherical Harmonics. The image shows the how general functions can be represented in a compressed

format through spherical harmonics. Light fields are functions that represent the irradiance of objects surroundings.

Light fields can be encoded with spherical harmonics, and then they can be quickly reconstructed to perform

environment illumination, like in the right side of the image. Source: [Gre03].

 While this method only samples light paths, used with rasterization it can

sample paths, and therefore can augment rasterization with one bounce diffuse

or glossy global illumination. This method has been used in many real-time applications but

usually with static scenes. The cost of pre-computing is usually amortized by doing this work

across multiple frames. On the other hand this approach introduces a noticeable delay.

Furthermore, this method does not include multiple light bounces, making its result far from the

ground truth in many less than ideal cases. Spherical harmonics are also used as a form of

compression for many light fields in other rendering algorithms.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

54

 Light Propagation Volumes (LPV) [Kap09] use a tridimensional grid to transport light

in the scene. The scene is voxelized as a pre-process in a normal, sparse or cascaded grid, each

element of the grid representing the estimated opacity of the scene in that vicinity. Light is

injected into the grid and then propagated in iterative steps. Because it is a grid propagation

process, LPV can be used for volumetric lighting. Since it uses opacity and not real geometry,

there is a big difference between the reference rendering and the one obtained with LPV.

Furthermore, since opacity does not represent the high frequency geometry data, LPV is only

suitable for diffuse global illumination, and suffers from light bleeding artifacts. LPV and

rasterization can simulate some of the paths in the rendered scene.

 Precompute Radiance Transfer and Local Radiance Transfer have been used together in a

method named Deferred Radiance Transfer Volumes [Gil12]. This method starts by placing

probes in the scene and storing the probe configuration in a tridimensional grid acceleration

structure stored in a volume texture. At runtime the algorithm relights the probes, by amortizing

the computational cost over time and storing the new results into the volume texture. The

effective shading just loads the adequate lighting data to evaluate the illumination, and it is

completely decoupled from the computational process.

2.6.1. Screen Space Ambient Occlusion

 Screen space ambient occlusion algorithms attempt to approximate light occlusion caused

by neighboring objects, creating a darkening effect by approximating ambient occlusion [Zhu98].

 Ambient occlusion (AO) approximates the occlusion caused by paths, and together

with rasterization and many light methods it can represent paths. AO is defined as a

visibility function which measures the direct ambient light that can reach a position, coarsely

approximating global light transfer:

where d is the distance to the nearest occluder from point in the direction, and is the fall-

off function. While the ambient occlusion term is a correct approximation for occlusion in a

direct lighting setup, it is based on a coarse approximation of global light transfer and global

occlusion, and is therefore not physically correct.

 Although screen space information is not sufficient for correct occlusion determination,

screen space ambient occlusion algorithms have proven to be practical and very fast image

enhancers, even if they are just an approximation of AO, which is a coarse approximation itself.

They can be considered as perception enhancing algorithms.

Screen Space Ambient Occlusion (SSAO) [Mit07] is the first algorithm to approximate

ambient occlusion in screen space. It uses the depth buffer of the scene as an approximation of

the existing geometry, working with it as if it were a heightfield. Each pixel’s screen space

vicinity is sampled for occlusion. If the sample is found under the heightfield it is considered

occluded, otherwise it is visible. The results are then averaged and a part of the in the

rendering equation is thus cheaply approximated. While the technique was far from exact, it

paved the way for other screen space occlusion techniques.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

55

Horizon based Ambient Occlusion (HBAO) [Bav081] traces rays on the screen space

heightfield to find the angle of free horizon, an idea similar to relaxed cone step mapping

(RCSM) [Dru06]. These angles are then averaged to produce the occlusion factor, albeit at a

steep sampling cost.

Volumetric obscurance (VOSS) [Loo10] is a variant of screen space occlusion

algorithm where the occlusion factor is computed through measuring the visible volume in the

pixel vicinity.

The Alchemy Screen Space Obscurance Algorithm (ASSOA) [McG11] creates

samples on a disk and then projects them on the pixel vicinity. The term is evaluated for all

the projected occlusion samples and the final obscurance is obtained through averaging.

Scalable Ambient Obscurance (SAO) [Mcg12] improves on ASSOA by sampling in a

hierarchical depth buffer, greatly improving cache efficiency.

Multi-view Ambient Occlusion with Importance Sampling (MVAOIS) [Var13] uses a

weighting scheme to sample the screen space and available shadow maps in order to solve AO

problems where SS geometry information is not sufficient.

Line-Sweep Ambient Obscurance (LSAO) [Tim13] uses line scans with a stack

mechanism to determine the greatest occluder, and it is further refined in Far-Field Ambient

Occlusion (FFAO) [Tim131], where a high quality approximation of obscurance is computed

through prefix sums of line scan results, which significantly amortize the complexity of the

sampling process. Sampling strategies for screen space occlusion algorithms can be observed in

Figure 15.

Figure 15 SSAO sampling. The image shows space sampling strategies used by state of the art screen space ambient

occlusion algorithms: random (SSAO), horizon angle based (HBAO), volumetric (VOSS), based (ASSOA),

scalable sample based (SOA), or shadow map augmented (MVAOIS).

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

56

2.6.2. Image Based Lighting

Image Based Lighting (IBL) is a family of techniques that use image space algorithms to

approximate tridimensional illumination effects. IBL trades correct evaluation of light-object

interactions for the coherent evaluation of the approximations of these interactions. Because IBL

methods are cheap and coherent they are well suited for real-time applications.

Screen space global illumination (SSGI) methods are a special type of GI algorithms

because they use only screen space information. Because they work with incomplete information

they are inherently flawed, but they can be effective in representing some effects like front

specular reflections and occlusion. Furthermore, their execution speed is very fast compared to

other GI solutions, because they run on data with excellent locality, in image space. At their core

they are image processing algorithms, but they run on images with enhanced information, like

depth, material type and so on. They can also benefit from temporal reprojection and coherence

methods [Sch10].

Screen space directional occlusion (SSDO) [Rit09] approximates direct lighting in a

small vicinity of a pixel by correctly checking occlusion for each light and not using a visibility

approximation for all sources like AO. SSDO also computes local indirect radiance transfers by

doing a single indirect bounce between the tested samples. The algorithm can also be used for

screen space shadows, albeit it can only work for special, local, geometry cases.

Bent normals [Lan02] can be used in highly occluded vicinities to better model the

interaction between light and the occluded surface. They are basically a form of importance

sampling the illumination at the geometry surface level, by bending the normal to a direction that

maximizes received light. Screen space bent cones (SSBC) [Rit11] uses bent cones, an

improved concept of bent normals, which also take the variance of the unoccluded direction into

account. Lighting is then evaluated by sampling the bent cont for visibility for each light.

Screen space can also be used as a ray tracing and marching space, albeit without

complete tridimensional information screen space tracing is reduced to a very small subset of the

scene paths: for the normal method, for the distributed variants and ,

for hybrids. Together with rasterization, screen space tracing can sample paths, or

even paths, if the tracing is hybrid. Compared to ambient occlusion, ray tracing does

not approximate direct light visibility but actually measures it, so screen space ray tracing

approximates a correct light transport. Furthermore, screen space tracing can have access to

shadow results from rasterization and to other data stored in G-buffers.

Image space gathering [Rob09] uses a parameter search and gather process to determine

samples which could be ray traced in screen space, to determine reflection and to smooth

shadows.

In [Sol10] screen space ray tracing (SSRT) is augmented with mipmapped buffers of

the screen space to accelerate ray diffuse light sampling. Because the screen space sampling is

done through mipmaps, a very large number of samples can be filtered instantaneously; therefore

the 2D ray intersection costs are dramatically lowered. Furthermore, the same filtering can be

used to approximate large screen space areas and coarsely approximate diffuse reflections,

making it able to sample a small number of scene paths together with rasterization.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

57

This technique is further refined in Screen Space Cone Tracing (SSCT) [Her14] [Ulu14]

by cone tracing in screen space over a mipmaps hierarchy of the depth buffer. Basically, SSCT is

a 2D adaptation of [Cra09].

Screen space local reflections (SSLR) [Mcg14] analyzes screen space ray tracing from

ray accuracy standpoint, pointing out that screen space does not contain sufficient information to

correctly define rays for all possible tracing cases. It increases the accuracy of rays with a digital

differential analyzer line rasterization algorithm modified for perspective-correct interpolation.

Screen space Photon Mapping (SSPM) [McG09] coarsely approximates the shooting

and gathering stages from photon mapping by doing them in screen space as photon volumes,

using the same concept of screen space volumes used in SSCT.

The obvious problem with screen space global illumination methods is that they work on

approximated data, reconstructing tridimensional environments from bidimensional

representations. Some methods use multiple image spaces to better approximate the scene

geometry. Deep Geometry Buffers [Mar14] can be used to store layers of parallel screen space

representations, similar to the depth peeling [Bav08].

More correct hybrid approaches combine other types of rendering with image based

lighting, like [Gan14]. In [Gan14] many G-buffers are used which represent image space

representations for all objects and lights not present on the screen. The screen is ray traced over a

BVH hierarchy and the rays interact with the IBL representations just as they would do with

normal geometry. Such deep/many IBL methods provide more geometric information and

make tridimensional reconstructions better, albeit at a significant cost in used memory. The

tridimensional reconstructions greatly increase the number of light paths that can be simulated.

Some of the most relevant state of the art Screen Space Global Illumination methods are

presented in Figure 16.

Figure 16 SSGI. Screen Space Directional Occlusion (SSDO) searches each direction to a light in screen space for

occluders. The image presents an unbounded version of SSDO, the algorithm usually works on a screen space

vicinity. Screen Space Local Reflection (SSLR) continues the ray defined by the sampling point and the camera into

its projected direction in screen space. Screen Space Cone Tracing (SSCT) differs from SSLR by tracing cones over

a hierarchical depth map. Because of this it can be used to represent glossy specular light transport.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

58

2.7. Reyes

The Reyes [Coo87] rendering algorithm was created as an alternative for rasterization

that could easily handle highly detailed models, such as those used in offline rendering. Such

models would create extremely small primitives which would then produce extreme aliasing in

rasterization, because of the loss of data caused by the z-tests. Moreover, any multisampling

technique would need a very large number of samples to correctly filter the many resulting

fragments. Furthermore, Reyes is also aimed at better integrating parametric surfaces and

displacement mapping in the rendering process. Because of these traits, the Reyes algorithm has

been very popular in the movie industry, where very detailed meshes are the norm. An industry

standard that implements Reyes is Pixar’s Renderman [PIX15].

The Reyes algorithm can be considered a special case of rasterization, where a complex

importance sampling mechanism is used to sample the difficult case of very small polygons,

called in Reyes micropolygons. Therefore, Reyes shares many common traits with rasterization,

such as being a bottom-up approach, not being physically correct, not implementing global

illumination and representing only without other rendering methods.

The Reyes algorithm has five stages: bounding, splitting, dicing, shading and sampling.

In the bounding stage the original primitive is bounded by a convex hull which is then projected

in screen space. This is done to approximate the size of the primitive. In the splitting stage the

bounded primitive is divided into new, smaller primitives. The bounding and splitting phases are

performed iteratively, until the newly divided primitives are smaller than a certain threshold.

When the newly generated primitives pass the splitting threshold, they enter the dice

stage, where they are subdivided into pixel-sized polygons named micropolygons. This operation

is named dicing. After the micropolygons are created they enter the shading stage, where only

their vertices are illuminated and shaded.

The final stage of the Reyes algorithm is the sampling stage. In it each pixel accumulates

samples from the suitable lit and shaded micropolygon vertices. The final color of the pixel is

computed through a weighted average. Because of this sampling process, images rendered with

Reyes suffer from very low geometric aliasing. The entire pipeline is described in Figure 17.

Figure 17 Reyes. The algorithm takes each primitive and iteratively bounds it in screen space and then splits it until

a certain size in pixels is reached for each splitted primitive. Then, each splitted primitive is diced into a microgrid,

which generates many polygons smaller than a pixel and which can be displacement mapped. In the final stages, the

algorithm shades each vertex from the micropolygons, and obtains the final colors by averaging the samples found

in each pixel.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

59

The Reyes algorithm has also been adapted to modern hardware as either a rasterization

process, augmented with the tessellation capabilities of Shader Model 5 [Tat10] or as a pure

GPGPU technique [Pat08].

2.8. Ray tracing

Ray tracing takes a different space sampling approach than projection based algorithms

like rasterization and Reyes. Instead of projecting primitives, ray tracing intersects them with

rays. All algorithm variants and refinements trace the rays through the scene with the help of

acceleration structures such as BVH or Kd-tree. While ray tracing is much better at finding

relevant light-object interactions between objects and lights than rasterization, unsophisticated

ray tracing is not based on physically correct principles, because it considers all reflections as

specular. Ray tracing produces sufficiently convincing results for photorealistic rendering of

simple objects, but it isn’t suitable for the representation of caustics, subsurface scattering, and

fluorescence and other advanced rendering effects or light paths. Ray tracing is a top-down

rendering solution. Ray tracing needs a large number of samples for smooth rendering and has

significant difficulties in sampling point lights.

The first ray tracing method was proposed in [App68], where the camera spawned rays

that intersected the scene without suffering from reflection effects. This algorithm is nowadays

called ray casting (RC), or volume ray casting (VRC) if the rays can pass through transparent

primitives. It can represent paths, and consequently has the same results as

multisample rasterization, the only difference being that ray casting sorts the camera-objects

interactions while rasterization uses the Z-buffer.

The early variants of recursive ray tracing continued the ray casting process, by

reflecting the rays against the surface of each intersected primitive. The original rays are named

primary rays, while the rest of the generated rays are named secondary rays. The reflections in

recursive ray tracing are specular, the light suffers no diffusion, therefore the paths sampled are

 . Forward ray tracing (FRT), also known as light ray tracing (LRT), traces rays from the

light and onto the scene. The camera acts as a ray collector, sampling the rays that are reflected

from the scene towards it. Because of this, a large number of rays from the scene lights are

necessary, therefore forward ray tracing is a very inefficient algorithm. Because it achieves

results through brute force, bare FRT is extremely inefficient.

Backwards ray tracing (BRT), also known as camera ray tracing (CRT), traces rays

from the camera to the scene. Its core idea is to simulate the reversed trajectories of photons in

the scene, but it does so by tracing rays reflected in specular fashion, therefore it can only trace

 paths. It can also be considered an early form of importance sampling, as it eliminates the

simulation of rays which will not interact with the camera, and thus have no visual contribution.

While it is a much more efficient variant of ray tracing, it has problems sampling effects caused

by light concentration, such as caustics.

Both LRT and BRT consider lights as points and all reflections as perfectly specular,

therefore they are not physically correct and can’t handle fuzzy phenomena. Their use as

rendering algorithms is severely deficient for photorealistic rendering, but they are useful as

scene sampling strategies, which are often used to importance sample interactions between lights

and objects in advanced rendering algorithms. Shooting and gathering are recognized terms in

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

60

computer graphics nomenclature for sampling the scene from the lights and sampling the scene

from the camera. LRT and BRT are many times used together in advanced ray tracing, path

tracing, photon mapping and many lights algorithms.

Whitted ray tracing (WRT) [Whi79] is considered the classic form of the recursive ray

tracing algorithm. Instead of just reflecting the ray at any intersection, Whitted ray tracing

generates three new rays: the reflected ray, the refracted ray and one or more shadow rays,

effectively forming a tree of secondary rays per primary ray. The reflected ray behaves

identically to the reflected rays in forward or backwards ray tracing. The refracted ray is

generated when the intersected surface can transmit light, and the shadow rays are traced towards

each light in the scene. Because of the extra rays generated at ray-surface interaction, Whitted

ray tracing needs much fewer overall rays to sample the scene, as compared to simple LRT and

BRT, because the shadow rays are much more efficient in sampling direct light contribution.

While Whitted ray tracing samples the light-objects interactions much better than simple

recursive ray tracing, sampling paths. It still can’t support global diffuse

reflections, soft shadowing or other more advanced rendering effects.

Heckbert ray tracing (HRT) [Hec90] is a type of hybrid ray tracing. It separates surface

interaction into diffuse and specular types. The specular component is evaluated with backwards

ray tracing, while the diffuse component is stored in adaptive radiosity textures, which can be

sampled by all BRT rays, therefore it can sample paths. The adaptive radiosity

textures are computed with a forward ray tracing based method, before BRT is used to synthesize

the final image.

[Vea95] further analyzes ray tracing as a light-object interaction sampling process, and

proposes an importance sampling technique which connects the ray trees created by backwards

ray tracing with the trees created by forward ray tracing. The resulted algorithm, bidirectional

ray tracing (BDRT), can sample light concentration effects like forward ray tracing and needs a

reduced number of camera rays, similar to backwards ray tracing. This importance sampling

approach is very similar to the approach used in bidirectional path tracing [Laf96].

Distributed ray tracing (DRT) [Coo84], also named distribution ray tracing, uses

multiple rays over multiple sampling spaces (lens, spatial, temporal, BRDF) to augment ray

tracing. DRT can handle fuzzy phenomena such as soft shadows, motion blur, depth of field,

antialiasing or diffuse reflections. It does so by averaging multiple reflection, refraction and

shadow rays, which can sample spatial interactions, material interaction and motion during the

rendered frame much better than single rays. It can thus sample paths. Because it is

essentially an application of Monte Carlo principles to ray tracing, the algorithm is also called

stochastic ray tracing.

Similar to DRT, Monte Carlo Ray Tracing (MCRT) [Dut93] is a ray tracing algorithm

that uses stochastic principles. MCRT is a type of light ray tracing which uses multiple rays per

ray-surface intersection to accumulate radiance in the camera pixels. While distributed ray

tracing traces ray from the camera to the scene, MCRT traces rays from the light to scene, and,

on each ray-surface intersection it chooses a random camera pixel. The algorithm traces a ray

between the intersection point and the chosen pixel, and if the ray is unoccluded, it computes the

radiance leaving the intersection point on the constructed ray and it accumulates this radiance in

the chosen pixel. Compared to light ray tracing, MCRT importance samples the potential ray

paths by stochastically following only the ray paths that will have a visual contribution. This

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

61

algorithm stems from the same sampling concepts that are represented as light paths in path

tracing [Kaj86].

In order for ray tracing algorithms to correctly render textured objects, the textured

surface is usually super sampled in the image plane and then filtered. Differential ray tracing

[Ige99], uses the length of the traced ray to approximate the derivative of the ray with respect to

the intersected surface. In doing so, differential ray tracing super samples the texture locally, in

image space. Therefore the sampling process can be precomputed with the help of texture

mipmaps, drastically lowering the number of samples taken during rendering.

Ray tracing can be accelerated through various approaches: faster intersection tests with

performant acceleration structures, tighter bounds given by preprocessing, fewer rays by early

terminating rays and generating them adaptively and by using generalized rays such as cone rays,

beam rays, sphere rays or pencil rays.

Ray tracing can be accelerated through adaptive progressive refinement methods

[Pai89], in which the rendered image is created progressively. This has the advantage of

producing rough visual results faster, which can be valuable when rendering durations are very

long. The final synthesized image is still indistinguishable from a normally ray traced image,

because the samples used in the adaptive refinement ray tracing process are chosen to produce

the same expected result.

While the primary rays in ray tracing sample space in a coherent manner, the majority of

the traced rays are of the secondary type. Secondary rays sample space in a camera and scene

dependent manner, therefore they exhibit a high degree of data incoherency which can’t be

improved without extensive preprocessing.

Packet ray tracing (PRT) [Bou07] [Ove08] is based on the idea of combining groups of

similar rays into a packet, also called a bundle. The packet is then intersected with the

acceleration tree, with the benefits of loading an acceleration structure node per packet and not

per ray. When the divergence of rays inside a packet reaches a certain threshold the packet is

deconstructed and the original rays are reordered into smaller packets. Large packets are

especially efficient for nodes high in the tree hierarchy, because packets intersecting these nodes

have very low divergence.

A different approach to coherent tracing of secondary rays is to globally reorder the

rays [Pha97] [Nav07] [Ail10]. The acceleration structure is partitioned into treelets, which

consist of a small number of acceleration structure nodes bundled together. Each time rays from

a packet intersects a treelet, the rays are added to that queue of that treelet. When the ray queue

for a treelet has grown to a sufficient threshold, all the rays in it are intersected with the treelet.

Thus, at the cost of one incoherent intersection test per packet, N coherent test per packet are

done, where N is the number of nodes in the treelet.

Another strategy for packet ray tracing is to use hybrid or wide acceleration structures

such as MBVH. The MBVH needs to load more data per ray-node intersection test because each

MBVH node contains the data of multiple BVH nodes. The advance of this method is that the

MBVH traversal has more coherent access patterns. The best results are usually obtained through

hybrid strategies, where the acceleration structure is wide at the bottom and the top nodes are

intersected with large packets.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

62

The traversal can be further refined with ray reordering [Bou08], which analyzes the

results of the intersection tests at packet level. If the results show a large degree of divergence

the original packet is destroyed and the rays are recovered and stored in a cache. When the cache

grows sufficiently large, the recovered rays are packaged into newly packets, with the idea that

the worst coherence for the new packets will be superior to that of the old dismantled ones.

The fundamental idea behind packet ray tracing is to sample a larger amount of space in a

coherent manner. The same idea is differently exploited by Beam tracing [Hec84] and Cone

tracing [Ama84], which are ray tracing variants in which space sampling is done through beams

(pyramid frusta) or cones. Beams and cones are rays with volume and are much more efficient in

sampling easy to intersect forms. Cone tracing has been successfully adapted [Cra09] to modern

hardware and is a viable solution for real-time applications, albeit one in which the memory

requirements are extremely steep, and which suffers from serious limitations when rendering

dynamic, interactive or skeletally animated objects. Furthermore, the adaptation is based on a

voxel representation and it thus suffers from data representation inefficiency, therefore the large

memory requirements are necessary. Beams can be processed through paraxial approximation

theory to form pencils, which can be used for tracing, as described in [Shi87].

Sphere tracing [Har96] uses ray-marched spheres on the ray to determine intersecting

objects in the vicinity of the ray. From a spacing sampling strategy it transforms the space

volume tested for intersections by the cone tracing algorithm into a set of smaller, spherical

volumes, which test approximately the same overall space. The advantage of sphere tracing is

that testing sphere intersection is much cheaper than cone intersection, but the large number of

spheres involved makes it less efficient than modern cone tracing.

Divide and Conquer Ray Tracing [Mor11] [Kel11], also named Incoherent Ray

Tracing, is a variant of the ray tracing algorithm that uses no preprocessed acceleration structure.

Instead, this algorithm partitions the scene primitives during traversal, making it ideal for

dynamic scenes. The traversal function first subdivides the primitives into sets, usually with a

fast spatial function. It then traverses the scene by testing the intersecting rays against the

bounding volume of each set of triangles. The rays that intersect the bounding volume along with

the enclosed primitives are then processed in a new instance of the function, usually in a depth-

first-search way to increase data access coherency.

The efficient CPU vectorization of this algorithm is explored in [Afr12]. The algorithm is

further improved in [Nab13] with the help of sampling rays, which are traced before space

partitioning. The sampling rays are intersected against all the available triangles, and the results

are used to statistically determine the best space partitioning distribution that can be used to split

the triangles into multiple sets. This technique is basically a lower complexity SAH-like

implementation for the memory less, implicit acceleration structure created during DACRT’s

traversal. While this technique does not dynamically allocate the scene acceleration structure, it

still uses a large amount of stack storage, therefore, its GPU implementation might be memory

limited, compared to the CPU one.

Space sampling strategies for different ray tracing algorithms are presented in Figure 18.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

63

Figure 18 Ray tracing. Variants of ray tracing use different space sampling strategies. Ray casting (RC) casts rays

from the camera to the scene objects without recursion, thus stopping at the first intersection. Forward Ray Tracing

(FRT) shoots rays from the camera towards the scene, the rays are traced through multiple ray-surface interactions

and the camera acts as a radiance collector. Backwards Ray Tracing (BRT) casts rays from the camera and traces the

rays until they interact with lights. Whitted Ray Tracing (WRT) is a type of BRT that importance samples the scene

lights at each ray-object interaction while also adding reflection and refraction rays. Heckbert Ray Tracing (HRT)

uses FRT on the scene together with a radiance storing structure, which is then sampled by a BRT pass.

Bidirectional Ray Tracing (BDRT) connects rays shot by the lights with rays casted by the camera. Distributed ray

tracing (DRT) spawns many rays at each object-ray interaction. Monte Carlo Ray Tracing (MCRT) is a modified

Forward Ray tracing algorithm that shoots rays from each light-object interaction towards the camera. Packet Ray

Tracing (PRT) creates packets from many similarly directed rays and traces them together, obtaining better data

access coherency. PRT can be improved with different strategies like global reordering, hybrid acceleration

structures or local ray reordering.

While ray tracing is a valid solution for photorealistic rendering, it needs a large number

of samples per pixel to obtain an acceptable image quality, making full resolution ray tracing

solution prohibitive for real-time massive applications. Ray tracing difficultly samples highly

specular paths like , and is therefore unsuited for rendering caustics. Ray tracing can be

anti-aliased if implemented over a deferred renderer [Chi12], by using the same mechanics as

sub-pixel reconstruction anti aliasing [Cha11], but filtering rays instead fragments.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

64

2.9. Path tracing

2.9.1. Essentials

Path tracing (PT) [Kaj86] is a rendering family which has a lot in common with ray

tracing. Path tracing uses a space sampling strategy similar to ray tracing, therefore it can also

produce photorealistic results and is a top down rendering method. Instead of sampling space

through a tree of reflected and refracted rays, path tracing considers a single path through that

tree, and uses this path as a sampling mechanism. In path tracing, each path is composed of many

path segments, which are determined through visibility operations implemented with traced rays.

The path segments link light-object-camera interactions. Path tracing uses paths as a sampling

space, which can be particularly productive with the correct importance sampling mechanisms.

Path tracing is a backwards algorithm, tracing paths from the camera and into the scene.

Path tracing is constructed under three principles: the principle of global illumination,

the principle of equivalence and the principle of direction. The principle of global illumination

states that all the objects in the scene will contribute at least a modicum of illumination to all the

other objects. The principle of equivalence states that there is no difference between illumination

coming from lights and illumination coming from other scene surfaces. The principle of direction

states that illumination coming from surfaces must scatter in a direction that is some function of

the incoming illumination. Thus, path tracing does not need direct illumination calculations and

direct shadow rays, but solves the illumination as a large integral, the rendering equation,

which respects the three aforementioned principles. In the original form, as presented in [Kaj86]:

The rendering equation can be written in multidimensional form, as it used nowadays,

which can handle different wavelength surface interactions, motion blur and depth of field and

takes into account pixel photo sensors:

Where is the weight of the photo sensor and

 . The equation

can be further expanded to account for volumetric light transfer, where it becomes volumetric

path tracing.

2.9.2. Multidimensional integrals and Path Tracing

Exactly solving such an iterative multidimensional equation presents an impractically

large computational effort, therefore stochastic methods are used, as in other computational

heavy fields such as heat transfer or computational economics. Monte Carlo (MC) integration is

a very popular integration method, especially for many dimensional problems, because it

transforms local sampling on each dimension into global sampling, greatly lowering the

computational complexity. The result of Monte Carlo integration is an expected value, which

rapidly converges to the correctly computed value with a sufficient number of samples. The

difference between the correctly computed result and the Monte Carlo approximated result is

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

65

measured through variance. A Monte Carlo integration result is said to be converged when the

variance is lower than a required threshold, but the process converges at relatively slow

 rate,

where is the number of samples. For a uniformly sampled -dimensional domain , the

expected value can be computed through Monte Carlo integration with samples, like this:

Since variance is all the stands between an acceptable and an unacceptable result,

minimizing variance maximizes the computational effort. Since the majority of computationally

heavy problems is not pure random in nature, judiciously choosing samples for Monte Carlo

resumes to finding the best problem specific sample positions, a procedure named importance

sampling. Importance sampling does not uniformly sample the problem space, but uses

mechanisms such as probability distribution functions to better guide sampling, modifying the

integration process to:

With sampling in mind, the rendering equation can be written in a simple, operator form,

which underlines its recursive nature:

The operator is a matrix that contains all the object-object reflection interactions. The

final result is a Neumann expansion. The sum is thus evaluated through averaging many paths

through the matrix powers. The paths are Monte Carlo integrated Markov chains (MCMC),

since each path is represented through a set of interactions, where each of them depends only on

the previous. The paths are random walks, and a sufficient number of them can approximate the

entire path space.

In a rendering meaning, path tracing solves global illumination by averaging many scene

paths, which act as global samples, instead of local samples as used in other rendering

algorithms. These global samples are Markov chains because each light-object interaction

depends only on the previous interaction. Monte Carlo importance sampling is performed by

taking into account the type of light-object interaction. Path tracing rapidly computes an average

of many Markov Chains, with which it can reliably approximate the scene sampling space. The

rendering equation can thus be written in a new recursive form:

 is the probability distribution function for sampling that path segment and it

depends on the surface, type of path, type of light if directly lit, type of contact and contact angle.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

66

There are various strategies for creating these functions, many of which are described in the

next section.

With this recursive form, path tracing is easy to implement and it also permits many

importance sampling functions, which can be further tailored by surface properties and light

positions. Many samples per pixel are averaged at the end to complete the Monte Carlo

integration process. Without a termination condition a path would be infinite, therefore paths

have a maximum length after which they end. Another method of early termination is the

Russian Roulette (RR) [Pha10], which stochastically terminates paths. Russian Roulette uses a

termination probability . If the path is not terminated, the path is further explored with a

probability of , and the integrand is over-evaluated with a weight of

, to effectively

account for the skipped samples.

Because there are other optics principles not respected by original [Kaj86] path tracing,

the original algorithm has problems sampling such effects. The original algorithm samples space

through rays, which work under the principle of direction. Because of this, surface radiance

accumulation is hard to sample, therefore representing sharp caustics with path tracing is

inefficient. Because the original algorithm respects the principle of direction, subsurface

scattering isn’t supported, along with iridescence, chromatic aberration and fluorescence.

Furthermore, similar to ray tracing, path tracing has problems with hard to sample lights like

point lights. All of these problems are relaxed with improved versions of the path tracing, which

provide better sampling for such difficult cases.

2.9.3. Improved Sampling

The quality of path traced image depends only on the level of convergence, and thus on

variance. Generating better samples to reduce variance can be done in various modes: geometric

aliasing is handled through pixel sampling, direct lighting can be importance sampled and

multiple importance sampling, and so on.

Pseudorandom low-discrepancy sequences can greatly reduce geometric alias.

Sequences such as stratified, Sobol, van der Corput, Halton or Hammersly guarantee lower

variance then pure random sampling. Some of these sequences are presented in [Pha10]. Using

such sequences instead of pure random sequences leads to quasi Monte Carlo integration [Szi00].

Adaptive sampling is a different kind of strategy, where additional samples are provided

in cases of need. A simple strategy [Pha10] is to test the differences between the pixel samples

and to progressively generate more samples until the contrast is under a certain threshold. A

more advanced algorithm is presented in [Dam09]. The algorithm takes a global hierarchical

approach to adaptive sampling by considering the path traced image as a hierarchy of converged

blocks of varying size: from the size of the entire image to a small tile. The method starts with

the entire image and adaptively generates new samples for each block until it is converged.

When a block is converged the process repeats itself for all its sub-blocks.

Importance sampling (IS) is used to direct the random walk towards areas in the scene

with more radiance potential, in order to speed up the rendering convergence. This can be

implemented through direct lighting, especially for small or point lights. It can also be used to

modify the probability distribution function for each light-object interaction, depending on the

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

67

type of interaction, for example specular interactions can sample very elongated lobes. Superior

algorithms like [Vea97] [Leh13] use different types of importance sampling to efficiently

resample entire path spaces.

Evaluating direct lighting can be improved with splitting [Pha10]. At a pixel sample level

this distributes the entire samples among visibility samples and lighting samples, importance

sampling direct illumination. While this can be useful in unbalanced scenes, correct distribution

of the entire sample set requires significant preprocessing.

Naively combining more importance sampling mechanisms is difficult, because more

often than not this will lead to an increase in variance, hampering and not helping the

convergence rate. For example, a light-object reflection can be sampled both by the light BRDF

and for direct lighting. If the BRDF is highly specular, than sampling by it is a better strategy.

On the other hand if the light is very small, directly sampling it is a better strategy. Generally,

importance sampling with multiple strategies is the superior approach. Multiple Importance

Sampling (MIS) [Vea97] is a multi sampling model under which more sampling strategies can

be used together without increasing overall variance. [Vea97] proposed two heuristic functions:

balance and power. Resampled Importance Sampling (RIS) [Tal05] can be used to further

reduce variance. Volumetric sampling can also be improved with equiangular sampling [Kul12]

and Woodcock tracking.

Bidirectional path tracing (BDPT) [Laf93] uses multiple space sampling strategies,

tracing paths from both the lights and the camera, which are then used as sub-paths in a fused

path. The paths are linked in a manner that preserves the Markov Chain property of detailed

balance. A spatial hierarchical hash grid [Sch09] can be used to accelerate the process of linking

sub-paths, as it is used in a Vertex Connection Merging (VCM) [Geo12]. Path tracing and

Bidirectional Path Tracing can both be implemented through rasterization, like in [Tok12].

2.9.4. Path Space Algorithms

Metropolis Light Tracing (MLT) [Vea97] applies the Metropolis-Hastings sampling

method to path tracing and bidirectional path tracing. Compared to the previous algorithms,

MLT considers the entire path as a set of samples. New paths are created by proposing mutations

to the existing path, based on a mutation strategy. If the mutation is accepted a new path is

created and sampled. Because of this strategy, MLT introduces a start-up bias and a correlation

between samples, which is not found in classical Monte Carlo integration. Because correlation

between samples increases variance and consequently convergence time, the mutation strategy

has to keep the correlation low

While both MLT and (bidirectional) path tracing start from a global space sampling

strategy, MLT evolves the paths in local space. MLT can first globally explore all the paths and

then locally explore the promising path changes, it can quickly find and sample the most relevant

paths in the scene. Moreover, when an important path is found, MLT also samples paths that are

similar with it, increasing the chance of finding other important paths. Compared to standard

path tracing and bidirectional path tracing, this makes MLT very efficient in difficult to sample

scenes, like those containing caustics, small geometry holes or many glossy surfaces.

The mutation strategy is the most difficult part of the MLT algorithm, because it has to

account for very different light paths which are sampled through different strategies. [Vea97]

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

68

recognized this problem and proposed a mutation strategies for many light path types. On the

other hand [Vea97] did not provide a method to determine which mutation strategy to use,

making the algorithm dependent on scene dependent parameter tuning.

Primary Sample Space MLT (PSSMLT) [Kel02] executes the mutations in a space of

uniformly distributed numbers called primary sample space. This is based on the idea that any

path generation is a mapping between the primary sample space and the path space, therefore the

primary sample space is an uneven distribution which allocates more volume to more important

regions, which in turn generates more samples in important path space regions. Therefore

PSSMLT creates small mutations on paths that show a lot of potential by collecting significant

amounts of radiance and large mutations to unproductive paths, based on the idea that the

unproductive path is exploring a path space with less radiance potential.

 Energy Redistribution Path Tracing (ERPT) [Cli05] combines the advantages of path

tracing and Metropolis [Vea97], enabling path tracing to sample important paths. Path tracing

generates completely new paths for each of the pixel samples, without using information from

the previously evaluated samples, thus not using already available information. ERPT defines an

energy flow in path space, where each path node holds a small amount of energy. Then, ERPT

seeks to generate new paths that would sample areas that contain high energy. It basically

redistributes energy from high energy nodes to nodes in newly generated paths that explore the

same vicinity, and would thus have a high potential for energy accumulation. ERPT defines a

mutation strategy based on the energy of the nodes. Consequently, new paths do not completely

create different paths but mutate already existing paths, based on the energy of the nodes. This

enables ERPT to quickly sample the space of light transport paths, without introducing a start-up

bias like MLT.

Manifold Exploration [Jak12] is a special path sampling mechanism created to explore

difficult specular paths. It does this by using available geometric information to define a

manifold space on one or multiple path segments, which can then be explored. It permits a

productive exploration of complicated specular paths like . The algorithm can be

applied to both path tracing (MEPT) and MLT (MEMLT).

Gradient Domain MLT [Leh13] improves difficult path exploration by reasoning that

the most difficult to sample general paths lie at edges in the final image. The algorithm defines

the gradient domain based on the edges determined from a coarse rendering of the scene. It then

sends additional pixel samples in the pixels contained by this domain.

Multiplexed MLT [Hac14] combines the Markov Chain light transport path generation

process with multiple importance sampling (MIS) principles. Thus the Markov Chain as light

path does not only explore the space of light transport paths, but it also explores different

sampling strategies for each path.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

69

2.9.5. Accelerated Tracing

Even with the large number of optimizations, path tracing variants are still extremely

heavy computational algorithms, because of the extremely large light transport path spaces that

they sample.

Because of the vastness of the explored path space the most efficient way to sample

various contributions is to importance sample for each of them. In contrast with bidirectional

sampling, importance sampling, multiple importance sampling and resampling importance

sampling, which seek to better sample space near paths, relaxation techniques seek to ease

connecting subpaths. Vertex Connection Merging (VCM) [Geo12] relaxes the constraints of

path connection by seeking for connectable paths in a vicinity. This method actually reformulates

photon mapping in Veach’s [Vea98] path framework, enabling photon mapping and path tracing

to coexist in a single mathematical framework. Therefore the method benefits from the photon

mapping capability to sample paths, while still functioning like a PT method with regards to

variance and convergence. Therefore VCM converges in

 instead

 like SPPM. At first the

lights emit photons which are traced with photon mapping algorithms and are deposited in the

hierarchical hash-grid [Sch09]. The algorithm tries to connect each photon to the eye through

either direct connection or through merging the photon, expressed as a light vertex, with a

camera vertex in the proximity. The operations of connection and merging are linked with MIS.

Path space regularization [Kap13] introduces a path framework in which multiple sub-

paths can be linked through interaction mollification, essentially following the same idea as

VCM, but without using photon mapping.

Sorted Deferred Shading for Path tracing [Eis13] does not evaluate the ray batches used

for visibility determination operations in path tracing until they are sorted in coherent batches,

similar to the packet techniques [Bou07] from ray tracing. The novel aspect of sorted deferred

shading for PT is the fact that it sorts ray hit point before shading, deferring the shading. Because

the number of ray hits is very large this method incoherently streams and then sorts ray-

batches by material in order to coherently stream textures. As production rendering textures

occupy much more storage space than ray hits, the tradeoff brings with itself significantly

lowered streaming costs.

There has been a lot of interest recently for interactive path tracing, but so far no

algorithm can lower the variance fast enough on consumer hardware, although there are some

promising implementations, such as the Brigade renderer [Bik13]. Eye reprojection [Hen11]

can be used to provide additional radiance to the current image. It works by taking each

interaction along the traced path and projecting the interaction contact point on the image film,

thus reprojecting towards the eye. Each eye reprojection adds to the image film a reflection of

the surface contact incoming radiance, effectively obtaining very cheap samples, which increase

convergence rate. Streaming path tracing [van11] is a GPU specialized PT variant, which uses

the potential equation along with a recursive form of MIS. It functions by generating a large

number of paths and then bundling them into batches, which run on GPU streaming processors.

Since streaming processors are very performance sensitive to incoherency, the batches are kept

coherent through stream compaction, which eliminates the finished paths from the batches, and

then compacts the remaining paths into new coherent batches.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

70

Instant Bidirectional Path Tracing [Bog13] uses two different GPU passes for light

path tracing and normal path tracing. It then creates paths using the previously computed

subpaths. The resulting paths can be explicit, if they are connected, or implicit, if a light path

touches the camera or a normal path touches a light.

Noise removal techniques try to lower the variance by using either unbiased or biased

means. The simplest and biased solution is to use a form of blurring augmented with geometric

information, like a bilateral filter. An unbiased solution is to filter only light that went through a

path with more consecutive diffuse reflections [Jen95]. A pair of consecutive diffuse

interactions produces a large amount of diffusion, and filtering this result would not create

visible bias. Other filtering methods include temporal light field reconstruction [Leh11],

where a costly reconstruction process is used, and radiance filtering [Sch12]. In contrast to

image filtering techniques, radiance filtering uses radiance samples from neighboring pixels. The

algorithm stores the last intersected surface for each radiance sample. When filtering, it re-

reflects the radiance by the BSDF of the last intersected surface, towards the center of the

filtering kernel (the filtered pixel). By doing this, extra free contributing samples are obtained,

which improves the convergence rate of the rendering.

Noise removal techniques decouple scene complexity from light transport complexity. A

different type of noise removal algorithm is based on the idea that the primary hit points, those

that are directly visible to the camera, are in general illuminated by the same radiance coming

from the path that would continue from that vicinity. Therefore, a single path is completely

traced per pixel, while a large number of direct rays are shot in the vicinity of the pixel. Each

direct ray is then connected to the traced path, with regards to connection angle and direct

visibility, basically reconstructing uncomputed paths.

A relatively novel method for path tracing acceleration is using scene skeletonizations as

importance sampling [Bir12] [Cha13], which uses scene geometry skeletons to aid path tracing

explore complicated scenes, where traditional algorithms find it difficult to sample important

light paths. The algorithm uses a coarse tridimensional voxelization of the scene, which is then

inverted and skeletonized. The skeleton is then used to compute importance vectors, which will

direct light transport to the most efficient light transport space in the entire scene. The lights of

the scene and the camera are also given importance in the skeleton creation. A skeleton sample

point contains information about the distance and direction that is expected to be the most

productive to explore, for a path arriving at the vicinity of the skeleton sample point. Thus,

scenes with complicated light transport setups, like those containing slightly opened doors, long

corridors or holes, become much easier to explore. Compared to the local importance sampling

solutions found in Monte Carlo path tracing, skeleton based importance can be seen as a global

importance sampling method. Instead of looking for good mutations which explore important

light paths, skeleton based path tracing looks for efficient connections between the most

important features of the scene – linked together by the skeleton – and the rest of the objects.

The skeleton contains additional information, like the distance and direction of the closest

surface, and this information can be used to improve path tracing by shooting in hard to sample

areas, like two room which are only connected by a barely open door.

Some of the most relevant path tracing methods are presented in Figure 19.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

71

Figure 19 Path tracing. Path tracing (PT) explores the object-lights interactions by following many paths through

the scene. Importance Sampling (IS) can be used to improve the light path space exploration, for example by

directly sampling lights at each contact. Bidirectional PT (BDPT) is a form of importance sampling that links paths

from the lights and from the camera, making difficult paths easier to sample. Metropolis Light Transport (MLT)

mutates previous productive paths with different strategies. Primary Space Sampling MLT (PSSMLT) improves on

MLT by using large mutations, when a path is unproductive, while keeping the small mutations to explore

productive paths. Energy Redistribution PT (ERPT) mutates the energy-rich nodes of previously traced paths.

Manifold Exploration PT (MEPT) can efficiently explore specular subpaths. Regularization mollifies subpath

connections, enabling the linkage of close light and camera path nodes. Vertex Connection Merging (VCM) unifies

path tracing and photon mapping. It first shoots photons, which are stored in a spatial acceleration structure. In a

second pass, it traces paths, which are linked to the photons by either merging or connection. Streaming PT groups

paths into groups, which are compacted when the group divergence reaches a threshold. Eye reprojection projects

each path node onto the camera, creating free radiance samples. Radiance filtering uses information from neighbors.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

72

2.10. Photon mapping

Photon mapping (PM) [Jen96] algorithms are based on the idea of light diffusion,

approximating light transport through photon transportation. Photon Mapping considers photons

as small packets of energy, which are described by position, direction and power. Compared to

path tracing [Kaj86] the algorithm is biased, in that many different renderings will not converge,

but it is also consistent, meaning that more photons will increase accuracy. More advanced

variants of photon mapping, which combine shooting photons with measuring procedures relax

the biasing [Hac09]. Photon mapping has been used to render photorealistic images and is a top

down approach. Photon mapping trades the noisy artifacts found in path tracing for bias induced

structured artifacts.

Compared to ray tracing, photon mapping methods were created to better sample

complicated light paths like (reflexion of caustics) which would otherwise require a very

large number of samples to render properly with PT and RT algorithms. While photon mapping

can be considered a many lights approach to rendering, it differs from many lights methods. The

difference is that instead of spawning new direct illumination approximate virtual lights, photon

mapping actually traces photons. Compared to many lights methods, photon mapping a number

of photons is orders of magnitude larger than the number virtual lights, therefore the algorithm

degrades gracefully by blurring radiance and not by eliminating lights.

Photon mapping [Jen96] works in two steps. In the first step a photon map is created by

tracing (shooting) photons from the scene lights, which are then stored in an acceleration

structure. This acceleration structure can be either surface based, storing photons on the surfaces

of the objects of the scene, or volumetric, storing photons in space partitioning structure like a

kd-tree. The latter type is used when the simulation of volumetric effects is intended. In the

second step, called final gather, the camera-objects interactions are determined through an

algorithm like ray tracing or rasterization and the illumination is solved using the light

transported in the first step. Usually there is more than a single photon map, one for diffuse

surface interaction and one for pure specular interactions. A study on the acceleration structure

and reconstruction filters that can be used to implement photon mapping in real-time is given in

[Mar13]. Photon maps can be extended to ray maps [Hav05], which index the rays that are

followed by the photons which would normally be stored in the photon maps.

Bidirectional Photon Mapping (BDPM) [Vor11] combines path tracing and photon

mapping. It first uses a photon map to store the photons traced with photon mapping. It then uses

a path tracing algorithm to determine the surface interactions which bring radiance to the camera.

For each vertex in each path the photon map is queried for photons and radiance is accumulated

at the vertex. This algorithm is extremely similar to VCM [Geo12].

Progressive photon mapping (PPM) [Hac08] reverses the order of PM passes. In the

first stage it does a ray tracing pass, to determine all the surfaces which are visible to the camera,

named surface hits. These camera-object interactions are stored in a list. In the second stage PPM

uses a progressive method to collect photons. Over many passes photons are shot from the lights

and they are accumulated on the surfaces visible from the camera. A special metric is used to

determine the radius of the surface hit. With each new photon pass, each surface hit is updated

with new photons and has its surface reduced, based on a progressive radiance estimate.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

73

The key idea behind PPM is that it averages the results of many photon maps in order

to ensure that the surface hit local radiance converges to the correct result, making PPM unbiased.

Another very important aspect of PPM is that it erases the enormous memory requirements

needed to implement PM with convincing results. Only the key photons, those that directly

impact the visual result, are stored. Furthermore, progressive photon mapping passes permit

tracing a relatively low number of photons per pass, making streaming not necessary. PPM can

be improved with adaptive sampling, as done in Adaptive Progressive Photon Mapping [Kap131]

or through blue noise based reconstruction, as in [Spe13].

Stochastic progressive photon mapping (SPPM) [Hac09] improves PPM by computing

the radiance in a region, and not in a single point as PPM. This makes SPPM useful for region

effects such as depth of field and antialiasing. Instead of using only progressive photon passes

like PPM, SPPM uses a progressive cycle, in which distributed ray tracing and photon tracing

passes follow each other. The distributed ray tracing step generates new randomly distributed

surface hits that can be seen from the camera. The photon passes work exactly like in PPM. By

doing this SPPM ensures that the region effects are uniformly sampled, instead of just

accumulating radiance for the single surface hit samples generated by one ray tracing pass.

Volumetric effects can be rendered with photon mapping algorithms by using a volume

(volumetric) photon map [Jen98]. This map stores only the photons that interact with

participating media. Implementing volumetric effects with volume photon maps is

computationally expensive, because the acceleration structure that stores the photons has to be

queried many times, in order to evaluate in-scattering done on the traced distance. Ranged

queries in the photon acceleration structure are used, in order to find all the relevant photons for

the marched distance. If the distance is sampled in small steps, there will be overlapping in the

sampling of the photon acceleration structure, and the same photons will be found multiple times.

If the distance is sample in large steps, some important photons will be missed.

Photon beams (PB) [Jar08] permit finding all the photons that influence a marched

distance over a ray in a single query. Photon beams are not cylindrical, but have an adaptive

form, modeled by the photons that interact with the marched ray. Implementing photon beams

starts with a variant of photon mapping algorithm that stores all the photons in a balanced kd-tree.

Then, each photon stored in this acceleration structure is given a radius, effectively creating

photon disks. A second acceleration structure is created over the photon disks. This second

acceleration structure is an object partitioning structure like a BVH, compared to the space (and

points) partitioning structure used for photons. Photon beam tracing then marches a ray by

querying photon disks in the second acceleration structure, through cheap intersection tests. Thus,

instead of using many ranged queries in a photon acceleration structure, the photon beam tracing

uses only intersection tests with the photon disks, greatly lowering the search complexity. The

cost of creating the second acceleration structure is minor, as it is performed only once for the

entire scene. The performance improvement offered by lower search complexity impacts

rendering time much more, due to the very large number of search operations.

Progressive photon beams (PPB) [Jar11] improves photon beams, like PPM improves

PM. By averaging many photon beam passes, each with a progressively decreasing photon disk

size, PPM guarantees convergence, and is therefore unbiased.

Photon mapping algorithms are presented in Figure 20.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

74

Figure 20 Photon Mapping. Photon mapping algorithms use photons to simulate light transport in the scene. Photon

mapping (PM) traces photons from the light sources and stores then in a balanced kd-tree, called photon map. In a

second pass the final image is synthesized by using a ray tracing pass, which illuminates with the radiance stored in

the photons queried from the kd-tree. Bidirectional Photon Mapping (BDPM) combines normal photon mapping

with path tracing. The radiance collected by the path is obtained by querying the photon map in the vicinity of each

path node. Progressive Photon Mapping (PPM) reduces the large memory costs of photon mapping by tracing the

photons in many progressive passes around camera-surface hits, which shrink with each pass. Stochastic Progressive

Photon Mapping (SPPM) makes PPM unbiased, by using a cycle of photon mapping and distributed ray tracing

algorithms. On each iteration photon mapping is performed like in PPM, but the radiance is used for illumination by

a different random ray, generated by DRT. Photon beams (PB) decreases the large number of samples needed to

perform volumetric photon mapping, by creating an additional acceleration structure which stores photons as objects

with size, called photon disks. Progressive Photon Beams (PPB) computes radiance by intersecting random DRT

generated camera paths with progressively smaller beams, obtained by shrinking the photon disks from PB.

2.11. Many lights methods

A different approach to solving global illumination can be implemented through

approximated radiance transport. While photon mapping transports a very large number of tiny

radiance quantities through photons, many lights methods transport a relatively small number of

large radiance quantities. The key idea behind many lights is that global illumination can be

approximated with direct illumination from many small lights, created at the contact of light

from with object surfaces. These lights are called virtual lights [Kel97]. While the resulting

method is biased, it can be extended to handle diffuse reflections [Dac05] and many shadow

maps [Rit08] techniques can be used to augment the final rendering, but it can’t solve specular

reflections and difficult caustics paths like . Advanced many lights methods mollify the bias

introduced by virtual lights [Nov11] and improve the distribution and scalability of the virtual

lights. Similar to rasterization, many light methods are more of a bottom up approach to

rendering, and, like rasterization, they are also one of the most active fields of research for real-

time rendering. Many light methods can be categorized into virtual lights generation,

illumination with virtual lights and scalability improvements, as presented in [Dac14].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

75

Like photon mapping methods, many light methods trade the noisy variance related

artifacts found in ray tracing and path tracing for structured artifacts. Compared to photon

mapping they do not model light transport as shooting photons from the light but by spawning

new lights at light-surface interaction. While photon mapping considers photons as incoming

light, many light methods consider virtual lights as outgoing light.

Many light methods have a common history with radiosity, which is a finite element

method, in which all the surfaces are diced into surface patches, which are linked by a geometric

term. The geometric term, also called a form factor, approximates the inter-visibility operation

and BRDF reflection between to surface patches and it was originally defined for Lambertian

[Edw03] surfaces. With this form factor radiosity is globally exchanged between all the surface

patches of the scene, effectively simulating diffuse light transport. The hemicube generalizes the

form factor, allowing arbitrary scenes with internal occlusion. Because solving all the light

transports between surface patches is a large computational task, radiosity is usually

implemented over low resolution meshes, and the results are generally cached. Because of this,

radiosity isn’t well suited for dynamic environments or for use as a single global illumination

solution for photorealistic images.

Instant radiosity (IR) [Kel97] introduced the concept of (many) virtual point lights

(VPL), as direct illumination sources spawned by simulated light transport. The method’s name

implies that this is a variant of radiosity, based on the idea that virtual lights transport radiance

between them in a similar manner to the inter surface patch transports in radiosity. In reality,

virtual lights are generated with random walks, and thus can be considered elements in light

paths, where one end of the path is a real light and all the other nodes are only linked to their

parents and children. Thus, instant radiosity differs fundamentally from the finite element

approach to global illumination, because virtual lights are only linked to their parents and their

children, and not with virtual lights from other light paths. Therefore, instant radiosity creates a

path of virtual lights, where light transport has nothing in common with the original radiosity

algorihtm. Furthermore, this can be extended through other methods to virtual light trees.

Instant radiosity has much more in common with photon mapping, because virtual lights

are better conceptually perceived as supersized photons. Instead of shooting photons, instant

radiosity shoots large bundles of photons, which generate virtual lights, which in term shoot

large bundles of photons, which recursively generate other new virtual lights.

2.11.1. Generating Virtual Lights

The efficient generation of virtual lights can lead to a large decrease in rendering time.

Only the virtual lights that interact with the objects which are visible from the camera have any

visual contribution. The task of efficiently generating virtual lights is to determine the best

virtual lights that lead to the most interactions with directly visible objects.

 A naïve generation of virtual lights can be done by performing random walks from the

scene lights, as it was performed in [Kel97]. This strategy explores the entire scene and will

generate a new virtual light at each light-surface interaction, constructing many light paths.

Another variant is to use a distributed ray tracing to generate a tree of virtual lights.

Creating many virtual lights can be performed in a single rasterization pass, by using

Reflective Shadow Maps (RSM) [Dac05]. This method uses a buffer similar to the G-buffer

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

76

[Ols11] in deferred rendering, but at a much lower resolution. The buffer stores information

about the world position, world normal and the outgoing unshaded color. Furthermore, each

entry in this buffer generates a virtual point light, which uses the position, direction and color

provided by the entry in the RSM. The process can be repeated for each light but without a

bandwidth reduction technique like [Rit08] the rasterization costs greatly increase.

A relatively simple way to generate better VPLs is to use Russian Roulette on the VPLs

generated by instant radiosity, based on the approximate impact on the entire screen, as done in

the rejection of unimportant VPLs method [Geo10]. The method can be initialized with a

small number of pilot VPLs. The disadvantage of the created VPL distribution is that it is not

good for interreflections.

Bidirectional Instant Radiosity (BIR) [Seg061] uses a bidirectional approach towards

VPL generation, connecting subpaths from the camera and from the scene lights, in a manner

similar to bidirectional path tracing [Laf93]. The advantage of this method is that it rejects all the

lights which are not in the second place in the light paths, coming from the camera. Therefore,

the generated VPLs will all generate visible indirect illumination.

Metropolis Instant Radiosity (MIR) [Seg07] is a modification of Bidirectional Instant

Radiosity, which first generates naïve light paths, as they are generated by the random walks in

[Kel97]. It then mutates the paths with the Metropolis-Hastings algorithm, in order to direct them

towards the camera. A large proportion of the mutations change the position of the VPL second

from the camera. For illumination, the algorithm considers only the VPLs in the generated light

paths, which are either first or second from the camera, similar to BIR. By doing so, MIR

generates only VPLs that are directly responsible for camera visible indirect illumination.

Furthermore, by using Metropolis-Hastings, this VPL generation scheme is guaranteed to

efficiently transport light even in hard to sample scenes, mutating paths like MLT [Vea97].

Local Virtual Lights [Dav10] compensates the specular light transport, as it is not

accurately modeled by virtual light methods. It splits light transport into global and local

components. For the local specular component it generates local virtual lights, which are used to

better approximate glossy reflections. VPL generation strategies are presented in Figure 21.

Another method which improves specular light transport in many light methods is based on rich

VPLs [Sim15].

In order to lower the computational effort in dynamic scenes temporal and spatial

caching can be used, which are based on the idea of either spatial or temporal coherence

between frames. The simplest form of caching can be implemented through Irradiance Caching

[War88], but this stores only the integrated radiance at a surface patch, and has no angle

information, therefore it can’t be used in scenes with specular features. Radiance caching [Kři07]

stores angle information and permits glossy light transport, but does so at greatly increased

memory costs. These caching strategies can be translated to work with virtual lights. Instant

Caching [Deb09] reutilizes computations from virtual lights, based on spatial and temporal

coherence. Importance Caching [Geo121] implements a variation of multiple importance

sampling in order to determine the cached light information that will be used in illumination

evaluation.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

77

Figure 21 Virtual Light Generation. There are many strategies for the generation of virtual lights. Virtual point

Light (VPL) rejection approximates the entire screen as a single pixel and computes the potential energy for each

random walk-generated VPL, rejecting VPLs with low potential contributions. Bidirectional Instant Radiosity (BIR)

connects subpaths from the light and from the camera, generating VPLs at the 1
st
 and 2

nd
 vertices from the camera,

thus ensuring that all the generated VPLs are guaranteed to impact the visual result. Metropolis Instant Radiosity

(MIR) improves BIR by mutating the BIR paths in the vicinity of the 2
nd

 vertex from the camera, generating more

important VPLs. Local VPLs can be used in combination with any of the previous strategies. Local VPLs is aimed at

improving specular light transport and it does this by generating many VPLs local to the 1
st
 vertices from the camera,

which are directly visible from the surfaces directly visible to the camera. It then computes the total illumination as a

sum of diffuse illumination computed with global VPLs and a specular component computed with the local VPLs.

2.11.2. Illumination with Virtual Lights

Lighting with virtual lights follows the same general principles as the rendering equation,

where light is transported through a random walk, only that the many light random walk does not

transport tiny radiance quantities but large quantities, which then spawn virtual lights. The

equation for virtual light illumination is:

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

78

This equation can be written in a recursive form, given the fact that VPL energy is

transferred over random walk generated paths, thus the radiance can be approximated with:

Where
 represents the flux reflected to the current VPL on the specified

direction, from the previously walked VPLs in the VPL light path. A great problem with this

equation is that the geometry term is a source of singularities, which manifest

themselves as structured artifacts of maximum radiance. These singularities are sometimes called

radiance splotches, or radiance stains in rendering.

There are two major approaches in limiting geometry term induced illumination

singularities: bounding the geometry term and the redistribution of the VPL energy over an

area or volume. Bounding the geometry term is basically a clamp operation, and is therefore easy

to implement. On the other hand bounding the geometry term implies a loss of radiance, which

manifests itself as synthesized images with less energy, thus darkened results. In order to

compensate for the lost radiance a residual light transport term is defined as:

The entire energy of a path is the sum between the normal clamped radiance and the

residual radiance. Bias compensation was introduced in [Kol04]. This method stochastically

tests if the energy computed at a shading point is under-estimated, by randomly shooting a ray in

the bounding vicinity. If the ray hits a surface, lighting is evaluated with nearby VPLs and the

energy is compensated with the resulting radiance. But the compensating radiance is itself

computed with clamping, therefore the method repeats the process of randomly shooting a ray,

until it does not hit a surface. The method statistically recovers all the missing radiance, but is

very expensive and can degenerate to path tracing.

The bias compensation method is improved in Local Virtual Lights [Dav10], where the

random ray shooting is not a recursive process, and it is shot only once. If there is a point of

contact inside the bounding vicinity, then that point is itself transformed into a virtual light,

called local virtual light. The local virtual light receives radiance from all the nearby existing

virtual lights, called global lights, and is then used in the illumination of not only the shading

point (pixel), but in the illumination of an entire vicinity around the shading point. Thus, the

algorithm is much faster than [Kol04], but it is also less correct as it represents an approximation.

Screen space bias compensation [Nov11] is a fast method to compute the bias

compensation term. It works as a post processing filter, which computes the bias in an iterative

manner, as a sum of residuals. The method uses only the information available in the vicinity of

the shading point. The method also uses the observation that there rarely is occlusion in this

vicinity. The method is further refined for participating media in [Eng12].

 While the bias compensation methods try to recover lost energy due to bounding,

redistribution of energy methods spatially spread the radiance, in order to avoid singularities.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

79

 Virtual spherical lights (VSL) [Haš09] distribute the energy of the virtual point light

over an entire sphere, basically inflating the VPL. Thus, the light is not transferred from the VPL

to the shading point on a point-to-point basis, but is evaluated through an integral over the solid

angle subtended by the VSL. This method correctly computes the radiance in the shading point,

without losing energy, but by the evaluation of the integral for every shading point makes it

computationally heavy.

 Virtual Ray Lights (VRL) [Nov121] improves illumination with virtual lights in

participating media by using rays instead of points. Instead of storing the entire radiance in a

single VPL, VRLs distribute the radiance over an entire ray. [Nov121] provides importance

sampling mechanisms, in order to simplify computations. VRLs are further improved in

Progressive Virtual Beam Lights (VBL) [Nov122], where the rays have volume. This leads to

improved scattering, as each VBL distributes energy over an entire volume.

 Virtual Area Lights (VAL) [Don09] [Pru12] cluster virtual lights, in order to minimize

the number of shadow maps that have to be computed. They are usually represented with easy to

sample forms, such as disks. Virtual light types are presented in Figure 22.

Figure 22 Virtual Light Types. Correctly illuminating with virtual lights requires a very large number of them,

hence the many lights name. Virtual Point Lights (VPL) are the simplest type of virtual light, but are also the most

problematic, suffering from singularity and scalability, as effects of sampling space with points. For this reason,

there are many types of non-point virtual lights. Virtual Area Lights (VAL) are obtained by clustering many close

VPLs, and usually take an easy to integrate form like a disk. Virtual Spherical Lights (VSL) inflate VPLs,

distributing their energy over an entire volume, making them more expensive to evaluate but also not singularity

prone. Virtual ray lights (VRL) are virtual lights that improve scalability in participating media rendering, by

distributing the virtual light radiance over an entire path segment. Virtual Beam Lights (VBL) are extensions to

VRLs, which provide additional radiance distribution, over the entire volume of each beam. Local VPLs are

generated near specular objects, to better approximate glossy light transfer.

 Shadowing virtual lights requires very fast visibility determination operations, because of

the large number of virtual lights generated with instant radiosity algorithms. Because of this,

full geometry processing for the entire scene is usually too expensive, either rasterization for

normal shadow mapping or visibility determination through rays. Instead, approximate visibility

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

80

determination is computed through either point based methods or through level of detail

methods.

Point based methods solve the problem of visibility by approximating geometric

information through points. As points are not surfaces, the bandwidth processing is greatly

reduced. Imperfect Shadow Maps (ISM) [Rit08] are shadow maps constructed over sparse

scene geometry, represented through points clouds. After the ISM is filled with rasterized points,

it uses a push-pull process in order to fill out the rest of the empty entries in the shadow map,

which is implemented with mipmaps. ISMs can be implemented with a hierarchical point based

rendering system like Qsplat [Rus00], or the one implemented in [Rit091].

 Level of detail [Hol11] based approaches decrease the number of computations for the

many shadow maps needed by many light methods. Another method to implement a large

number of shadow maps is through virtual clustered shadow maps [Ols141]. A different form of

level of detail can be implemented by tracing rays through an approximate voxelization of the

scene.

2.11.3. Scalability

Rendering with a large number of many lights is a difficult computational endeavor, thus

research in this area has proposed a large number of solutions. The purpose of this research was

to lower the illumination complexity from a linear cost in generated VPLs.

A relatively simple solution is to distribute the lighting effort over regions, and then to

compose the illumination results. This can be achieved through interleaved sampling [Kel011],

in a manner similar to interleaved deferred [Seg06]. The same principle was also the basis for

Incremental Instant Radiosity [Lai07].

Lightcuts [Wal05] converts all the existing lights to VPLs. It then takes all the generated

VPLs and constructs an acceleration structure over them, dividing them into a tree of clusters.

Each cluster is approximated by a cut, which is a set of nodes which partitions the lights into

clusters. This partitioning is based on the insurance that each cluster remains under a certain

error threshold. Thus, this method guarantees that the important lights will always be used in the

illumination process. Multidimensional Lightcuts [Wal061] improves the Lightcuts method by

taking into account pixel level effects such as depth of field, motion blur and participating media.

It does this by creating a separate tree structure defined through cuts for sampling points inside a

pixel, called gather points. Similar to Lightcuts, Multidimensional Lightcuts works only with

VPLs. Bidirectional principles are applied to Lightcuts in [Wal12], improving glossy reflection

and subsurface scattering support. Progressive Lightcuts [Dav12] provides better clamping and

drastically reduces the memory costs of the original algorithm

Matrix row-column sampling [Haš07] is an alternative to lightcuts. It interprets the

general problem of illumination with many lights as a virtual light pixel global intersection test,

which can be written in matrix form, where a row for each pixel and a column for each virtual

light. Therefore, the problem of illumination reduces to the problem of computing the sum of

contributions, on each column. The algorithm is based on the observation that the resulting

matrix is very structured and is close to low-rank, thus only a small subset of elements can be

computed to approximate the final result, therefore computation will be performed only for a

small number of columns. In order to accelerate the computation the algorithm makes shrewd

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

81

use of shadow mapping. Each column-row intersection is equivalent to determining the visibility

of many pixels by a single light. Likewise, each row-column intersection is equivalent to

determining the visibility of a all the lights from a pixel. Both of these one-to-many visibility

problems can be efficiently solved through shadow mapping. The key of the algorithm is in how

the columns are selected for computation. The algorithm randomly selects a small number of

rows in the matrix and creates a new matrix with reduced columns, which basically reduces the

size of the illuminated image, similar to mipmapping, and results in a disproportionately wide

matrix. The reduced columns are then partitioned into clusters, based on the norm of the multi-

dimensional vector, which represents each reduced column. In the end, a column and its weight

are chosen from each cluster, based on the multidimensional vector norm metric. The entire un-

reduced columns are computed, and the entire matrix is thus approximated through the weighted

composition of a small number of columns.

Other clustering strategies are based on grouping many VPLs into congregated lights,

like virtual area lights [Don09] [Pru12].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

82

3. GEOMETRY PROCESSING

This chapter describes a part of the proposed rendering pipeline which exclusively deals

with direct visibility determination, computed with rasterization. The modules and algorithms

presented in this chapter are succinctly depicted in Figure 23; the green modules represent thesis

contributions.

Figure 23 Geometry Processing Overview. The geometry processing pipeline includes asset definitions, streaming

mechanisms and rendering paths for opaque and transparent objects. The outputs of this pipeline are then used by

the Illumination pipeline. The green modules contain thesis contributions: modifier based assets, an altered

marching cubes algorithm for very large datasets, scene-wide hierarchical impostors, task generation within the

rasterization scheduler and a culling mechanism that uses it, distribution opacity/occupancy maps and virtual order

independent transparency for approximate and exact transparent objects rasterization, virtual deferred for opaque

rasterization and a novel geometry selection algorithm.

The geometry processing part of the proposed pipeline contains asset definitions, which

are based on the concept of modifiers and instances, which help in the succinct description of

very large scenes which use common rendering data. The asset definition also contains the pre-

computed acceleration structures needed for rendering such as bounding volume hierarchy trees

or sub-geometric detail maps.

 A comprehensive streaming mechanism is presented, based on virtual texturing, virtual

meshes and a novel hierarchical impostors cache method, which is implemented through virtual

texturing. The hierarchical impostors cache method creates impostors for entire scene nodes and

this makes it very useful in rendering effort scaling and as an anti aliasing solution. The

streaming modules contain a novel adaptation of the marching cubes GPGPU algorithm,

which is able to handle very large datasets. The streamed data is introduced in the geometry

processing part of the rendering pipeline through the scene update module.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

83

The geometry processing algorithms described in this chapter use the streamed data to

produce outputs for the illumination stage. The active scene lights are extracted from the scene

update module. This chapter presents a task generation method that works within the

rasterization scheduler. This method is then modified, and used as a component of an innovative

hierarchical culling algorithm, which neither suffer from CPU dependence nor requires special

geometry impostors. The culling module also employs a new approach to culling, by using

multiple frame tests, which cull objects over a number of frames. Because of this, the presented

culling method is less computationally expensive than the state of the art.

Draw lists contain the objects which are not culled by the culling module. The geometry

processing pipeline contains several rasterization based rendering paths, which are followed by

the geometry of the objects contained by the draw lists. The rendering paths apply standard state

of the art rendering techniques such as displacement mapping, sub-geometric rendering or

geometric anti-aliasing.

Virtual deferred is a new opaque rendering deferred method. In contrast with the state

of the art methods it not only decouples the visibility determination and shading components, but

also minimizes allocated memory and bandwidth consumption, by guaranteeing minimal non-

geometric bandwidth and material-independent allocated memory costs. While virtual deferred

contains a decoupled shading part, only the geometry processing side of the algorithm is

presented in this chapter, the other part is presented in the Illumination chapter. Virtual Deferred

can be minimally modified to render antialiased images, by using the decoupled sub pixel

reconstructed antialiasing method presented in the Illumination chapter.

Virtual OIT applies the principles used in virtual deferred to the problem of transparent

geometry rendering. Compared to state of the art methods it can compute exact order

independent transparency while only using a fraction of the allocated memory and bandwidth. As

with virtual deferred, the shading side of the algorithm is not presented in this chapter, but in the

Illumination chapter.

Distribution opacity maps modify the state of the art occupancy maps with per-pixel

distributions, making them much more adaptable to real-life scene depth distributions. Because

of this increased depth precision, distribution opacity maps are more memory efficient than

occupancy maps in approximating order independent transparency. The downside of this method

is that it has to reprocess the entire geometry in order to compute shading.

The pipeline also contains a novel geometry selection algorithm. Compared to the state

of the art methods, the introduced algorithm handles all types of selection cases, such as multiple

objects per pixel, area selections or even occlusion from fuzzy objects.

The geometry processing pipeline creates the inputs for the Illumination pipeline. The

modified linked lists, produced by the Virtual OIT algorithm, and the modified G-Buffer,

produced by the virtual deferred algorithm, are used together with the scene lights and the

bounding boxes of the scene to compute approximate global illumination. The Illumination

pipeline can also handle correct global illumination, but this requires extra data structures such as

bounding interval hierarchies, which are needed for the acceleration of rays used for correct

visibility determination.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

84

3.1. Asset Definition

Massive scenes contain a very large amount of detail and a very large number of objects,

but these objects generally use common assets. The necessary properties for realistic rendering

can be divided into positional and structural properties such as transformation trees, animations

and morphing and aspect properties such as BxDFs, sub-geometric information and so on.

Usually, the positional and structural properties of an object contain its structure, the position and

orientation of an object, either in absolute or in relative coordinates, the skeletal animation

properties, the morphing animation and the trajectory properties. The structure of the objects is

either defined through triangles or through voxels. These properties also define how light is

scattered by the object, how the object moves and whether the form of the object is explicitly or

implicitly defined. Explicit forms are defined as meshes or as voxel hierarchies, while implicit

forms are obtained indirectly from voxel hierarchies or analytic definitions.

The aspect properties define whether and how the object emits light, the type of light

absorption and transmission of light, usually quantified in as a BRDF, BSDF, BTDF, BSSRDF

or a combination of the above. This information is usually encoded in maps, which are linked to

objects through texturing. Common maps used in rendering are color maps, which describe the

diffuse response on the surface of objects, emissive maps, used for the representation of light

emission, ambient occlusion maps, used to represent sub-geometric visibility, specular power,

specular color maps and gloss maps, used to measure the response to specular light interaction,

thickness maps and alpha occlusion, used to measure transmission through object, derivative

maps, normal maps and displacement maps, used to cheaply represent sub-geometric detail.

In order to construct a state of the art rendering pipeline all the assets have to be easily

accessible and combinable by the GPU. While this is straightforward for aspect properties,

usually bundled as materials, it is not as easy for structural and positional properties. The

positional and structural properties are traditionally streamed from the CPU, but, for extremely

large scenes with a very large number of objects, this introduces a data transfer bottleneck,

especially when the fast combination of such properties is wanted.

This fast combination necessity is addressed in this thesis. All scene objects are defined

as a combination of base, unique, objects, and are identified through instances particularized

through spatial and aspectual modifiers. The objects are defined geometrically through triangles,

as voxels are more suited for the approximation of structures than for their correct and detailed

rendering, due to the very large implied memory requirements. Because of this instance-modifier

mechanism, many other geometry influencing aspects of rendering can easily be integrated, such

as morphing and skeletal animation. A minor novel aspect of scene representation is introduced

in this thesis, GPU object trajectories, which are used to completely represent the dynamics of a

scene on the GPU. A trajectory is defined through trajectory points, which are stored as object

modifiers, and expressed as a set of values describing next position, next orientation, duration

and next trajectory point, which can all be stored in 8 bytes. Because the majority of modifiers

can be expressed within the same space, this enables a renderer to use a pool allocator over the

modifiers, making their streaming and management easier. The same pool allocator strategy can

also be applied over the virtual meshes and virtual textures, further simplifying streaming.

Geometry rendering can be performed without CPU control through indirect rendering.

The algorithms presented in this thesis use a scheme based on a hierarchy of level of details,

backed by a hierarchy based impostor tree.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

85

Figure 24 Rendering assets. This image depicts various rendering assets that are used in the rendering process. The

upper side of the image contains different types of modifiers and raw assets which can be combined to completely

describe a rendering object. The central side of the image depicts various aspect modifiers as maps. The lower side

of the image presents two utilizations of modifiers: trajectories and morphing.

Because of the large amount of renderable data, hierarchic acceleration structures are

necessary. Bounding Volume hierarchies are most suitable for real-time rendering since they are

among the easiest to balance, without duplicating geometry. While low-level sub-trees can be

computed on demand, large sub-trees require pre-processing. Because of this, rendering

applications maintain more than one scene tree, generally one for static objects, one for lights

and one for dynamic objects.

3.2. Streaming

In order to perform all the required rendering operations, all the necessary modifiers need

be streamed. All map-based information can be easily controlled through a memory paging

system like virtual texturing. This includes texture maps, cubemaps and impostors, which are all

cut into template sizes and stored and queried through the virtual texturing mechanism.

Geometric information can use the geometric correspondent to virtual texturing, called virtual

meshes, where meshes and their level of details are cut into template sizes and drawn indirectly.

Streaming is a highly expensive process, since hard disk reads are very expensive

operations. This thesis uses zip and LZ4 [Col15] in order to compress the assets offline and then

be able to quickly in-place decompress them in real-time. Texture compression algorithms such

as block compression methods [Iou99] are employed by consumer hardware, and they reduce

bandwidth without perceptible artifacts.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

86

3.2.1. Virtual Data

Virtual data is based on the principles of paging, which is a memory management system

that breaks down data into blocks of the same size, called pages, with the size of a page usually

being a power of 2. These pages are then linked to page frames, which are directly mapped to

physical memory. Virtual meshes and virtual texturing are streaming mechanisms which break

meshes and textures into page-size elements. The page-sized elements are then streamed and

queried using a simple paging system, such as the one depicted in Figure 25.

Figure 25 Paging System. The logical address contains a page number and a page offset. The page number is

queried in the Paging Table, which maps the page number to a frame mapped to real physical memory. The original

offset is then used together with the frame number to exactly determine the physical address at which the data is

stored.

Virtual data applications use page replacement algorithms to maintain the most useful

pages. There are different strategies such as demand paging, in which a page is loaded exactly

after request, anticipatory paging, in which the cache preloads pages based on certain metrics,

free page queue, in which a list of all the free cache pages is held and used when a cache fault is

encountered, page stealing, in which pages that haven’t been recently used are added to a free

page queue, and pre-cleaning, which guarantees cache data coherency.

Virtual texturing applies the virtual data principle to textures and their mipmap levels.

Texturing is not a straightforward process, because it involves filtering operations. In the case of

trilinear anisotropic filtering, the consumer hardware texturing method selects the two most

relevant mipmaps, which are filtered with bilinear anisotropic samples. The obtained results are

then filtered linearly, through interpolation based on the distance between mipmaps. Therefore

virtual texturing has to account for this peculiar sampling pattern.

An abstract virtual texturing system is presented in Figure 26.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

87

Figure 26 Virtual texturing. Virtual texturing is a page system based mechanism which enables the use of extremely

large textures. In the top part of the image the colors encode the mipmap levels used from the rendered textures. It is

obvious that loading all the assets at their full resolution would only waste GPU bandwidth. The same rendering

results can be obtained by just loading the required mipmap levels. The same principle applies to all textures and

pieces of textures. Virtual texturing is explained in the lower part of the image. Virtual texturing partitions the

textures and their mipmaps into small memory pages, which are streamed on the GPU in a texture named physical

texture. A virtual texture access is redirected through a page texture, which contains the mapping from the memory

page to the physical texture, where the texture access is finally solved.

Virtual texturing applications usually border the pages used by their paging systems, in

order to prevent artifacts generated by wrong sample usage. The border size can be relaxed by a

relatively recent consumer hardware innovation, hardware virtual texturing, which simplifies the

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

88

management and addressing of virtual texture data. There are many types of variations of virtual

texturing, which typically change the paging system, for example with a particular streaming

order [Tai09], with a different address translation mechanism [Gar08], or with lightmaps baking

[Mit08].

Virtual systems are not sufficient for the large amounts of texture data used in the real-

time rendering of massive scenes. Block compression is usually utilized together with virtual

texturing, to minimize the bandwidth of the rendering application.

Virtual meshes are the application of the virtual data principle to geometric meshes.

Each mesh is partitioned into sub-meshes, whose number of vertices can’t surpass a certain

threshold. This process is applied to all meshes and their level of details. Depending on the

rendering configuration the virtual meshes mechanism streams the pages of the required level of

details and rendering is performed with the virtual meshes.

There are many benefits to virtual data in rendering: uncomplicated streaming and data

management, low memory and bandwidth consumption, predictable rendering performance and

frame rate stability.

3.2.2. Indirect Rendering

Indirect rendering is the rendering process in which the assets are not stored in a directly

renderable state, and thus they must suffer a transformation into a renderable format. Indirect

rendering is to not be confused with indirect drawing, sometimes also called indirect rendering,

which is the process where the rendering hardware generates future rendering commands in a

command buffer, which is then executed, without CPU interference.

In general, indirect rendering is used in real-time rendering for point clouds or voxel

representations, which are at first reconstructed into triangle meshes and then rendered normally.

This process is named surface reconstruction, and it is the inverse operation of pointification, for

point clouds, and voxelization, for volume representations. The surface reconstruction problem

has been thoroughly studied, with four general approaches: explicit reconstruction, local implicit

reconstruction, global implicit reconstruction and isosurface extraction and regularization.

Explicit reconstruction is based on adaptive triangulations of set of points, and it has strong

guarantees but is sensitive to noise, often needing external pre-processing or human control.

Local implicit reconstruction approximates the surface by using a low-frequency approximation

functions locally, making this method resilient to noise. Global implicit reconstruction is a class

of methods that first tries to match the entire sample set with a high level low frequency function.

Isosurface extraction and regularization extracts the tridimensional contour from a dataset by

locally sampling and reconstructing the surface. A comprehensive state of the art is provided in

[Cuc09].

Isosurface extraction is particularly important in rendering and in scientific visualization

because it is easily parallelizable and it is very robust to noise when provided with a large

number of samples. The greatest weakness of isosurface extraction algorithms are the large

memory requirements. This situation is common with very large and precise datasets, as are

those used in medical visualization, such as the one presented in Figure 27.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

89

Figure 27 Surface Reconstruction. This image depicts the input and the output of a surface reconstruction algorithm.

In the left side of the image, the input is represented by a large number of slices, which in this case describe the

scanned body of patient. The output of the reconstruction algorithm is the rendered surface on the right.

 A growing need of medical application is responsivity, with new applications putting

more value into interactivity. Interactive dataset tridimensional reconstruction has many uses in

medicine and the CPU marching cubes [Lor87], a popular solution to surface reconstruction, has

been adapted for GPU usage.

 One problem of this adaptation is that it is limited to the total amount of GPU memory

available to the graphics card. It is common for datasets in excess of 1024x1024x1024 to be

needed in interactive reconstruction, which represents 52 gigabytes of effective GPU data,

without counting the space needed to store the reconstructed surface. This amount of memory

makes GPGPU Marching cubes impractical on consumer hardware.

A novel adaptation of the GPGPU marching cubes algorithm is presented, which

minimizes memory consumption, making it possible to reconstruct very large datasets in real-

time. The presented algorithm is based on the “Real time reconstruction of volumes from very

large datasets using CUDA” article [Pet11]. The proposed algorithm divides the data volume

into maximum capacity sub-volumes, also called chunks, which are serially reconstructed on the

GPU. This method requires less memory than the standards GPGPU marching cubes and can

also cull entire chunks from sparse volumes, making the global reconstruction cost cheaper.

Another useful property is that only the relevant parts of the dataset have to be reconstructed,

therefore when only a part of the volume is changing, the cost of reconstruction is adaptive

instead of constant.

The size of the chunks can be easily modified, but care must be taken to avoid inefficient

chunk overlapping. In the proposed scheme, the overlap is that of one 1 pixel at the boundaries

of the partitioning axis. This is done to reconstruct the surface in a watertight manner. The

presented algorithm has two stages: the preprocessing stage and the reconstruction stage. The

preprocessing stage analyzes the volume, partitions it into chunks and decides whether a chunk

contains useful information. The reconstruction stage of the algorithm reconstructs the chunk and

synchronizes the outputted sub-mesh into the global mesh.

The algorithm is described in the following pseudocode:

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

90

(ONCE) PREPROCESSING STEP (dataset)

edgetable texture, triangletable texture ← create textures to store the Marching Cubes tables on the GPU

bestoccupancy← 0

chunksize← 0

FOR size in 4-max chunksize range

 occupancy ← compute GPU occupancy based on GPU RAM and dataset size

 IF occupancy > bestoccupancy

 chunksize ← size

 bestoccupancy← occupancy

FOR chunk in dataset

 culled ← true

 FOR voxel in chunk

 IF voxel is set

 culled← true

 BREAK

 IF culled

 mark chunk as unimportant

RECONSTRUCTION STEP (dataset)

geometrylist ← Ø

FOR chunk in dataset

 IF chunk not unimportant

 reconstruct ← false

 FOR voxel in chunk

 IF neighborhood of voxel close to isovalue

 reconstruct ← true

 IF reconstruct

 geometry ← run GPGPU Marching cubes on chunk

 geometrylist ←geometrylist geometry

FOR geometry in geometrylist

 render geometry

The chunked reconstruction method is also depicted in Figure 28.

Figure 28 Chunked Marching Cubes. Very large volumetric datasets can be partitioned into chunks, which can be

then serially reconstructed on the GPU. In order to guarantee a watertight extracted surface, the first and last slices

of a chunk overlap with neighbor slices. The exact reconstruction results of a very detailed volumetric dataset are

provided on the right part of the figure.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

91

The implementation of the presented algorithm was tested on a video card with 1.5 GB of

GPU RAM. Various sizes have been tested for the chunks, in order to compare memory usage,

and thus determine the optimal chunk size. The memory occupancy obtained with different

chunk sizes is presented in Table 3. Because the occupancy can be queried in real-time, it can be

used as a metric to quickly determine the best chunk size for the reconstructed volume.

Chunk Size (number of slices) RAM (MB) Memory Usage

32 1495 99.6

16 1440 96

8 1432 95.4

4 >1500 >100

Table 3 Chunked Marching Cubes Memory Usage. This table presents the memory usage obtained during dataset

reconstruction with different sizes, using the Chunked Marching Cubes algorithm. The table shows that there is an

optimal chunk size and that chunk overlapping can become counterproductive for very small chunks.

This algorithm has been used in a medical application, 3D for Medicine, as part of the

European Project SABIMAS, PNCDII-Joint Applied Research Projects, 2008-

2011), http://se.cs.pub.ro/SABIMAS/ [SAB15]. The program is designed to help doctors

personalize implants for hip arthroplasty, based on tomography results stored in Digital Imaging

and Communications in Medicine (DICOM) [NEM15] format.

A screenshot from this software is presented in Figure 29. This method has also been

used in non-photorealistic rendering pipelines, such as the one described in “GPGPU Based Non-

photorealistic Rendering of Volume Data” [Mor13].

Figure 29 3D for Medicine. This screenshot is taken from the 3D for Medicine software, which can inspect and

reconstruct very large DICOM datasets in real-time. The software can alter the dataset in real time, to eliminate

scanning artifacts. The reconstruction algorithm is based on chunked marching cubes.

http://se.cs.pub.ro/SABIMAS/

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

92

3.2.3. Hierarchical Impostors

Impostors represent a partial solution to two problems of real-time rendering: scalability

and anti-aliasing. Rendering with impostors drastically lowers the geometry processing

complexity of a scene, and thus significantly decreases rendering time. Impostors are over-

sampled representations of objects stored as images, and therefore do not suffer from geometric

reconstruction artifact, but are filtered like textures. Furthermore, because impostors are stored as

textures they are very easy to integrate into a streaming system like virtual texturing.

Although the state of the art contains a large number of impostor techniques, such as

billboards [Ger88], billboard clouds [Dec03], omni directional billboards [And07], true

impostors [Ris06], 3-view impostors [Har10] or volumetric impostors [Dec09], none of these

methods extends beyond a single object. The closest methods to the proposed hierarchical

impostors method are [Ume05] and [OHa02], in which several objects are bundled in the same

impostor, but this is done in the context of homogenous super-objects such as clouds.

The newly presented method, hierarchical imposters, differs from the state of the art

through the integration within a virtual texturing streaming mechanism, the ability to be

rendered with parallax effects and through the fact that it explicitly applies to any type of object

group. Each hierarchical impostor represents a group of objects and contains depth, normals and

color information, which can be used for high quality distant object rendering. When the view

distance or viewing angles change too much from the currently stored impostor, the impostor

contents are updated with the new view and distance. Expected views and distances can also be

used.

This algorithm is especially designed for very large scenes, where not all the scene assets

are stored in GPU memory. The entire scene is stored offline in an acceleration structure.

Depending on the camera position the scene nodes mapped high in the acceleration structure

which are further than a certain threshold distance will have their impostors precomputed and

loaded. Then impostors will be streamed in and out for all the other visible objects, which are

greater than a certain threshold. When the size of a scene node is smaller than a certain screen

space number of pixels threshold all the children of the scene node will not be rendered. Instead,

the impostor of the scene node failing the threshold test will be rendered.

Impostors are updated depending on angle of view and distance of view. Because of this,

a secondary acceleration structure can be used for dynamic objects, which can be update on a per

frame basis. The complexity of this operation can be amortized by making the update over a

number of frames.

Because hierarchical impostors group many distant scene nodes into a single renderable

entity, which can remain valid for a large number of frames, they greatly decrease the rendering

complexity of the scene. Because the only geometry rendered for an impostor is a simple

billboard the geometry cost is dramatically decreased, while the shading cost is maintained close

to constant per frame even without deferred algorithms. Perhaps the most important feature of

impostors is that they minimize geometric aliasing, transforming geometric aliasing into texture

aliasing, which is far easier to handle because of the automated texture filtering available on all

consumer hardware. The loss of detail can be almost completely prevented with parallax sub-

geometric rendering algorithms. A hierarchic impostor is presented in Figure 30.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

93

Figure 30 Hierarchical Impostors. An object impostor is presented in the superior part of the image. It contains data

about color, normals, specular response and sub-geometric depth displacement data. As presented in the lower part

of the image, the impostor concept can be applied to large groups of objects. The maps that contain all the impostor

data can be managed and streamed through a virtual texturing system.

The presented impostor can also be augmented with emission and transparency properties,

at the cost of more memory. Before the effective rendering the process of impostor determination

can be integrated with culling and other scene management operations. The proposed method

renders the hierarchical impostors like true impostors. Each impostor is sent to the graphics

pipeline as a point which is expanded to a textured screen space aligned quad, a billboard. Then,

the billboard is adjusted to the correct depth. For each fragment generated through billboard

rasterization is intersected with a linear search, in a process often times called marching, in order

to quickly determine the approximate location of the camera surface intersection. A secondary

binary/secant search is used to accurately determine the camera surface intersection point. The

map information found by using the texture coordinates resulted from the marching process is

used for shading the pixel.

The pseudocode for hierarchical impostors is the following:

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

94

CACHED (node, camera, scene)

distance, angle, size ← compute distance and size based on node and camera

FOR element in impostorcache

 elementdistance , elementangle, elementsize ← load data for element

 IF elementdistance distance and elementangle angle and elementsize size

 RETURN element

RETURN null

CREATE (node, camera, scene)

cached ← CACHED(node, camera, scene)

IF cached not null

 RETURN cached

ELSE

 IF impostorcache is out of storage space

 RETURN null

 impostorcamera, distance, angle, size ← compute distance and size based on node and camera

 poweroftwo←

 create impostor with resolution

 FOR scenenode in scene

 IF scenenode visible by impostorcamera

 nodedistance, nodeangle, nodesize ← compute distance and size based on scenenode

 and impostorcamera

 scenenodeimpostor← CACHED(scenenode, impostorcamera, scene)

 IF scenenodeimpostor not null

 impostorview ←render scenenodeimpostor

 impostorview←depth, transparency, emission, color, displacement, specular

 ELSE
 render node into impostorview

 impostorview ←depth, transparency, emission, color, displacement, specular

impostordepth, impostorangle ← impostor depth and angle of view, as viewed from camera

impostorcache ← impostorcache impostor

PRE-RENDERING (scene, camera)
renderqueue ← traverse scene from camera

impostorrenderqueue← Ø

FOR node in renderqueue

 nodedistance, nodeangle ← compute distance and angle of node from camera

 IF nodedistance > threshold AND nodeangle < threshold

 cached ← CACHED(node, camera, scene)

 IF cached not null

 renderqueue ← renderqueue cached

 ELSE

 newimpostor ← CREATE(node, camera, scene)

 IF newimpostor not null

 renderqueue ← renderqueue newimpostor

LINEARSEARCH (displacementmap, entrypoint, entryray)

depth, preventrypoint ← depth of entrypoint

mapdepth ← read displacementmap at entrypoint

WHILE depth > 0

 preventrypoint← entrypoint

 depth, entrypoint← entrypoint + entryray

 mapdepth ← read displacementmap at entrypoint

 IF mapdepth > depth

 RETURN entrypoint, preventrypoint

RETURN null, null

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

95

BINARYSEARCH (displacementmap, inf, sup, entryray)

error ← threshold

WHILE error < threshold

 midpoint← (inf + sup)/2

 middepth ← read displacementmap at midpoint

 midpoint← adjust for middepth

 best ← closest to midpoint between inf and sup

 IF inf = best

 sup = (inf+sup)/2

 ELSE

 inf = (inf+sup)/2

 error ← distance to midpoint from best

RETURN best

RENDERING (renderqueue, camera)

FOR impostor in renderqueue

 send a point to the vertex shader

 billboard ← draw and expand point to a billboard in the geometry shader

 rasterizedfragments ← rasterize the billboard into fragments

 FOR fragment in rasterizedfragments

 displacementmap ← get displacement map of impostor

 depth ← get impostor depth

 cameraray ← ray from camera to pixel

 entrypoint ← coordinates of displacement map entry point, adjust to depth

 entryray ← transform cameraray to local depth adjusted space,

 inf, sup ← LINEARSEARCH displacementmap, entrypoint

 IF nextpoint, prevpoint not null

 intersection ← BINARYSEARCH displacementmap, inf, sup, entryray

 fragmentcolor ← shade intersection

 fragmentcolor ← background color

 OUTPUT fragmentcolor

 The process of rendering with hierarchical impostors is displayed in Figure 31.

Figure 31 Rendering Hierarchical Impostors. The first step is to create a billboard, mapped with the impostor

textures. In the second step, the billboard is displaced with the creation depth of the impostor. In the third step the

surface-camera intersection point is accurately determined through linear search followed by binary search. All the

impostors are saved in the impostor cache, uniquely identified by the tuple of scene node, view angle and view

distance.

The proposed hierarchical impostor technique differs from the state of the art through its

virtual texture integration, and through its explicit construction over many scene nodes. Because

of the hierarchical nature of the proposed method it decreases the complexity of the rendering

process from to .

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

96

3.3. Task Generation for Rasterization

Task scheduling on the GPU has been an important area of research in the last years

[Gro13] [Gup12] [Jog13] [Tze12] [Mem12] because it maximizes GPU efficiency by

minimizing CPU control. The additional GPU tasks, also called dynamic tasks, and the process

through which they are created is called dynamic parallelism. The advantage of this technique is

that it brings a significant simplification in solving massive parallel problems by offering

superior performance and software design opportunities. Driver developers have also been

offering this functionality for GPGPU programming languages like CUDA 5 [NVI15], OpenCL

2.0 [KHR14] or Mantle [AMD15].

These task generation and scheduling efforts are from a GPGPU perspective since the

standard rasterization graphics pipeline is expected to schedule and dispatch the threads on

which the specialized programs named shaders run. The task creators vary in complexity from

small task generators, which only generate GPU work to full blown GPU task schedulers, which

manage the parallelization of recursively generated tasks.

A special GPU task scheduler governs these shader invocations, but it is impossible to be

directly controlled, therefore it is impossible to add general tasks to this scheduler manually.

Current directly controllable GPGPU task scheduling solutions such as [Gup12] [Jog13] [Tze12]

[Mem12] do not concern themselves with offering control over the GPU rasterization task

scheduler, thereby making GPU rasterization programs unable to generate additional task

without CPU control. There are many situations in which rasterization based GPU programs

need to generate additional tasks, for example in the case of hierarchical culling, extreme

tessellation, angle of view dependent rendering or for the evaluation of complex materials. When

these programs generate computationally heavy GPU threads, the created work can’t be

parallelized without CPU control. In this section a novel task generator that works within the

hardware rasterization scheduler is presented, which is based on the “A GPU task generator

for rendering” article [Pet14].

The presented method is based on the idea of using the geometry amplification

capabilities of the hardware rasterization pipeline to generate GPGPU-like tasks. This is

achieved through the tessellation control, tessellation evaluation, geometry and fragment shaders,

by using SM5 instructions.

The original primitives are sent to a modified rendering pipeline. The tessellation and

geometry stages are either added, if they were missing, or modified to fit the task generator needs.

In the tessellation control shader the computational effort of the primitive is approximated and it

is divided into task groups.

The task groups are evaluated in the tessellation evaluation shader, where other finer

grained task groups are created, through the geometry shader invocation mechanism.

In the geometry shader, each fine grained task group is analyzed and a large number of

tasks are generated for each group.

In the fragment shader these tasks are executed like GPGPU-like threads.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

97

Figure 32 Task Generation on the GPU. The upper part of the image presents the difference between simple task

generation and recursive task generation. Simple task generation can generate tasks, even recursively, but the

recursion level is hard capped. Recursive task generation can generate tasks with no limitation. In the second part of

the image a novel GPU task generator is presented. It can create additional tasks for originator primitives at several

points in the hardware rasterization pipeline, using the hardware geometry amplification capabilities as task

generators. Despite the fact that the presented pipeline can generate tasks at several points, it is still not a recursive

generator, as the number of generation points is limited.

A small area of GPU memory that is used for keeping basic task information, such as

thread indexes or basic numeric result codes is utilized as support for thread communication.

This memory area can be written to and read from any stage of the rasterization pipeline by using

SM5. The originator primitive first enters the tessellation control shader.

This originator primitive is first evaluated with an algorithm dependent metric, in order to

approximate its computational effort. If the metric suggests parallelization is necessary, the

original primitive set the number of primitives that will be created by the tessellator.

These primitives contain the original primitive and task groups.

The original primitive is sent to normal rasterization and follows a normal rendering

pipeline with a pass-through geometry shader, which generates normal fragments, which are

shaded as the primitive was supposed to be shaded. The other primitives are instancing

with the geometry shader instancing mechanism, reaching a total number of
 number of instanced primitives in the geometry shader. Each instanced geometry

shader primitive then uses another algorithm dependent parallelization metric, determining

 for each invocation of the geometry shader. represents the number of

working threads that will be spawned by each geometry shader invocation. These threads are

created by drawing a billboard in normalized device coordinates with the following width and

height.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

98

The billboard is then rasterized and spawns fragments, which will be computed

like GPGPU-like threads with the help of SM 5 instructions. The total number of spawned

threads is . The GPGPU like fragments then take a completely

different code path than the rendering fragments. Each GPGPU-like thread can read one or more

tasks from the memory area in which they were written by the geometry shader. Thus, these

special invocations of the fragment shader solve tasks, write the results back into GPU memory

and do not write to the framebuffer. Thus, uneven rendering efforts are effectively parallelized in

a manner that is both easily implementable and extremely efficient while working within the

rendering pipeline. The pseudocode for the presented method is the following:

(ONCE) PREPROCESS

allocate sharedmemory for task communication

TESSELLATION CONTROL SHADER (originator primitives)

FOR primitive in originator primitives

 approxcost ← use algorithm dependent metric to approximate primitive rendering cost

 IF approxcost > threshold

 tessellationfactors, primitives ← set to generate primitives
 primitives represent task groups

 primitive is sent down the pipeline to normal rasterization

TESSELLATION EVALUATION SHADER (processedprimitives)

FOR primitive in processedprimitives

 IF processedprimitive = original primitive

 send processedprimitive to the normal rasterization path

 ELSE

 create taskgroup

 sharedmemory← write taskgroup

GEOMETRY SHADER (instances, primitives)

FOR primitive in primitives

 IF primitive is originator primitive

 fragments ← render primitive normally

 WHILE instances>0 //INSTANCING

 width ←

 height ←

 taskinfo ← sharedmemory

 generatedtaskgroups ←generate task groups for taskinfo

 sharedmemory ← generatedtaskgroups

 gpgpufragments ← rasterize screen space billboard with width and height

 instances ← instances - 1

FRAGMENT SHADER (fragments)

FOR fragment in fragments

 IF fragment rendered normally

 render normally

 ELSE

 taskinfo ← sharedmemory

 result ← solve task

 sharedmemory←result

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

99

This method can be extend to a fully extensible task generator by reading back the

fragment tasks to the CPU and drawing a primitive linked to the fragment task. The primitives

could follow the same task generation pipeline, without the normal rendering path. However, this

task generator method was designed for rendering tasks which need to generate task trees with a

large number of tasks but with a low height, for which this method is ideal.

Figure 33 Task Generation Results. The left side of the image presents a simple rendering scenario, where many

particle systems are drawn, and each particle system can in turn generate other particle systems. With Dynamically

Not Parallel (DNP) methods the rendering time rate of growth is much larger than with the presented method. This

is caused by the DNP inability to parallelize the computing effort, leading to a small number of computationally

heavy threads. The presented method efficiently parallelizes the rendering effort.

The presented method efficiently parallelizes uneven rendering efforts, as presented in

Figure 33 and Table 4. This task generator for rasterization rendering is fully compatible with the

entire consumer hardware rasterization based rendering pipeline, working through the GPU

rasterization scheduler. It is able to generate new tasks efficiently, without requiring

preprocessing. It also doesn’t monopolize the hardware resources compared to existing GPU task

schedulers and generators, which usually control the entire pipeline.

Rendering method/ Tasks 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M 1.1M

DNP min 0.06 0.11 0.12 0.25 0.31 0.34 0.33 0.38 0.45 0.44 0.62
DNP 0.07 0.15 0.25 0.30 0.38 0.35 0.35 0.48 0.60 0.63 0.76
DNP max 0.0 0.16 0.28 0.34 0.50 0.40 0.43 0.50 0.70 0.84 0.93
TaskGen min 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03
TaskGen 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04
TaskGen max 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.04 0.06
Table 4 Task Generator for Rendering Results. This table presents the memory usage obtained during dataset

reconstruction with different sizes, using the Chunked Marching Cubes algorithm. The table shows that there is an

optimal chunk size and that chunk overlapping can become counterproductive for very small chunks.

The task generator was not designed for full recursion, but it can be configured to be run

as a fully recursive task generator. The reason behind this choice is that in rendering, the

dynamic tasks are rarely required to create deep tree tasks themselves. Without the obvious

exceptions like ray and path tracing, which are usually handled in specialized pipelines, the

potential dynamic rendering tasks for which a task generator would be useful in a rasterization

context are usually leafs, or close to leafs in the task graph.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

100

3.4. Hierarchical GPU Culling

Massive scenes produce extremely large amounts of processed data. This is especially

important from a geometric standpoint in rasterization, since the camera-surface intersections are

obtained without order. Because of this, performant culling algorithms are vital to a high quality

rendering pipeline. There are various types of culling, such as view frustum culling, which culls

objects outside the visual volume, occlusion culling, which culls object objects occluded by other

objects inside the visual volume, or distance culling, which culls objects if their projection is

smaller than a given threshold. Because of the large number of operations involved in culling,

such algorithms almost always use acceleration structures to decrease operation complexity.

State of the art methods [Bit04] [Gut06] [Mat08] [Mat15] [Zha97] [Mar11] [Déc05]

[Bar12] either use geometry impostors or are not hierarchic or are dependent on costly

synchronization operations. Because of this there is an opportunity for improvement in this area.

Hierarchical GPU Culling is a hierarchic view frustum culling method, which runs entirely on

the GPU, without CPU interference and without precomputation. Hierarchical GPU Culling is

not limited to geometric impostors but can benefit from their presence. The algorithm is based on

the previously presented GPU task generation mechanism and introduces multiple frames culling,

where objects are culled for many frames.

The most relevant state of the art methods used today in culling are CHC++ [Mat08] and

Hierarchical Occlusion Maps [Zha97]. While CHC++ can be adapted to an integral GPU

algorithm with hardware occlusion query buffers or through the use of a stack [Mat15], it is still

limited by the synchronization time introduced by waiting for rendering batches to finish.

Figure 34 Coherent Hierarchical Culling. The algorithm works by rendering all the objects which were visible

during the previous frame and then renders all their children recursively, until children are culled. In the image the

nodes which were visible during the previous frame are colored in green and the nodes which were not are colored

in red. The nodes which are tested for visibility during the current thread are encased in blue disks. The algorithm

determines visibility through view frustum culling tests and hardware occlusion queries. CHC has been improved

with CHC++ which uses statistics and multi-queries to decrease the number of occlusion queries. The weakness of

CHC is that in order to render the children of a node, the node in cause has to be labeled visible, and therefore has to

be rendered and occlusion queried. A CPU-GPU synchronization and wait event can appear because of this behavior.

This behavior can be attenuated with a GPU implementation of CHC++.

The CHC algorithm processes the scene tree hierarchically, rendering only what needs to

be rendered. Because of this the algorithm works correctly without pre-processing. On the other

hand the nature of the algorithm makes it to translate poorly to GPUs, since there are many

synchronization after wait events, which are not compatible to many core computing. CHC++

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

101

has problems especially with complex depth distribution scenes such as forests, where it is hard

to define a visibility hierarchy. CHC++ is presented in Figure 34.

CHC++ is prone to frame rate fluctuations produced by an uneven per-frame number of

synchronization and wait events and it can sometimes perform considerable extra work by

rendering without testing the objects which were visible during the previous frame. Furthermore,

CHC++ can’t handle alpha accumulation and culls objects only for the current frame. Scenes

with dynamic objects are particularly difficult for CHC algorithms because of the large changes

between frames.

Hierarchical Occlusion Maps has been adapted into Hierarchical Depth Culling [Rak15],

which is an integral GPU algorithm. Hierarchical Depth Culling uses the depth buffer as the

original occlusion map, creating the occluder hierarchy based on it, and then culling against this

hierarchy. Compared to Hierarchical Occlusion Maps, Hierarchical Depth Culling performs the

visibility test on all the pixels on which an object is projected by approximating the tested objects

with bidimensional bounding boxes which are then tested against a single pixel from one of the

mipmaps of the depth buffer. It is an approximate algorithm in the absence of a strong visibility

constraint such as geometric impostors. Such impostors are precomputable for a large majority of

objects, but they are impossible to apply to high geometric frequency objects such as trees and

fences. Another problem of Hierarchical Depth Culling is that it cannot reach maximum

efficiency without front to back sorting. Because all the culling is performed relative to the

previous frame buffer, Hierarchical Depth Culling is prone to a number of temporal artifacts. The

algorithm is presented in Figure 35.

Figure 35 Hierarchical Depth Culling. The left side of the image presents a blue object that is currently tested for

depth. The right side of the image presents the depth buffer obtained from the previous frame, along with all its

mipmaps. Hierarchical Depth Culling tests the visibility of the blue object by extending it to a screen space

bidimensional bounding box, and then culling against a single pixel from the best fitting mipmap of the previous

frame depth buffer, as shown on the right side of the image. The best fitting mipmap is chosen based on the size of

the extended bidimensional bounding box of the tested object.

In this subchapter a new hierarchical culling algorithm is introduced, which handles

occlusion through hierarchical depth culling, when impostor geometry is available and view

frustum culling through a hierarchical GPU algorithm, based on the task generator for

rasterization presented in Chapter 3.3. The presented algorithm is integrated with the hierarchical

impostors system presented in Chapter 3.2 and uses a multi-frame culling scheme which can

greatly decrease computational costs. The culling method writes the visible objects in a buffer,

which is rendered with indirect rendering. This method can also be implemented with dynamic

parallelism.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

102

The culling algorithm is based on task generation, generating new tasks for each child of

scene nodes which were evaluated as visible. If the height of the resulted tree is higher than the

number of task generation points supported, than the algorithm is run in several runs or the

superior part of the tree, which represents a very small percent of the culling effort, is computed

on the CPU. The latter case is desirable because it guarantees the creation of sufficient work for

the GPU. The algorithm can be implemented in GPGPU fashion with the help of dynamic

parallelism, which is easier to implement, therefore the rasterization variant of the algorithm is

presented. The presented culling method requires no preprocessing and does not maintain data

structures which require synchronization, such as the priority queue from the coherent

hierarchical culling algorithms. The interaction with the CPU is minimal, the CPU is only used

to generate a sufficient amount of work for the GPU, after which the algorithm is CPU

interference free. The algorithm is depicted in Figure 36.

Figure 36 Hierarchical GPU Culling. The upper part of the image presents that some CPU work is required to create

sufficient work to elicit GPU culling. The left side of the image displays a path taken through a scene tree. The right

side of the image presents both GPGPU and Rasterization paths that can be used by the presented algorithm. The

rasterization path uses principles from the task generator presented in Chapter 3.3.

The preprocessing required by the presented technique is minimal, as only a scene tree

which guarantees a small number of children is required. The algorithm has been tested with a

scene tree with structure of maximum children per scene node.

The culling algorithm starts by allocating a large index array, where the indices of the

visible scene nodes will be stored. The method then starts to generate a sufficient amount of

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

103

work for the GPU, by computing view frustum culling and occlusion culling, depending on the

usage of Hierarchical Depth Culling.

After sufficient GPU work has been generated, each scene node that is to be tested for

visibility is sent to the graphics pipeline as a vertex of a line strip. The Vertex Shader (VS)

evaluates each scene node sent and outputs the visibility result to the tessellation control shader.

If the vertex shader processes a scene node which is both visible and a leaf, the scene node id is

added to visible nodes list. The Tessellation Control Shader (TCS) evaluates all children of the

scene node which was sent to it by the VS, saving the visible leafs to the visible nodes list. The

TCS sets the Tessellator to generate vertices for isolines. The Tessellation Evaluation Shader

(TES) is executed once for each of the generated vertices. Each invocation of the TES evaluates

the visibility of a scene node, sends the visibility results to the Geometry Shader (GS) along with

the primitive and saves the visible leaf into the visible nodes lists. The geometry shader is set to

perform hardware instance times, and each instance of the GS computes the visibility of one of

the children of the scene node which was processed in the TES and whose visibility result was

sent to the GS. If visible leaf nodes are found, they are added to the visible node list. The GS

then evaluates the visibility of all the children of the node that was sent to the GS, effectively

evaluating the next level of the scene tree. If visible leaf nodes are found, they are added to the

visible node list. The GS then creates geometry for N billboards, following the same principles

as the task generator from Chapter 3.3. Each of the N billboards generates a large number

fragments which represent leaf tasks, which are sent to the Fragment Shader for evaluation.

The visible nodes list can be drawn without CPU control, through the use of indirect

rendering. The culling algorithm can also be made aware of impostors, by maintaining two node

lists, one for visible nodes which will be rendered geometrically and one for visible nodes which

will be rendered with impostors. The Hierarchical Impostors presented in Chapter 3.2. can be

tightly integrated with the presented culling solution, each GPU thread can compute the

geometry level of detail or impostor for each object, besides performing view frustum culling.

Occlusion Culling can be handled through the integration of a Hierarchical Depth Culling

mechanism, but this would make the culling solution inexact and prone to temporal artifacts.

Multiple frame culling is the final contribution of the presented culling algorithm.

Instead of just culling objects for the current frame, the analysis shows that many objects are

culled for relatively long durations. While this is difficult to prove efficiently for occluded

objects, it is relatively easy to do for view frustum culled objects. As presented in Figure 37,

objects can be trivially culled by just analyzing the speed of the camera.

If the camera direction is quantified as a solid angle and if it is considered that in real-

time applications the camera has hard caps on its orientation change speed, then the entire scene

can be partitioned. The partition is based on the idea that the camera would reach the partition

area only after at least a number of frames at maximum speed, which is usually much less than

the normal application speed. If an object is stationary inside a partition that is four maximum

speed frames away from the camera, then it is guaranteed to be culled for the next four frames.

The same conclusion can be taken for an object whose trajectory can be quickly evaluated on the

GPU, using a method similar to that described in 3.1, and which is guaranteed to remain in such

a partition.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

104

The only exception happens when the camera is instantly oriented or moved, which is

naturally handled with a reset of the entire multiple frame culling mechanism. For normal

camera speed movements the multiple frame culling mechanism can lead to a large decrease in

computational effort, because it drastically increases the number of operations. Furthermore,

since the camera suffers reorientations constantly, the set of objects culled for more than one

frame varies in time, therefore the starting set of five frames culled objects, as depicted in Figure

37, will not all reach reevaluation concomitantly. Therefore, the multiple frame culling

computations are amortized over different frames. The amortization can further be sophisticated

with an implicit checking order over the culled frames.

Figure 37 Multi frame culling. The image shows that the entire scene can be partitioned into radial zones, based on

the smallest number of frames it would take the camera to reach them, while rotating at maximum speed. This

optimization can lead to large computational cost decrease in many common rendering scenarios.

Storing the number of culled frames does not have to be performed inside a large

precision number, because the maximum speed for camera in real-time applications is relatively

large. The solution of an additional byte for each scene node, one bit to distinguish between leaf

nodes and other scene nodes, four bits to store the number of frames culled, one bit to determine

if the object is transparent or not and one bit to determine if the object is a light or not. With each

passing frame the previously culled object will be have their count recomputed or decreased.

Since the algorithm is constructed with an object partitioning scheme in mind, like BVH,

it is sufficient to decrease the multi frame culling value for an invisible parent and to update the

child number of culled frames the next time it is walked, by comparing the multi frame culling

value with that of its parent. If the value is greater, then the child has not been reached for a

sufficient duration that its number of culled frames is guaranteed to have expired.

The pseudocode for the culling algorithm is shown on the next page.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

105

CPU (root, camera)

initialize indexarray← 0

initialize numframesarray←0

childlist ← root

WHILE size of childlist < threshold

 list ← childlist

 childlist ← Ø

 FOR node in list

 IF node visible

 FOR childnode of node

 childlist ← childlist childnode

 IF dynamic parallelism available

 indexarray ← DYNAMIC (childlist)

 ELSE

 FOR node in childlist

 indexarray ← indexarray VERTEX (node)

 renderqueue ←use indexarray to generate rendering queue

 draw renderqueue

EVALUATE(node, camera)

aabb ←axis aligned bounding box of node

visible, camerazone ← compute View Frustum Culling with aabb

IF visible

 indexarray ← set visible in index array

ELSE

 numframes ← get the number of frames from camera to camerazone

 numframesentry← numframesarray, node

 IF numframes >numframesentry

 numframesarray←set numframes

IF occlusion culling available

 COMPUTE occlusion culling

RETURN visible

DYNAMIC (nodes, camera)

FOR node in nodes

 visible ← EVALUATE(node, camera)

IF visible

 children ← get node children

 DYNAMIC(children, camera)

VS (node, camera)

visible ← EVALUATE(node, camera)

IF visible

 children ← get node children

 FOR childnode in children

 TCS(childnode, camera)

TCS (node, camera)

visible ← EVALUATE(node, camera)

IF visible

 children ← get node children

 FOR childnode in children

 visible ← EVALUATE(childnode, camera)

 IF visible

 grandchildren← get childnode children

 FOR grandchildnode in grandchildren

 TCS(grandchildnode, camera)

Set TES to run for total number of grandchildren

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

106

TES (node, camera)

visible ← EVALUATE(node, camera)

IF visible

 children ← get node children

 FOR childnode in children

 visible ← EVALUATE(childnode, camera)

 IF visible

 grandchildren← get childnode children

 FOR grandchildnode in grandchildren

 GS(grandchildnode, camera)

GS (node, camera)

instances←scene tree max number of child nodes

FOR instance in instances

 ichild ← ith child of node

 visible← EVALUATE ichild

 IF visible

 FOR child of ichild

 visible ← EVALUATE child

 grandchildren , numgrandchildren ←number of children of child

 width ←

 height ←

–

 billboard ← create a billboard in NDC with width and height

 fragments← RASTERIZE(billboards)

 FOR fragment in fragments

 grandchild ← pop grandchildren

 FS(grandchild, camera)

FS (node, camera)

 EVALUATE (node , camera)

If the algorithm is used in combination with hierarchical occlusion culling, a minor

optimization is to conservatively approximate opacity per pixel, and cull the object against the

opacity occlusion. On the other hand this optimization can only be implemented with occlusion

impostors.

Compared to the state of the art, the presented Hierarchical GPU Culling method runs on

the GPU without CPU interference, without synchronization and wait mechanisms. It runs

hierarchically and while it does not explicitly solve occlusion culling it can be tweaked to use

Hierarchical Depth Culling. The presented algorithm uses a multiple frame culling mechanism,

which can cull objects for more than one frame, lowering computational costs. The culling

algorithm is integrated with the hierarchical impostor method presented in Chapter 3.2 and can

also be implemented with dynamic parallelism.

The presented technique draws without CPU interference, by using indirect rendering.

The algorithm has been tested on very large scenes with different object distributions,

such as the ones presented in Figure 38, with results culling results slightly inferior to those of

CHC++ but with superior running time due to lack of CPU synchronization and to the better fit

of the algorithm to the GPU many core architecture.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

107

Figure 38 Hierarchical GPU Culling Results. The presented hierarchical GPU Culling algorithm has been tested on

large scenes with different object distributions, such as the ones displayed in the image above. The view on the left

is especially difficult to cull, because it is extremely incoherent spatially. Scenes with a large number of objects

benefit greatly from multiple frames culled objects.

3.5. Opaque Rasterization

Opaque rasterization represents the process through which opaque objects are rasterized.

The majority of rendered objects in real-time scenarios are opaque; therefore this area of

rasterization based rendering has been thoroughly examined. Yet, with new opportunities offered

by increasingly performant consumer hardware raise new opaque rasterization challenges,

especially in bandwidth and memory usage.

In massive scenes opaque rasterization is usually performed with multiple depth frusta

[Coz09], because the depth precision isn’t stored in a linear format but in one directly

proportional to the inverse of depth.

As the precision is not stored linearly and the resolution of the depth buffer is biased

towards the near clipping plane and not towards the far plane, fragments from objects that are

rasterized close to the far plane can suffer from an effect called z-fighting, where the z-Buffer

algorithm returns incorrect results due to lack of precision. Because of this, even 32 bits of

resolution are not sufficient for increasingly complex scenes.

The depth precision problem is illustrated in Figure 39. [Ree15] offers an in-depth

discussion on this topic. A common solution to this problem is to modify the resolution of the

depth buffer through multiple depth frustums [Coz09], or through modify the distribution of the

depth samples with a logarithmic depth buffer [Coz09]. On the other hand a logarithmic depth

buffer writes depth explicitly and this prevents critical rasterization optimizations [Gre93].

An efficient approximate solution to depth precision is displayed in Figure 39. The depth

range can be reversed, from the normal 0 to 1 to 1 to 0, which has the effect of bringing the depth

sampling closer to a uniform sampling distribution. This method is named the semi logarithmic

depth buffer [Ree15].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

108

Figure 39 Depth Precision. The image on the left shows a normal depth buffer, and it shows that depth does not

vary linearly, as it varies with 1/z. It shows that the hardware depth buffer allocates more precision in the proximity

of the near clipping plane, and that precision decreases rapidly as the depth values approach the far clipping plane.

This can adversely affect the stored depth values and lead to the incorrect Z-Buffer results, which lead to the z-

fighting effect. A solution to the depth precision problem is presented on in the right side of the image, in which the

depth range is reversed. This is called the quasi logarithmic depth buffer, and it samples with a close to uniform

distribution. Images from [Ree15].

Wrinkled surface rendering is a subfield of rendering which studies the detailed rendering

of low frequency geometric meshes, which are augmented with visual detail stored in textured

maps. There are two major directions for wrinkled surface rendering: mesh tessellation, which

reconstructs geometry at a geometric level and mesh mapping, which reconstructs the geometry

only in aspect.

Mesh tessellation [Bou081] [Loo09] [Dyk09] creates a large amount of vertices which

are then displaced with displacement mapping, and which can exactly reconstruct a low

frequency mesh. The weakness of this approach in the context of rasterization is in the resulting

rendering alias, because a large number of created vertices is projected on a small number of

pixels. This large number of vertices has to be heavily multisampled, in order for the geometric

signal to be properly reconstructed; otherwise the pixel will show aliasing. Furthermore, the

computational cost can be extremely high in exceedingly tessellated scenes. For this approach to

be productive, the tessellation level has to adapt to the projected surface size, a method named

adaptive tessellation.

In the context of rasterization rendering, mesh mapping [Bli78] [Coh98] [Kan01] [Bra04]

[Tat06] [Pre06] [Pol07] is a more efficient alternative, because it works at pixel level. This

approach is less computationally expensive and produces better visual results than extreme

tessellation. On the other hand mesh mapping isn’t as expressive as judicious tessellation, and

usually mesh tessellation and mesh mapping are both applied, tessellation for the large sub-

polygonal details and mapping for pixel-level effects.

The presented pipeline uses a combination of adaptive tessellation with Gregory Patches

[Loo09] and adaptive use of either parallax iterative mapping [Pre06] or normal mapping

[Coh98], depending on distance and angle of view. This combination is easy to tweak for

different surfaces and minimizes aliasing without entailing an excessive computational cost.

Screen space parallax mapping [Lob08] can also be used, but it is prone to reconstruction

artifacts, especially for small on-screen contributors. The wrinkled surface rendering path is

described in Figure 40.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

109

Figure 40 Wrinkled Surface Rendering. Tessellation is described in the lower part of the image, where each triangle

is adaptive tessellated and displaced using either displacement map information or Gregory Patches, which is

displayed in the right lower corner and is used if no displacement information is available. The superior part of the

image displays several mesh mapping render paths: no wrinkled surface, normal mapped, iterative parallax mapped,

offset limited iterative parallax mapped with soft shadows.

Wrinkled surface rendering requires working in the tangent space, which either means

asset preprocessing or tangent space reconstruction during rendering [Sch06] [Sch15]. In the

case of asset pre-processing this can be performed geometrically, by storing the tangent as a per-

vertex attribute or through derivative maps (dudv), such as the ones depicted in Image 24.

Tangent space reconstruction is performed analytically with screen space derivatives [Sch15],

which are computed using the depth data available from the geometry buffer.

This is the pseudocode for the wrinkled surface rendering path:

TCS (primitive, camera)

ssaabb ← projected primitive screen space bidimensional bounding box
N ← number of pixels in ssabbb

normal ← normal of primitive

center ← center of primitive

cameraray ← ray from camera to center

A ← angle between cameraray and normal
IF N > threshold
 IF A < threshold

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

110

 generatedvertices, tessellationfactors ← set tessellation factors to tessellate primitive

 controlpoints ← Ø

 IF displacementmap available

 FOR vertex in primitive

 controlpoints ← controlpoints vertex

 ELSE

 cornerpoints ← gregory corner control points

 edgepoints ← gregory edge control points

 facepoints ← gregory face control points

 specialpoints ← gregory special control points

 controlpoints ← cornerpoints edgepoints facepoints specialpoints

 FOR vertex in generatedvertices

 TES (controlpoints)

ELSE
 FOR vertex in primitive
 TES (vertex)

TES (controlpoints)

barycentric ← obtain barycentric coordinates from tesselator

IF displacementmap available

 position, normal← compute position and normal with barycentric and controlpoints

 displacement ← read from displacementmap

 displacednormal← read from normalmap, use normal to compute tangent space

 displacedposition ← displace position with displacement

ELSE
 displacednormal, displacedposition ← controlpoints
RASTERIZE vertex with displacementnormal and displacementposition

FS (position, normal)

camera ← get rasterization camera

IF tangent not available

 derivatives ←compute derivatives required for tangent space reconstruction
 tangentspace ← reconstruct tangent space with derivatives
IF not alpha culled

 fragmentdistance ← distance from camera to position

 IF fragmentdistance < high quality threshold

 fragmentcolor ← parallax iterative mapped with secant, soft shadows , textured

 IF fragmentdistance < high quality threshold

 fragmentcolor ←parallax iterative mapped with secant, textured

 IF fragmentdistance < medium quality threshold

 fragmentcolor ←normal mapping, textured

 ELSE
 fragmentcolor ←textured

 OUTPUT fragmentcolor

Opaque surface rendering usually represents the largest computational effort in

rasterization rendering, therefore the computational cost of this process has been analyzed in

depth. Deferred and decoupled algorithms separate the geometry processing and shading

operations, in an effort to minimize the surface-light-camera interactions. The presented pipeline

is based on the same principle. The problems with deferred and decoupled algorithms appear

when they are analyzed more thoroughly. In general, these algorithms suffer from high

bandwidth, high geometry or high storage costs.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

111

3.5.1. Analyzing Deferred Rendering

In opaque rasterization rendering process each camera-surface interaction is computed,

and, through the z-buffer algorithm, the closest camera-surface interaction is determined and

displayed on screen. This can lead to a large amount of unneeded computations, such as shading

occluded fragments, which can be avoided by using deferred methods, as shown in Figure 41.

Figure 41 Why deferred. The upper part of the above image presents the surface-camera interactions which take

place over a Pixel. A large number of per-pixel interactions can take place in complex scene, thus shading occluded

interactions would be a very large and useless computation effort. Deferred rendering is widely used in real-time

rendering applications because it does not shade occluded fragments, shading only the fragments visible on screen.

It does this by storing shading information (depth, normals, colors, roughness, etc) in large screen sized buffers,

which are then lit and shaded, as presented in the lower part of the image.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

112

Deferred rendering decreases the number of shaded surface-camera interaction by

shading only the interactions which are visible on the screen. Because of this, deferred rendering

drastically lowers the complexity of opaque object rasterization rendering from
 to . This complexity reduction is one the main reasons, for which

deferred rendering is extremely popular in real-time rendering applications.

The deferred rendering idea has been further advanced with deferred decoupled rendering

[Lik12], which completely decouples shading samples from fragments. While the idea of

deferred rendering is simple, the implementation details have created difficult to solve problems

such as correct anti-aliasing integration, transparent object integration, bandwidth and shading

decoupling, light-surface acceleration and so on. Because of these problems, there are a large

variety of methods which take different approaches to opaque rasterization, but these methods do

not have taxonomy and lack more in-depth metrics to improve their comparison.

Deferred methods can be classified by the number of geometry passes: single geometry

pass and multiple geometry pass. Deferred methods can also be classified by the surface-light

interaction method which can either be implicit, explicit or decoupled. A large part of the

deferred algorithms can be adapted to either be single or multiple geometry pass methods. Single

pass methods have lower geometry processing costs, while multiple pass methods usually have

lower bandwidth.

 The implicit methods [Lee09] [van13] [Thi09] [Mar14] [Hol13] [Seg06] accelerate

intersection of lights and objects through the raster grid structure, which acts as an implicit

bidimensional associative array, in which the objects are binned, and in which the objects

intersecting the lights are queried during the rasterization of lights, in the lighting stage.

Explicit methods [Tre09] [Lau12] [Ols12] [Ols11] [Har12] [Hob09] [Bur13] use

acceleration structures instead of the raster grid. These include bitwise lists, per-pixel lists, tiles,

2.5D tiles and clusters. These explicit acceleration structures appear to not be hierarchic but it is

only an appearance. When the structures are filled through rasterization of all lights, the raster

hierarchically [Gre93] intersects them (as fragments) with the screen, and consequently with the

acceleration structure. Thus, explicit structures are still created hierarchically.

Decoupled methods [Lik12] [Cla13] run rendering stages at distinct sampling rates,

where the samples are linked through many-to-one or many-to-many mappings in addition to

other acceleration structures. The disadvantage of the current state of the art decoupled methods

is that they are still very expensive for the consumer hardware.

This thesis separates bandwidth consumption, processing cost, storage (memory) cost,

and state cost, in order to ease the comparison between deferred methods. The different

performance metrics can also be used to switch between deferred algorithms during rendering,

depending on the situation, in the same spirit as hybrid deferred rendering [van13].

A comparison of state of the art deferred algorithm is provided in Table 5 and Table 6.

While the presented comparison does not provide the measurement equations for the proposed

metrics, the equations can be found together with the original analysis in the “Analyzing

Deferred Rendering Techniques” article [Pet15].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

113

Algorithm\Criterion Light-Object

Intersection

Acceleration

Transparency

Support

Hardware MSAA

Support

Light Data

Access

Pattern

Shading Data

Access

Pattern

Forward implicit yes yes random random

Depth Pre Pass implicit no yes random random

Deferred implicit no no sequential random

Deep Deferred implicit partial depends sequential random

Light Pre Pass implicit yes yes sequential random

Deferred Transparency implicit partial no sequential random

Light Indexed Deferred explicit no no random sequential

Light Indexed Forward explicit yes yes random sequential

List Light Indexed Deferred explicit no no random sequential

List Light Indexed Forward explicit yes yes random sequential

Tiled Deferred explicit no no random sequential

Tiled Forward explicit yes yes random sequential

Forward+ explicit yes yes random sequential

Clustered Deferred explicit no no random sequential

Clustered Forward explicit yes yes random sequential

Deferred++ decoupled yes yes random sequential

Deferred Decoupled Sampling decoupled yes no random sequential

Sort based deferred decoupled yes yes random sequential

Table 5 Deferred Algorithms Comparison - I. The table provides a basic comparison of deferred rendering

algorithms with respect to data access patterns and functionality.

Algorithm\Criterion Decouples

texture

sampling

Decouples

vertex

attributes

GPU

Commands

Cost

Processing Cost Allocated

Memory

Cost

Bandwidth

Cost

Forward no no very high very high very low very high

Depth Pre Pass no no very high high low low

Deferred no no low low high high

Deep Deferred no no low high very high very high

Light Pre Pass no no high high low low

Deferred Transparency no no low high very high very high

Light Indexed Deferred no no low low high high

Light Indexed Forward no no high high high low

List Light Indexed Deferred no no low low high high

List Light Indexed Forward no no high high high low

Tiled Deferred no no low low high high

Tiled Forward no no high high low low

Forward+ no no high high low low

Clustered Deferred no no low low high high

Clustered Forward no no high high low low

Deferred++ yes no low high low low

Deferred Decoupled Sampling yes no high high high low

Sort based deferred yes yes low high high low

Table 6 Deferred Algorithms Comparison - II. The table provides a comparison of deferred rendering algorithms, by

showing the approximate costs in different metrics.

 The only state of the art algorithms that completely decouple texture sampling from

visibility determination are all very costly from a processing standpoint because they either use

expensive GPU synchronization to implement a cache, or completely reconstruct the geometry

with all the attributes per fragment. In the next subchapter a novel deferred algorithm is

introduced, called virtual deferred, which decouples texture sampling from visibility

determination, while still having processing costs comparable to light pre pass deferred rendering.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

114

3.5.2. Virtual Deferred

A common problem with state of the art algorithm is that they either decouple shading

bandwidth from visibility determination and perform a multiple geometry passes or couple

shading bandwidth with visibility determination and perform a single geometry pass. No

deferred technique decouples visibility determination from texture and shading bandwidth and

renders the geometry only once. This thesis introduces virtual deferred, a new deferred algorithm,

which is able to perform this decoupling in a single geometry pass, based on the article “Virtual

Deferred Rendering” [Pet151].

The introduced algorithm is a combination between virtual data methods and deferred

algorithms, using the virtual texturing mechanism to store only critical geometric and

texturing data in a small modified geometry buffer, consuming texture bandwidth only when

it affects the geometry rendering process, for example for alpha culled or displacement

mapped objects. In doing so virtual deferred guarantees complete decoupling between visibility

determination methods, shading bandwidth, illumination and shading. Virtual deferred rendering

offers these properties without a complex and hard to implement memoization cache, such as the

one used in decoupled rendering [Rag11] [Lik12].

Virtual rendering is based on the idea of using virtual texturing to maximize deferring

opportunities. Instead of storing texture values inside the G-buffer, the presented method stores

texture coordinates and their derivatives. Thus, instead of consuming bandwidth for each

occluded primitive for which textures are read, saved into the geometry buffer and then

overwritten, virtual deferred saves only the absolute minimal texturing information. Depending

on the scene configuration the texture coordinates and their derivates can be packed, as it is

shown in Figure 42.

Figure 42 Virtual deferred G-Buffer. The image highlights the difference between state of the art geometry buffers

and the one used in virtual deferred. Compared to state of the art geometry buffers, virtual deferred stores only

critical texturing information, the texture coordinates and their derivatives. Because of this, when the deferred

renderer is used in scenes with complex materials, the geometry buffer size scales better for virtual deferred than for

the state of the art methods. The virtual deferred G-Buffer can also be further decreased in size through texture

coordinate compression, if the scene configuration supports it.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

115

The illumination stage of virtual deferred is identical to the illumination stage of

clustered deferred, where the lights are first clustered into an acceleration structure and are then

intersected with the G-buffer. In the shading stage, instead of loading the texture data stored in

the G-buffer, virtual deferred reads the virtual texture whose coordinates were saved into the G-

buffer. The texture fetches are then performed with the loaded texture coordinates and

derivatives. Because virtual deferred is based on virtual texturing, it also has the benefit of being

extremely easy to integrate into a virtual texturing system.

Virtual deferred can be combined with decoupled sub pixel reconstructed antialiasing

(DSRAA), an antialiasing algorithm presented in the Post Processing sub-chapter, in the

Illumination Chapter. The illumination stage of virtual deferred is presented in detail in the

Illumination chapter. The pseudocode for virtual deferred is:

(ONCE) PREPROCESS

IF using multiple frusta
 frusta ← subdivide the visual volume frustum into multiple frusta
 N ← number of frusta
 objects[N], lights[N], lightgrid[N], depthbuffer[N], Gbuffer[N], visibilitybuffer[N] ← Ø,init
 FOR object in objects
 FOR frustum in frusta
 i← frustum number
 IF object in frustum
 IF object visible
 objects[i] ← objects[i] object
 FOR light in lights
 FOR frustum in frusta
 i← frustum number
 IF light in frustum
 lights [i]← lights[i] object
 SORT frusta in front to back order

ELSE

 frusta ← frustum

GEOMETRY STAGE (objects)

FOR frustum in frusta

 IF using multiple frusta and frustum not first //MULTIPLE FRUSTA ZBUFFER

 prevfrustum← get previous frustum from frusta

 prevdepthbuffer ← get depth buffer of prevfrustum

 depthbuffer ← frustum depth buffer

 FOR pixel in screenpixels

 prevdepth← prevdepthbuffer value for pixel

 IF prevdepth < far distance of prevfrustum

 depth ← near distance of frustum

 i ← frustum index

 FOR object in frustumobjects[i]

 IF using DSRAA

 fragments, visibilitysamples ← render object, generate fragments

 visibilitybuffer[i]← visibilitysamples(depth, normal optional)

 ELSE

 fragments ← render object, generate fragments

 FOR fragment in fragments

 IF fragment is visible

 depthbuffer[i] ← update

 Gbuffer[i] ← store fragment data into virtual deferred gbuffer

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

116

LIGHTS STAGE(lights)

FOR frustum in frusta

 i ← frustum index

 FOR light in lights[i]

 depthbuffer[i] ← depth buffer of frustum, created in GEOMETRY STAGE

 fragments ← render light, generate fragments, cull using depthbuffer[i]

 FOR fragment in fragments

 IF fragment is visible

 cluster ← determine location in lightgrid[i]

 cluster ← cluster light

VIRTUAL TEXTURE STAGE

streamlist ← Ø

FOR frustum in frusta

 i ← frustum index

 FOR pixel in Gbuffer[i]

 IF pixel depth < frustum max depth

 texderivatives ← load texture derivatives from pixel in Gbuffer[i]

 material ← material of pixel

 FOR texture in material

 texmipmap ← determine mipmap level of texture with texderivatives

 IF texmipmap not in virtualtexture

 streamlist ← streamlist texmipmap

IF streamlist not Ø

 COMPACT streamlist

 WHILE streamlist not Ø

 mipmap ← pop streamlist

 send streaming command to virtual texture to stream mipmap

 The shading stage for the virtual deferred algorithm is discussed in chapter 4.1.4, in the

illumination chapter, as it is has more to do with light transport than with geometric

computations. It is described here with an emphasis on the geometric constraints given by the

multiple frusta, in the 4.1.4 chapter the emphasis is put on light transport and texture fetching.

SHADING STAGE (fragment)

FOR frustum in frusta

 i ← frustum index

 FOR pixel in Gbuffer[i]

 visible ← true

 IF i>0

 prevdepth ← depthbuffer[i-1]

 IF prevdepth < max depth for previous frustum

 visible←false

 IF visible

 pixeldata ← load non texturing pixel data

 texturedata← load texturing data through virtual texturing

 diffuse ← compute low frequency illumination with lights[i] and other scene lights

 specular ← compute high frequency illumination with lights[i] and other scene lights

 pixelcolor ← diffuse, specular, pixeldata, texturedata

 OUTPUT pixelcolor

From a complexity standpoint, virtual deferred lowers the storage and texture bandwidth

complexity, as it is shown in Table 7 and Figure 43.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

117

Algorithm\Criterion Single Geometry Pass

Deferred Rendering

Multiple

Geometry Pass

Deferred

Rendering

Decoupled Deferred

Rendering

Virtual

Deferred

Geometry Processing 1x 2x 1x 1x

State changes 1x 2x 1x 1x

Texture bandwidth T*TS*D T*TS T*TS T*TS

Geometry buffer storage Geometric Information +

T*TS

Geometric

Information

Geometric Information

+ memoization

Geometric

Information + 2

Table 7 Virtual deferred and the state of the art. The table compares virtual deferred with state of the art deferred

rendering families: single geometry pass deferred, multiple geometry pass deferred and decoupled deferred

rendering. Virtual deferred combines the most desirable properties from each of these algorithm families.

Figure 43 Virtual deferred Results. The upper part of the image shows the rendered scene and the mipmaps levels

for the rendered textured. Virtual deferred renders the opaque scene objects into a modified G-Buffer, which stores

only texture coordinates and their derivatives as texturing data, without storing effective texture data. The textures

data is then loaded in the shading pass, through the texture coordinates and the object id. The lower part of the image

shows the results of virtual deferred (right), compared to a standard single pass deferred rendered (on the left). The

images in the lower part encode bandwidth consumption, darker is better.

The virtual deferred algorithm can be improved with a screen space optimization, in

which the texture coordinates derivatives are computed through neighbor differentiating, like the

ddx and ddy instructions in consumer hardware. This optimization further lowers the storage and

bandwidth consumption of the presented algorithm.

Virtual deferred is not without problems, the biggest of which is multiple material

support. Since texel fetching is performed through virtual texturing, it is impossible to texture a

multiple textured material without storing multiple texture coordinates and their derivatives. This

is easy to observe in a scene which is lit through precomputed lightmaps. Therefore, care must be

taken to minimize the number of such problems, especially in systems with heavily varied

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

118

texturing systems. On the other hand such systems are slowly becoming obsolete as more work is

performed during rendering and less is precomputed.

Even so, virtual deferred performs better than the state of the art single pass deferred

methods, as can be seen in Figures 44 and 45. An analysis of the storage consumption of virtual

deferred is offered in Figure 44.

Figure 44 Virtual deferred Per Pixel Storage Analysis. The image depicts the storage costs difference between a

single geometry pass deferred G-buffer, colored in blue, and the virtual deferred G-Buffer, colored in red. As long as

all the texture in the same material use the same coordinates, a vastly common texturing setup, the virtual deferred

algorithm will store less bytes pixel than the state of the art single geometry pass deferred. The difference between

methods grows with the number of materials, as standard G-Buffers have a larger storage complexity than that of the

virtual deferred G-Buffer. Multiple geometry pass deferred algorithms are not depicted in this image as their large

geometry processing cost makes them less suitable for massive scenes.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

119

 The bandwidth consumption of virtual deferred is compared to the of the geometry buffer

in Figure 45. It has to be noted that the bandwidth increase in virtual deferred is caused by the

geometric data processed at a fragment level, as the algorithm loads only the shading data that is

used for visible objects. If in Figure 45 the geometric bandwidth cost would not be considered,

and the comparison would be only between the G-buffer and virtual buffer texture fetching

bandwidth, the virtual buffer would have a constant cost in the number of different texture

mappings per object, which is normally just one.

Figure 45 Virtual deferred Per Pixel Bandwidth Analysis. The image depicts a comparison in per pixel bandwidth

consumption between virtual deferred rendering, colored in red, and single geometry pass deferred rendering,

colored in blue. The measurements are directly performed in texture fetches per pixel, disregarding the number of

materials, as that would further favorize virtual deferred. The difference between methods grows with the depth

complexity, as single geometry pass deferred algorithms will consume more bandwidth on occluded pixels.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

120

3.6. Transparent Rasterization

The rasterization of transparent objects has similarities and dissimilarities with the

rasterization of opaque objects. The triangle projection process, the wrinkled surface methods

and the material shading code are either identical or very similar. On the other hand the visibility

determination process is different, caused by the lack of order in surface-camera interactions in

rasterization.

Transparent object rendering is usually performed after opaque object rendering, in order

to not pay the rendering costs for transparent objects that are occluded by opaque objects.

Transparent rasterization uses the same displacement and parallax algorithms described in

chapter 3.5.

The problem of transparent rasterization is very difficult in rasterization because

transparency is implemented through the composition operator as defined by [Por84], but the

rasterization process processes the surface-camera interaction in an unordered manner. If is

the fragment opacity, is the fragment color, is the composited color and is the

background color, then the composition operator is defined as in the following equation:

The equation can be written in front-to-back [Had06] compositing order as:

The equation can be also be written recursively as:

Therefore the existing transparent rasterization rendering techniques either pay a very

large rendering cost and render the image exactly [Tar10] [Bav08] [Car84] [Bar11] [Mau12]

[End10] [Sal11] [Sal14], or resort to approximated methods that either approximate the

composition operator [Mes07] [McG13] or completely redefine it [Sin09] [Jan10].

In this sub-chapter two new transparent object rasterization algorithms are presented. One

of them is an exact order independent transparency rasterization algorithm which modifies the

state of the art GPU implemented A-Buffer method [Bar11], applying virtual data principles to

decrease bandwidth and storage consumption. The introduced method, virtual order independent

transparency, distinguishes itself from other state of art algorithms by being a order independent

transparency algorithm that shades and consumes bandwidth adaptively, stopping when the

visual contribution decreases under a quality threshold.

The other one is an approximate method which enhances the state of the art occupancy

maps with distributions, which artificially increase the occupancy map resolution and adapt to

the depth configuration of the fragments which were rasterized on the pixel.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

121

3.6.1. Virtual Order Independent Transparency

One of the most successful exact transparent rasterization solutions is the GPU

implemented A-Buffer method [Bar11] [Mau12], albeit with extremely large storage and

bandwidth costs. The A-Buffer method can be transformed into a high quality approximation

method through the usage either stochastical storage [Sal11], or through guards, like in the

“Guarded Order Independent Transparency” article [Pet152], but it then becomes prone to

temporal artifacts caused by different approximations in consecutive frames which produce

aliasing. Therefore, in real-time precision sensitive problems the original algorithm performs

best.

While there are several types of high quality and low quality approximation methods,

some based on the A-Buffer algorithm, the necessity for exact algorithms is easily shown

through results comparison, as displayed in Figure 46.

Figure 46 Order Independent Transparency. Transparent rasterization algorithms need to correctly handle the

problem of surface-camera intersection order, as rasterization generates the intersection without order and the

fragment composition operator used in transparency is not commutative. This requires either order approximation

algorithms, which are cheap to compute but produce low quality results, or the correct per-pixel sorting of all the

generated intersections. As it can be observed in the above figure, the difference in quality between a bad

approximation and a better approximation algorithm is generally measured by the increased morphologic perception

of the rendered scene. The difference in quality between a correct and approximated result can be drastic, as shown

in the image.

A variation of the A-buffer algorithm is presented in this thesis. The Virtual Order

Independent Transparency A-Buffer (VOIT or VA-Buffer) decreases the excessive storage

and bandwidth costs of the state of the art A-Buffer algorithm. It uses the same virtual data

principles which were applied to deferred rendering in the previous sub-chapter.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

122

The A-Buffer is required to shade all the fragments generated through rasterization,

before storing the color results in the A-Buffer list nodes. In comparison, VOIT decouples

shading computation and bandwidth from the list construction, therefore VOIT adapts to the

rendering situation of each pixel, consuming only what is necessary. After the per-pixel list is

sorted, VOIT performs front to back composition and loads the texturing data for each node.

When VOIT determines that the alpha channel is completely occluded it stops the rendering

process, therefore it does not load bandwidth for nodes which are occluded, as would the A-

Buffer algorithm. Because of this, VOIT is also superior from a software design perspective, as it

is a decoupled solution to transparent object rasterization.

VOIT is visually presented in Figure 47.

Figure 47 Virtual Order Independent Transparency - algorithm. The image presents the application of virtual data

principles to the GPU A-Buffer algorithm, named Virtual Order Independent Transparency, or VA-Buffer.

Compared to the state of the art A-Buffer the presented algorithm is designed to work with virtual texturing. The

stages of the method are displayed on the left side of the image, the rasterization stages in orange and the shading

stages in green. On the right side of the image VOIT is compared to A-Buffer. Instead of storing fragments with

shaded color, as in a state of the art A-Buffer node list, the VOIT stores only texture coordinates. In the shading

phase, the texture coordinates are used to reconstruct the texture coordinate derivatives, which are then used to

perform the texel fetches. VOIT has the advantage of adaptively shading the fragments, stopping early if sufficient

alpha occlusion is computed, and paying the texture bandwidth for exactly what it shades instead of paying it for all

the fragments, as A-Buffer does. Compared to the state of the art A-Buffer nodes, the VA-buffer consumes slightly

more storage than a low dynamic range node, but significantly less storage than a high dynamic range node. In this

thesis the micro tile size is 2x2 pixels, the minimum size required to correctly reconstruct texture coordinate

derivatives.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

123

The introduced algorithm works on multiple stages, as depicted in Figure 47. The first

stages work through rasterization, in which the geometry is rasterized and stored in the VA-

Buffer specific node list.

Compared to the standard A-Buffer, VOIT does not store the shaded colors but the

texture coordinates in compressed format. Because of this, the VOIT has better storage

efficiency for high quality shading, where high dynamic range rendering is used. The next stage

determines the visible textures and the required mipmap levels and sends streaming commands

to the virtual texturing system. In order to prevent walking the entire fragment lists twice, once

for shading and once for checking if the right texture mipmaps are loaded, VOIT uses a mipmap

buffer, which stores the streamed state of all the scene textures, represented in binary. With each

rasterized fragment, VOIT checks if the texture mipmaps that will be read are streamed. If the

texture mipmaps are not streamed, the algorithm flags the texture mipmaps for streaming.

The shading part of the VOIT algorithm is presented in the Illumination chapter, the

pseudocode for the rasterization based stages is:

(ONCE) PREPROCESS

IF lighting

 lightgrid ← allocate space for lights grid acceleration structure

nodebuffer ← allocate space for fragment list nodes

headbuffer ← allocate space for fragment head pointers

mipmapcachebuffer ←allocate space for mipmap streaming information (binary)

mipmapframebuffer ←allocate space for mipmap streaming information (binary)

FOR pixel in screenpixels

 set pixel head pointer to null

GEOMETRY STAGE (sceneobjects)

objects ← sceneobjects which are not culled

fragmentcounter ← 0

mipmapbufferframe← 0

FOR object in objects

 fragments ← Ø

 FOR primitive in object

 fragments ← fragments fragments from rasterized primitive

 FOR fragment in fragments

 atomically increase fragmentcounter

 node ← fragment depth, texture coordinates, other data

 store node in fragmentcounter position in the nodebuffer

 set node pointer to next element to null

 atomically swap head with node next pointer

 textures ← fragment textures

 FOR texture in textures

 texturesderivatives ← texture coordinates

 texturemipmap ← determine texture mipmap with texturesderivatives

 texturemipmapstate ← read texture mipmap state from mip mipmapcachebuffer

 IF texturemipmapstate unloaded

 mipmapframebuffer← set texturemipmap has to be streamed

Exact order independent transparency is not mandatorily used with illumination, for

example the geometry is rarely lit in real-time rendering performed for scientific visualization.

This is valid because order independent algorithms are usually employed to render object design

scenes in CADs. Therefore the following stage is optional.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

124

LIGHTS STAGE(scenelights)

IF lighting

 FOR light in scenelights

 depth ← depth buffer from VIRTUAL DEFERRED GEOMETRY STAGE

 fragments ← render light, generate fragments, cull using depth

 FOR visible fragment in fragments

 cluster ← determine location in lightgrid

 cluster ← cluster light

VIRTUAL TEXTURE STAGE (allscenemipmaps)

streamlist ← Ø

FOR mipmap in allscenemipmaps

 framestate ← state of mipmap in mipmapframebuffer

 cachestate ← state of mipmap in mipmapcachebuffer

 IF framestate AND NOT cachestate

 streamlist ← streamlist mipmap

FOR mipmap in streamlist

 stream mipmap from disk

 update virtual texture

 mipmapcachebuffer ← set mipmap

 In order independent transparency problems texture streaming determination can’t be

determined like in deferred rendering algorithms, just by querying the geometry buffer. Querying

all nodes would generate a very large cost in bandwidth, making the algorithm counterproductive.

Streaming can be elegantly implemented with two binary state buffers, one which holds the

state of the texture mipmaps for the current frame and one which holds the state of the texture

mipmaps for the entire virtual texturing cache. The maps are queried and filled by each fragment

during the geometry stage of the algorithm and are compared once in the texture stage, as shown

in the pseudocode. The shading stage of the virtual order independent transparency algorithm is

discussed here succinctly; it is presented in full detail in chapter 4.1.6.

SHADING STAGE

FOR microtile(2x2) in image

 allocate microtilecache

 FOR pixel in microtile

 list ← load the per pixel list into microtilecache

 FOR node in list

 node ← owner by pixel

 allocate extra space for texture coordinate derivatives

 sort list by depth

 synchronize microtile

 FOR pixel in microtile

 FOR node in list

 derivatives ← reconstruct derivatives from neighbors texture coordinates

 synchronize

 pixelocclusion ← 0

 pixelcolor← 0

 WHILE pixelocclusion < threshold

 node ← next in list

 IF lighting

 illuminate with lights from lightgrid

 nodecolor, nodealpha← load textures and shade

 pixelcolor, pixelocclusion ← compose with nodecolor and nodealpha

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

125

 VOIT can benefit from the same optimizations as the A-Buffer, thus it can be

implemented with compute indices in a geometry pass like in the transparency linked list offset

array method [Kno12] or with micro-pages [Cra10]. Both methods improve data coherency.

The offset array method uses a geometry pre-pass to compute the fragment list offsets for all the

generated fragments, thus VA-buffer can be implemented with exact lists per pixel instead of a

large list, guaranteeing data locality. The micro-pages method requires the implementation of a

critical section and stores fragments in large nodes, called pages. Because of this the number of

GPU links between the large nodes is much smaller than the normal number of links and data

cache coherency is increased.

In high quality rendering scenarios, where high dynamic range rendering is used, VOIT

also has superior storage and bandwidth consumption than the A-Buffer, as it is depicted in

Figure 48.

Figure 48 Virtual Order Independent Transparency – state of the art comparison. The image shows the bandwidth

and storage usage of the state of the art A-Buffer and the proposed VOIT List method. The A-Buffer variants are

displayed for both low dynamic range rendering (LDR) and high dynamic range rendering (HDR). While the

presented method has a slightly worse storage consumption than the state of the art LDR A-Buffer it consumes the

least bandwidth.

The presented virtual order independent transparency algorithm completely decouples

shading from geometry processing while processing the geometry only once. It has comparable

and results to the LDR variant of the A-Buffer, while offering HDR rendering quality.

Furthermore, the shading computation scales better than the A-Buffer because VOIT adapts to

the pixel opacity distribution.

A weakness of the presented algorithm is that objects must be textured with a single

texture mapping, as with other virtual data methods. The algorithm gracefully resorts to a simple

colorless A-Buffer in the case of real-time scientific visualization, where objects are rarely

textured, and the scene object components each have colors which encode their usefulness. In

this case the method only stores either the object id or the material id, as this information is

sufficient to determine the color in the reconstruction. Texture coordinates and their derivatives

are not computed, as they are not needed.

The presented algorithm processes and loads textures adaptively, only paying for

operations which are guaranteed to have a visual impact in the final image. Because of this,

VOIT is a bandwidth and cost efficient solution for detailed visualizations in real-time.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

126

A real-time scientific visualization is displayed in Figure 49, in which the importance of

order independent transparency is emphasized.

Figure 49 Virtual Order Independent Transparency – applications. Order independent transparency is particularly

useful in scientific visualization. The image above shows the difference in visualization quality of a technical scene.

The upper part of the image is normally shaded, while the lower part uses correct order independent transparency

rendering. The second image is superior from a CAD point of view, as it permits more accurate design, and a richer

perception of the objects with which the scene is modeled.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

127

3.6.2. Distribution Occupancy Maps

The state of the art approximated solutions for transparent object rasterization are not

good enough to render complex, non-uniform objects. Because such methods either approximate

or redefine the composition operator they are either too inexact or too rigid for complex

rendering scenarios. In general these methods are used to render low-frequency geometry, such

as fuzzy objects, because they are able to perform this rendering operation with acceptable visual

results and at a fraction of the cost that comes with exact solutions.

The most relevant methods that can produce high quality visual results are occupancy

maps and Fourier opacity maps. Both these methods approximate the depth distribution per pixel,

and use this distribution to redefine the composition operator. In the case of Fourier opacity maps,

the algorithm approximates the depth distribution by analyzing opacity as signal varying on the

depth axis. The signal is Fourier transformed and the Fourier coefficients are used to

approximate opacity in a second and final geometry pass. In the case of occupancy maps there is

an additional assumption that opacity is a constant , with which the composition operation is

changed into an opacity function over depth, which is commutative. As given by [Sin09] the

composition equation changes to:

This assumption can be used in real-time applications where there are many transparent

objects that have to be rendered, but the rendering quality can be less accurate and all the

rendered elements have similar opacity. These properties are common fuzzy, transparent objects

such as smoke, clouds or liquids.

Based on the same assumption this thesis introduces an improved variant of the

occupancy maps, distribution occupancy maps. The method uses per-pixel distributions in

order to make occupancy maps adaptive, by altering the occupancy bits resolution. Instead of

using a uniform distribution for all pixels, several simple uniform and multi-pole Gaussian

distributions are used. Because of the altered distribution of samples, the resolution is artificially

increased and the quality of opacity measured with occupancy maps increases.

Distributed occupancy maps use an additional buffer, the distribution buffer, which stores

occupancy in a uniform depth distribution, like a very low resolution occupancy map. The

algorithm stores this additional buffer for the current and the previous frame. The bits of this

distribution buffer are used to partition the full resolution occupancy map adaptively, based on

the depth distribution of the pixel fragments. Each partition of the full resolution occupancy map

uses a different, local, sampling strategy. The used sampling strategies are based on distributions:

uniform, multi-pole uniform, Gaussian, multi-pole Gaussian, sigmoid and multi-pole sigmoid

distributions. For an 8 bit buffer the sampling offsets of these distributions can be easily

precomputed and stored in small table, which resides GPU memory.

The basic idea of the distribution occupancy maps is presented in Figure 50.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

128

Figure 50 Distributed occupancy maps. Distributed occupancy maps enhance the state of the art occupancy maps by

adapting the occupancy map sampling process to the distribution of rasterized fragments on the depth axis. The

transparent composition is performed with the commutative opacity operator, which queries a function over the

depth axis of the fragment, as shown at the bottom of the image. Compared to occupancy maps, distributed

occupancy maps are more adaptable and use the samples more efficiently, therefore they produce better looking

results in non-uniform depth distributions while demoting to simple occupancy maps in the case of a uniform depth

distribution..

Before rendering, the algorithm allocates four buffers: two depth distribution buffers, one

for the current and one for the previous frame, the occupancy buffer and an offset map. The

occupancy buffer stores the occupancy on the depth axis of the pixel. The occupancy samples are

controlled by the depth distribution from the previous frame, through the offsets read from the

offset map, which stores data in the [0, 1] interval.

The two depth distribution buffers store the depth distribution bits for the current and

previous frame, because the presented algorithm uses one of the depth distribution buffers to

describe the current frame but uses the previous frame distribution buffer to query the offsets at

which it stores occupancy. A depth distribution buffer can be considered as a minuscule uniform

occupancy map, whose bits can be considered to represent an index. The index can be used in the

offset map to query the exact offset needed for the occupancy samples.

The offset map stores the offsets for the occupancy sampling points, for each depth

distribution. The offset map is divided into zones, one for each depth distribution area. Each zone

contains the offset for each occupancy sample, transforming the uniform distribution into a non-

uniform one.

The algorithm runs in two passes, the geometry pass and the shading pass, and it is a

coupled algorithm, which couples shading, visibility determination and texture fetching.

In the geometry pass the geometry is normally rasterized in order to obtain the fragment

depth. The fragment depth is used together with the previous frame depth distribution to properly

insert into the occupancy buffer. The current depth distribution buffer is used as a very low

resolution uniform occupancy map.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

129

In the rendering pass the geometry is rendered once more and the fragment colors are

computed based on the occupancy samples from the previous geometry pass, using the depth

distribution buffer from the previous frame. T

The outputted fragments are blended additively. The pseudocode for the proposed

algorithm is the following:

(ONCE) PREPROCESS

allocate the two depthdistributionbuffer, with resolution (e.g.)
allocate the occupancybuffer, with resolution (e.g.)

allocate an occupancyoffsetbuffer, with

allocate offsettmap, with sampling offsets for all depth distribution permutations
FOR permutation of bits of depthdistributionbuffer

 clusterid[← 0

 FOR set bit in permutation

 i ← bit index

 clusterid[i] ← i

 change ← true

 WHILE change

 change← false

 FOR set bit in permutation

 localchange ← true

 traversalbit← bit

 WHILE localchange

 localchange← false

 leftbit ← left neighbor bit of traversalbit

 IF leftbit set AND clusterid [leftbit] != clusterid[bit]

 clusterid[leftbit] ← clusterid[bit]

 localchange , traversalbit ← true, leftbit

 traversalbit← bit

 WHILE localchange

 localchange← false

 rightbit ← right neighbor bit of traversalbit

 IF rightbit set AND clusterid [rightbit] != clusterid[bit]

 clusterid[rightbit] ← clusterid[bit]

 localchange , traversalbit← true, rightbit

 N, index← 0

 WHILE index <

 IF clusterid[i] > 0
 N ← N+1

 WHILE clusterid[i+1] = clusterid[i]
 N, i ← N+1, i+1

 N ← N+1

 bounds[2N], resolution[N], distribution[N]← remaining unique clusters in clusterid

 FOR cluster in uniquecluster

 k ← number of unique cluster

 resolution[k]←

 IF bounds[2*k+1]-bounds[2*k] =1

 distribution[k] ← Gaussian

 ELSE
 cluster margins bits add sigmoid distributions over a single bit

 all inner margin bits add one uniform distribution

 offsettmap ← compute offsets for all the occupancy samples

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

130

GEOMETRY PASS (objects)

fragments ← rasterize primitives from objects
FOR fragment over pixel in fragments
 distribution ← previous frame depthdistributionbuffer, for pixel
 uniformoccupancysample ← determine uniform occupancy sample
 occupancysample ← uniformoccupancysample, distribution
 occupancybuffer ← set occupancysample
 depthbit ← determine bit occupied by fragment in depthdistributionbuffer
 depthdistributionbuffer← set depthbit

SHADING PASS (objects)

set outputmerge to additive
fragments ← rasterize primitives from objects
FOR fragment over pixel in fragments
 distribution ← previous frame depthdistributionbuffer, for pixel
 uniformoccupancysample ← determine uniform occupancy sample
 occupancysample ← uniformoccupancysample, distribution
 opacity← compute opacity for the number of set samples in the occupancymap, before occupancysample
 fragmentcolor ← shade with opacity
 OUTPUT fragmentcolor
OUTPUTMERGE final pixelcolor
previous depthdistributionbuffer ← current depthdistributionbuffer
curent current depth distribution buffer ← 0

As all temporal coherent algorithms, distribution occupancy maps suffer from temporal

artifacts. The algorithm is designed for low frequency geometry, where temporal artifacts are

imperceptible. An example of a rendering with distribution occupancy maps is given in Figure

51.

Figure 51 Distribution Occupancy Maps Results. This approximated order independent transparency algorithm

works best with low frequency geometry such as clouds, or smoke. Compared to the state of the art occupancy maps,

the presented algorithm adapts its sampling to the depth configuration of each pixel, therefore it obtains the same

results as occupancy maps for uniform depth distributions and better results for non-uniform depth distributions.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

131

3.7. Atomic Geometry Selection

The following section is based on the “Efficient picking through atomic operations”

article [Pet13]. It presents a selection algorithm, atomic geometry selection (AGS), which is

capable of selecting any type of renderable geometry.

Selection rendering, also named picking, is the process through which a single entity or a

list of entities is selected from a scene. The subject of picking is both a rendering and a collision

detection problem, with the majority of research being on optimizing the ray-scene intersection

problem.

Several algorithms that solve the selection problem exist in the context of rasterization,

but all of them lack several of the features of this proposed solution while, with one exception,

all being much more expensive in terms of computational time. The introduced method is able to

correctly select not only primitives but also any type of objects that may appear on the screen

at a fragment level including hardware instanced, alpha culled, hardware tessellated, hardware

animated and fuzzy objects. The proposed technique has optimal memory requirements and

offers the opportunity to select at micro polygon level and is not limited to the first contact,

offering the full intersection list per ray if required to do so.

Figure 52 Object Selection. In the left upper corner a rendering scene is presented, which contains many difficult to

select objects, such as the hardware instanced hardware tessellated ground, the alpha-culled palm trees and the fuzzy

geometry of the smoke. The presented method can select all intersected objects rasterized over a fragment, but

compared to all state of the art algorithms, it can account for alpha occlusion, thus it does not return the palm trees

behind the smoke. Wrinkled surface geometry selection is presented in the right upper corner. In the left lower

corner selection is performed on multiple billboards, returning a list of all the intersected surfaces. In the right lower

corner alpha culled selection is presented. The tree support geometry is shown in the highlighted blue rectangle.

The proposed technique offers further unique opportunities such as flexible fuzzy object

selection and takes into account opacity accumulation from transparent objects, in the case of

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

132

multiple transparent objects per fragment. Some of the most interesting selection cases handled

the presented algorithm are shown in Figure 52.

The selection problem has been solved through geometry intersection [Las03], micro-

raster rasterization [Nei93], color picking buffer methods [Wri10], geometry stream out [Wri10]

and atomic selection [Ric12].

The geometry intersection method requires ray-scene intersection, which can solve

multiple intersections per fragment but has the intersection complexity of , where is

the number of primitives in the scene. This method does not work with fragment level effects

such as alpha culling. The geometry intersection can also be implemented as depth picking over

a deferred geometry buffer, as the depth stored in this buffer uniquely identifies the closest

camera-geometry intersection, which lowers the intersection cost to but enforces depth

storage and returns only the closest surface-camera intersection, as there is no depth stored for

occluded fragments.

Micro-raster rasterization renders the entire scene into a minuscule raster, which has a

high geometry processing cost, because the scene has to be rendered multiple times. The atomic

selection method can be considered as a one pixel micro-raster variant, which does not process

the geometry multiple times. On the other hand the method does not handle multiple

intersections per fragment.

Color picking buffer methods work by encoding the object id into a color representation.

They use an additional screen output buffer, in which this encoding color is stored, and which

can be used to uniquely determine the first camera-surface intersection point for each pixel. As

the geometry intersection method, the color picking method can’t handle multiple intersections

per fragment.

The geometry stream out algorithm uses a buffer which is filled from the geometry

shader in the stream out/transform feedback hardware rasterization stage. It can handle multiple

intersections per fragment, but it does not work at fragment level even though it is a conservative

method. Furthermore, the method can’t handle fragment level effects such as alpha culling.

The main contribution of the presented selection algorithm is that it uses a atomically

synchronized selection area buffer in which all the fragments that are rasterized over it store

surface intersection points. The entire list is then sorted over the depth axis, in a process similar

to that used in the GPU A-Buffer algorithm [Bar11].

The entire surface-camera intersection point saving process is performed at fragment

shader level, thus the presented method can accurately detect pixel level visibility, which is very

important for wrinkled surfaces and alpha culled geometry. Compared to the state of the art

methods the presented method does not allocate more storage than what it needs, and processes

only the relevant surface-camera intersection points without rendering the scene geometry

multiple times. The algorithm also gracefully handles any geometry altering methods such as

tessellated displacement mapping or instancing.

This selection and accumulation process is displayed in Figure 53.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

133

Figure 53 Atomic Geometry Selection Marching. The atomic geometry selection algorithm stores camera-surface

intersection points per selection zone, which can be either a single pixel or a large area. The intersection points are

stored in linked list, synchronized through atomic operations. The linked list is finally depth sorted and walked. The

walk computes the accumulated opacity and ends as soon as the alpha channel is completely occluded.

The presented algorithm works on a selection zone, which can either be a single pixel or

large number of pixels in a rectangle area. The algorithm starts at the vertex shader level, and

sends further down the pipeline the object id, provided by the application and the vertex id and

the instance id, which are freely provided by the rendering pipeline.

If the rendered geometry has tessellation stages, each micro polygon created with

hardware tessellation receives a unique id based on a simple spatial hash, which is valid only for

at primitive level. The spatial hash can be any sufficiently rare hash function that uses the

tessellation barycentric coordinates generated by the tessellator unit, for example:

This unique id is then used to uniquely identify transient geometry, which is never

permanently stored. Therefore the presented selection algorithm can select and work with sub-

primitive geometry. The method uses a geometry shader to determine the rendered primitive id.

The geometry shader sends the primitive id to the fragment shader, along with the vertex id,

instance id and object id received from the vertex shader and, optionally, the unique id generated

in the tessellation stage.

The fragment shader then uses all the ids to store the intersection point, along with depth

and opacity of the fragment. The intersections points are stored in a buffer, named the picking

buffer, which is per-selection zone linked list. Access to the linked list is synchronized through

atomic operations.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

134

The selection method ends with either a CPU or a compute shader stage, which sorts by

depth and then walks the stored intersection points. Front to back composition is performed only

to determine opacity. The walk ends as soon as the alpha channel reaches total opacity, thus the

algorithm does not return occluded camera-surface interaction. This is the pseudocode for the

atomic geometry selection algorithm:

INTEGRATED IN RASTERIZATION (selectionzone, objects)

FOR pixel in selectionsonze pixels

 count ← 0

 selectionlist← 0

FOR primitive in objects

 IF hardware tessellation used

 TCS ← ObjectId, InstanceId, VertexID←VS

 TES ← data ← TCS

 barycentric ← TES

 GS ← TransientID ← hash(barycentric)

 ELSE

 GS ← ObjectID, InstanceID, VertexID←VS

 FS ← PrimitiveID ← GS

 IF geometry shader instanced

 FS ← GSInstanceID ← GS

 IF fragment selectionszone

 depth, opacity ← fragment depth

 data ← ObjectId, InstanceId, VertexID, TransientID, PrimitiveID, GSInstanceID, opacity

 IF fragment opaque

 entry, entrydepth ← first entry in selectionlist

 IF entry empty OR entrydepth > depth

 save data to first entry in selectionlist

 ELSE

 save data to count+1 index in the selectionlist

 count ← count + 1

CPU/GPGPU (selectionzone, objects)

selected← Ø

FOR pixel in selectionzone

 opaqueentry ← first entry in selectionlist

 IF opaqueentry not empty

 selected ← selected opaqueentry

 ELSE

 list ← selectionlist, count for pixel

 sort list after depth

 fragmentopacity ← 0

 WHILE fragmentopacity < threshold

 node ← next in list

 opacity ← node opacity

 fragmentopacity←accumulate opacity in front to back order

 selected ← selected node

The selection algorithm is compared to the state of the art methods in Table 8. The algorithm

combines all the strong features of the state of the art methods while still adding more useful properties

such as micro primitive selection, fuzzy object selection, alpha occlusion awareness or zone selection.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

135

Selection algorithm Selection Algorithm Properties

Correct

Picking

Alpha

Occlusion

Aware

Selects all

per pixel

intersections

Storage

10 fragments

@1080p

Geometry

passes

Hw.

Instan-

cing

Hw.

Tessel-

lation

Fuzzy

Selection

Ray casted Geometry

Intersection
no no yes

not

applicable

not

applicable
no no no

Depth Buffer

Geometry Intersection
yes no no 66.35 mb 1 yes no no

Micro-Raster yes no yes 320 b 2 yes no no

Color Selection yes no no 49.76 mb 1 yes no no

Atomic Selection yes no no 320 b 1 yes no no

Transform feedback no no yes 320 b 1 yes yes no

AGS (this algorithm) yes yes yes 320 b 1 yes yes yes

Table 8 Comparison of selection algorithms. The atomic geometry selection (AGS) algorithm combines the best

aspects out of the state of the art methods, while also enabling transient geometry and alpha occlusion selection.

Because of the novel selection opportunities offered by the presented selection algorithm,

it can be efficiently used in the wrinkled surface asset baking process, where it can displace the

transient geometry of a tessellated mesh, which would then be directly saved in displacement

maps. This is presented in Figure 54.

Figure 54 Other uses of selection. The selection algorithm can be used in the baking process of displacement maps.

It can be used to load low resolution real-time assets, dramatically increase their primitive count dynamically

through hardware rasterization and perform vertex displacement manually or with an intelligent tool. When the

geometric displacement process is finished, the displaced transient geometry is saved directly into a displacement

map. Thus, displacement map editing baking can be performed directly on the real-time assets.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

136

4. ILLUMINATION

This chapter describes the second part of the proposed rendering pipeline, which computes

global illumination and shading. The modules and algorithms presented in this chapter are

succinctly depicted in Figure 55; the green modules represent thesis contributions.

Figure 55 Illumination Overview. The chapter is subdivided into two large modules: Approximative Illumination

and Correct Illumination. Approximative Illumination solves the global illumination problem through a combination

of several rendering algorithms, using shadow mapping, virtual lights and screen space cone tracing, effectively

decoupling light transport. The Approximative Illumination module contains many contributions. Conservative

Inexact Voxelization is a fast voxelization algorithm designed for many/virtual light generation and shadowing. The

shading of opaque objects is handled through the shading part of virtual deferred, a novel deferred algorithm which

decouples texture bandwidth from visibility determination. Antialiasing for deferred rendering is done with an

improved reconstruction method for the sub-pixel reconstructed antialiasing. The shading of transparent objects is

computed with the shading part of virtual order independent transparency, a new bandwidth decoupled adaptive

order independent transparency algorithm. In contrast to the Approximative Illumination module, the Correct

Illumination module solves the illumination problem with a monolithic path tracing framework, accurately

simulating light transport. The module renders images with a bidirectional path tracing algorithm which uses

amortized visibility which lowers to cost of tracing rays. The bidirectional path tracer adapts the conservative

inexact voxelization algorithm to path tracing, using it to trace fast conservative inexact rays, which can be then

used to prevent the tracing of exact rays. The algorithm also uses a new type of importance sampling, Light Flux

Importance Sampling, which generates a map of all the flux of light of the scene. This map is then used to quickly

guide paths to vertices from the light tracing pass of the bidirectional path tracer.

The chapter is subdivided into two large modules, which tackle the global illumination

problem with different approaches: the Approximative illumination module runs in real-time and

the Correct Illumination module runs offline. It can also run at a very low number of frames per

second, at the edge of interactivity, if computed on the GPU. Except for the shadow mapping

algorithm used in the Approximative Illumination module the entire Illumination pipeline is not

dependent on rasterization.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

137

The Approximative Illumination module tackles global illumination from a real-time

standpoint, using approximated visibility operators for light propagation. The module uses the

inputs created by the Geometry Processing stage, such as the virtual deferred geometry buffer

and the virtual order independent transparency per-pixel lists. The exact connection between the

Illumination pipeline and the Geometry processing pipeline is shown in Figure 2. The

illumination process is decoupled into multiple algorithms and rendering paths, each of which

handles specific light paths. While the visual results are pleasing and close to photorealism a

large number of light paths, the Approximative Illumination module can’t simulate difficult

types of light paths, for example light paths with multiple highly specular surface interactions.

The Approximative Illumination module approximates the potential impact of the scene

lights received from the geometry processing pipeline and selects a few of them, which are

considered dominant lights. Shadow maps are rendered for each of the dominant lights,

maximizing the quality of the visibility operator for easy to perceive illumination. Each shadow

map rendering uses the hierarchical culling algorithm presented in Chapter 3.4. The rest of the

illumination is decoupled between low frequency (diffuse) and high frequency (specular).

A new light transport method is presented, which accelerates low frequency lighting by

approximating the visibility operator through conservative inexact voxelization (CIV). CIV is an

object-level acceleration structure which can be quickly created and used to determine a fairly

accurate geometric composition of the scene. This geometric representation can be then used to

trace visibility determination rays for the random walks used by the virtual light generation

system, which generate virtual lights. The virtual lights are stored into a cluster acceleration

structure. The CIV structure is then used to trace the visibility determination rays for the

secondary lights.

Specular light transport is notoriously difficult to simulate correctly in real-time. Correct

specular transport requires visibility determination mechanisms which work at high frequency,

such as rays, paths or photons. These high frequency operations generate incoherent memory

walks which greatly slow the rendering process, especially for streaming many-core architectures

such as GPUs. While there are solutions for high quality approximations for specular transport in

real time [Cra14], they require total data control, which in turn leads to resolution problems

since volumetric solutions can’t express detail as efficiently as analytical solutions, leading to

impractical storage requirements. Hybrid solutions [Mar14] [Her14] hold the most innovation

promise since they reconstruct high frequency signals from cheap to obtain or already existing

data, without needing further geometry processing, which is extremely expensive in large real-

time dynamic scenes.

Shading is performed in a tiled manner and there are separate shading phases for opaque

and transparent objects. For each shading phase, each micro tile 2x2 pixels loads data for a small

number of GPU threads.

In the opaque shading phase the tiles load the modified G-buffers created by the virtual

deferred algorithm, a novel deferred method presented in the Geometry Processing pipeline,

chapter 3.5.2. The modified G-buffers are then intersected with the clustered lights and shading

is performed over texture data read through virtual texturing.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

138

In the transparent shading phase the tiles load the modified A-buffer lists created by the

virtual order independent transparency algorithm, a new transparent rasterization method

presented in the Geometry Processing pipeline, chapter 3.6.1. The modified A-buffer lists are

then intersected with the clustered lights and composited. The composition is performed front to

back and it ends as soon as the alpha channel is completely occluded, thus, the shading is

computed adaptively. The texture data read for shading is also adaptively loaded through virtual

texturing, paying the bandwidth cost only for contributing modified A-Buffer nodes.

The module contains a novel, decoupled antialiasing algorithm, specialized for deferred

renderers. The algorithm is named decoupled sub-pixel reconstruction antialiasing (DSRAA) and

is an improvement over the state of the art sub-pixel reconstructed antialiasing (SRAA) [Cha11].

It requires only a minor integration step in the geometry processing pipeline, where it generates

multiple depth samples per pixel, for which the depth test is run. It can optionally multisample

normals for an even higher quality reconstruction. The method integrates in the geometry

processing pipeline without affecting other The reconstruction phase of the algorithm uses

neighbor matching, in order to more accurately filter the unshaded depth samples.

The Approximative Illumination module ends with a short post processing phase, which

is shared with the Correct Illumination module.

The Correct Illumination module tackles global illumination from a correctness

standpoint. The module uses special acceleration structures, an exact light transport mechanism

and only uses approximations to accelerate the sampling processes. In contrast to the

Approximated Illumination module, the correct illumination module is monolithic and coupled,

solving the illumination problem in a single, consistent mode. The visual results are exact; the

precision is limited only by the number of used samples.

The Correct Illumination module can run on both CPU and GPU, but it is not a real-time

module, and it is only presented as a visual reference generator. The presented algorithms will

run in real-time with better consumer hardware.

Since the module performs exact tracing it needs a different type of acceleration structure

than the one used in the real-time path, therefore a Bounding Interval Hierarchy has to be

maintained over the scene geometry. The cost of tracing rays is amortized with a modified

conservative inexact voxelization structure. The module renders images with the bidirectional

path tracing algorithm, with different types of importance sampling, including the novel scene-

wide light flux sampling algorithm. Compared to the state of the art, the light flux algorithm

approximates light flux over the entire scene and it used to guide unproductive paths to light

vertices produces by light paths. In essence, light flux is a global sampling mechanism which is

faster, more efficient from a storage standpoint and easier to implement than other high energy

importance sampling mechanism such as Metropolis [Vea97], Energy Redistribution [Cli05] or

Skeleton importance [Bir12].

The Correct Illumination module ends with a short post processing phase, which is shared

with the Approximative Illumination module.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

139

4.1. Approximate Illumination Stage

The approximate illumination stage is a perception based rendering approach to global

illumination which seeks to render photorealistic images without any preprocessing. It uses

different approximative visibility determination operators for indirect diffuse light transport and

indirect specular light transport and accurate visibility operators for direct light transport,

maximizing the efficiency of easy to perceive light transport. The greatest weakness of the

approximate illumination pipeline is the light transport over complicated specular light paths,

which is a common theme in real-time render, as these paths need accurate visibility operators

which can’t be implemented without ray tracing, path tracing or photon mapping, which are far

from being acceptable real-time rendering solutions.

The presented method is based on the many lights rendering paradigm. While the

paradigm supports accurate specular transport [Sim15], it does so at a cost which rivals ray

tracing, path tracing and photon mapping. Specular light transport has been solved through

sparse voxel cone tracing [Cra09], but it only works properly on extremely high resolution voxel

representations which require extensive pre-processing, and such constraints are impractical for

real-time rendering of massive dynamic scenes. Thus, the maximization of the most important

rendering features from a perception standpoint [Wat13] [Sha73] indicates that hybrid solutions

offer the best results in real-time.

The rendering solution combines rasterization through the shadow maps used the for

direct visibility of dominant lights, many light methods for the secondary lights and the

generated virtual lights, approximate ray tracing for the shadows of secondary lights and

approximate cone tracing for indirect specular transport. Much of the approximated visibility

operations are implemented through a novel acceleration structure named Conservative Inexact

Voxelization (CIV), which is created from the bounding boxes of objects instead of the geometry

of the objects and is thus extremely fast to compute. The many lights are generated with random

walks inside the CIV. The shadows for secondary lights and the virtual lights are computed by

tracing inside the CIV. The specular light transport is screen space cone tracing and CIV is used

to augment the algorithm in many of its failure cases.

The approximate rendering pipeline first computes light transport for dominant lights,

with state of the art shadow map techniques. Then the conservative inexact voxelization is

performed for the scene objects. Secondary light sources are used to transport light, through the

CIV visibility operators. Through ray traced random walks the pipeline generates thousands of

VPLs.

4.1.1. Light transport for Dominant Lights

The dominant lights are solved with shadow mapping because it benefits from the

coherency of rasterization and thus provides the highest quality visibility operator that can be

used for real-time rendering. While rays can also be used for the visibility determination operator,

they are inherently incoherent and the cache access penalties decrease the rendering speed too

much. Tracing into a coherent structure like down in sparse voxel cone tracing [Cra09] needs a

very detailed acceleration structure, which makes the storage costs impractical for high quality

rendering. The voxel space structure is also a bad fit for dynamic objects, which means that the

structure has to be recomputed per frame. Because of these reasons shadow mapping is the most

cost effective high quality direct visibility determination process. There are many approaches to

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

140

shadow mapping: precision warping methods [Sta02] [Wim04] [Mar04] [Kol12] [Llo06]

[Ros12], partitioning [Dim07] [Zha06] [Lau11], adaptive sampling [Fer01] [Gue07], analytical

reconstruction [Dai08] [Ros12], volumetric [Lok00] [Pag04] [Yuk08] [Sal10] [Kim01] [Jan10]

[Sal101] [Che11], temporal [Sch13], ray traced [Sto15] or distance field based [Zho05].

The presented rendering pipeline uses cascaded ray-trace shadows, which are filtered in a

screen space pass [Bag10] with altered kernel size as introduced in [Ran05]. The solution

renders the scene from the light point of view and instead of storing depths, it stores the indices

of the primitive from which the depth is normally stored in classic shadow mapping [Wil78].

In the rendering pass the primitives in neighborhood around the pixel are streamed and

filtered, based on the depth comparison test from the reconstructed primitive position and the

current fragment position. This test is performed in a vicinity, with a kernel identical to that

defined [Ran05], and the results are then combined into a weighted average. This enables high

quality shadow generation and requires the same amount of samples. While the technique can

suffer from aliasing, this can be mitigated through rendering with level of detail geometry or

with and hierarchical impostors. Aliasing can also be mitigated through multisampled ray traced

shadow maps, which can reconstruct the depth more accurately. The algorithm is shown in

Figure 56.

Figure 56 Ray traced shadow maps. The shadow maps do not store depth, but the primitive ID of the primitive

whose depth would normally reside in the shadow map, as shown in the upper left corner of the image. The colors

are generated from a hash of the primitive id. The lower left corner of the image shows the reconstruction process.

Each primitive is then loaded into memory and the depth is computed analytically for each primitive, through

camera ray – primitive intersection. The analytically reconstructed depth is also filtered with PCSS and it shows

little alias, as can be seen in the final result, shown in the lower right corner and in the reconstructed light depth

view, shown in the upper right corner.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

141

4.1.2. Conservative Inexact Voxelization

Inexact representation of objects is very useful in rendering because it enables fast

approximative representations of scene data. This principle has already been explored many

times in global illumination, because it decreases the cost of the visibility determination

operation, which in turn speeds up rendering. Inexact object representation has been done with

point based rendering [Rit08], point based reconstructions and convex hulls, screen space

voxelization [Eis08], imperfect voxelized shadow maps and volumes [Wym13], dense point

clouds as imperfect volumes [Mav11] and sparse voxelization [Cra09]. The majority of these

methods are or can be considered to be voxelization variants, being either bidimensional

voxelizations such as the imperfect shadow maps method [Rit08] or tridimensional voxelizations.

In the case of the bidimensional algorithm it has to be performed per light.

The problem with these methods is that the cost of voxelization is still very high, and the

voxelization has to be computed for each frame in dynamic scenes. These reasons make

voxelization based methods either barely interactive in the context of a large rendering pipeline

or totally dependent on heavy preprocessing, which quickly becomes useless for dynamic

environments.

In this thesis a new voxelization method is presented, which differs from the state of the

art methods in several ways: it is a much a less exact but conservative representation and it is

extremely cheap to compute.

This method, named Conservative Inexact Voxelization (CIV), is intended to be used

with virtual lights methods, as presented in the 4.1.3 Chapter, where the inexact representation of

scene geometry can be used in the transfer of low frequency (diffuse) light. There CIV is used to

relax the cost of the visibility operator, speeding up the demanding task of virtual light

generation.

CIV takes a different approach to voxelization, being a top to bottom algorithm. This

choice is responsible for the speed of the algorithm as it guarantees an extremely low complexity,

 , compared to the state of the art complexities of or

 . The method also uses all the existing scene geometry data usually found in

real-time deferred rendering, back projecting information from the geometry buffer into the

inexact voxelization, in order to maximize the precision for the visualization frustum. CIV uses

hierarchical impostors, such as the ones presented in Chapter 3.2.3, but it can be adjusted to work

without them.

The main idea of CIV is create a high resolution hierarchical representation of the scene

geometry, highly accurate for data inside the visualization volume and inexact for the rest of the

data. This is stored as a mipmapped tridimensional texture.

The algorithm runs in multiple stages: culled object determination, culled object

voxelization, depth buffer reprojection and mipmap population. In the culled object

determination stage, the algorithm runs hierarchically through the objects of the scene, a step

which can be integrated with the culling method presented in Chapter 3.4. The algorithm walks

the scene tree and inexactly determines which objects or scene nodes are to be voxelized,

terminating the walk based on the distance from the camera. Only the scene nodes and objects

outside of the visualization volume are voxelized in this step. This can be determined by

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

142

hierarchical depth buffer culling. The results can be stored in a draw list, like the ones used for

transparent or opaque rasterization in the culling chapter.

In the culled object voxelization stage the algorithm expands each element to its axis

aligned bounding box saves a single entry in the CIV texture, in the mipmap which is closest in

size to the size of the axis aligned bounding box. Thus, the entire bounding box is added to the

CIV texture highest resolution mipmap that encases it. In the case of highly elongated objects, in

which the object sizes are unevenly long, the voxelization algorithm uses a geometry shader to

dice the original bounding box into multiple smaller boxes, which are then saved into the CIV

mipmaps. The impostors of important objects can have their depths projected on the boundary of

the CIV texture. The CIV texture can represent the existence of objects in binary, thus even a

large resolution CIV texture requires only little storage.

 In the depth buffer reprojection stage, the depth buffer is used as a geometry information

source, and all the depth buffer entries are back projected inside the CIV texture, in the highest

resolution mipmap.

The mipmap population stages use a tridimensional push-pull process in which the

mipmaps are populated based on the already stored information. This produces accurate results

inside and in the vicinity of the visualization volume, and inexact results further away, making

CIV an ideal solution for low frequency light transport through approximative ray tracing of

shadows and virtual light random walks. The algorithm is visually presented in Figure 57.

Figure 57 Conservative Inexact Voxelization. This image shows the construction of a Conservative Inexact

Voxelization (CIV), an inexact representation of scene geometry. The method uses the depth buffer data to

guarantee a highly accurate representation for the geometry inside the visualization volume while using a fast

inexact bounding box dice and voxelize process for objects outside of the visualization volume. Each bounding box

is diced if it has uneven sizes. Each of the diced bounding boxes is then saved as a single entry, in the highest

resolution mipmap which completely encases it. Because of this CIV construction is very fast, when compared to the

state of the art methods. CIV can also make use of hierarchical impostors.

The CIV texture is then used as a ray tracing visibility determination support, which can

use ray tracing over voxels optimizations such as empty space skipping. The pseudocode for CIV

construction is the following:

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

143

PREPROCESS
allocate texture with mipmaps for CIV
reset all data before each rendered frame

CULLED OBJECT DETERMINATION
currentnode ← root
walkqueue ← root
voxelizationqueue ← Ø

WHILE walkqueue not empty
 node ← pop walkqueue
 IF node inside the visualization volume (cull node bounding box against hierarchic depth buffer)
 CONTINUE
 ELSE
 distance ← distance between camera and node
 IF distance > threshold
 voxelizationqueue ← voxelizationqueue node
 ELSE
 children ← children of node
 walkqueue ← walkqueue children

CULLED OBJECT VOXELIZATION
voxelizationqueue← CULLED OBJECT DETERMINATION
WHILE voxelizationqueue not empty
 node ← pop voxelizationqueue
 aabb ← node axis aligned bounding box
 minlength, maxlength ← min(aabb.x, aabb.y, aabb.z)
 IF minlength << maxlength
 boxes ← dice aabb into multiple even boxes
 FOR box in boxes
 CIVmipmap, cluster ← compute which mipmap entry best encases box
 flag cluster inside the CIVmipmap as occupied

DEPTH BUFFER REPROJECTION
depthbuffer ← G-buffer
FOR pixel in screenpixels
 depth ← sample depthbuffer at pixel
 position ← reconstruct position from depth
 cluster ← determine cluster in CIV mipmap 0
 flag cluster of the CIV texture mipmap 0 as occupied

MIPMAP POPULATION

mipmap= max CIV mipmap level
WHILE mipmap > 0
 FOR pixel in mipmap
 IF pixel is occupied
 children ← four pixels from mipmap-1 which are encased by pixel
 IF any child in children is occupied
 set the pixel to occupied
mipmap =0
WHILE mipmap < max CIV mimpap level
 FOR pixel in mipmaplevel+1
 children ← four pixels from mipmap which are encased by this pixel
 IF any child in children is occupied
 set the current pixel to occupied

The CIV texture storage can be modified to suit the needs of the renderer. If the renderer

requires only inexact visibility for diffuse illumination than the CIV stores a single bit per pixel,

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

144

which is set when geometry is present. In this case a detailed 512x512x512 resolution would

only require 16MB of GPU storage. If the renderer is used in for scattering effects, then the

storage can be modified to a one byte per pixel structure, which holds one bit for transparent/slid

geometry presence, one bit to differentiate between solids and transparents and 6 bits for either

opacity or solid normal direction. In this case a detailed 512x512x512 resolution would only

require 134MB of GPU storage.

If the renderer is used in more complex scenes, which contain scattering and indirect high

frequency illumination, then the CIV storage can be modified to a 2 byte per pixel structure,

which holds a bit for geometry presences, a bit to differentiate between solids and transparents

and 14 bits which are either used for color (12 bits) and transparency (2bits) or for participating

media transparency (5bit) and participating media color (9 bit). In this case a detailed

512x512x512 resolution would only require 268MB of GPU storage. In the case of specular

lighting, tracing is also performed in screen space if the screen space resolution is superior to that

of the CIV. This can be also applied to diffuse lighting, but it is not mandatory from an artifact

suppression point of view.

Storage Type / Storage Requirements 128x128x128 256x256x256 512x512x512 1024x1024x1024

Simple (1bpp) 262.14 KB 2.09 MB 16.77 MB 134.21 MB

With transparents (1Bpp) 2.09 MB 16.77 MB 134.21 MB 1.07 GB

With transparents and colors (2Bpp) 4.18 MB 33.54 MB 268.42 MB 2.14 GB

Table 9 Conservative Inexact Voxelization Storage Requirements. Conservative Inexact Voxelization can either

store the state of geometry in a single flag per pixel, store opacity information for transparents at one byte per pixel

or store specular lighting information at two bytes per pixel. The storage structure can be modified depending on the

needs of the renderer.

CIV consumes varying amounts of storage, depending on the rendering strategy, as

shown in Table 10, but it compares positively with the state of the art methods, as shown in

Table 10.

Rendering Algorithm \

Comparison Criterion

Full scene

data
Conservative Complexity

Ray Tracing

Support

Scattering

Support

Point Cloud Geometry

Reconstruction
yes no O(vertices) no no

Point Cloud Convex Hull yes yes O(vertices) no no

Imperfect Voxelized Shadow Maps yes yes O(lights*vertices) no partial

Screen Space Voxelization no yes O(primitives) partial partial

Imperfect Volumes yes no O(primitives) yes yes

Sparse Octrees yes yes O(primitives) yes yes

Conservative Inexact Voxelization

(this algorithm)
yes yes O(objects) yes yes

Table 10 CIV and the state of the art. Conservative Inexact Voxelization is can be constructed much faster than all

the other state of the art voxelizations, because it works directly at object level. Despite being an inexact

representation, CIV is conservative, therefore it can be used to query the approximative structure of the scene.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

145

The CIV algorithm can be optimized through many mechanisms. The construction cost

can be paid once for state objects and amortized over multiple frames for the dynamic objects.

This can also be used in combination with a temporal reprojection mechanism. Sparse storage

methods can be applied to CIV to lower the storage requirements. Filtering over multiple reads

into the CIV texture can be used to antialias traced rays.

The key property of conservative inexact voxelization is that if it is used as an

acceleration structure for tracing rays, it offers a varying visibility operator, accurate inside

the visualization volume and coarse outside it. This property is very useful for real-time light

transport algorithms because it adapts to the perceptually important areas of the scene. It can be

used for both low frequency and local high frequency light transport, and it is used chapters

4.1.3.1 and 4.1.3.2. The property it is presented in Figure 58.

Figure 58 Varying Visibility Operators With Conservative Inexact Voxelization. This image shows how the

conservative inexact voxelization algorithm can be used as a ray tracing acceleration structure. Because tracing

inside the CIV is significantly more coherent than tracing inside a normal ray-tracing acceleration structure such as a

kd-tree, the cost of visibility operations is much lower, while the quality is comparable inside the visualization

volume, the area most perceptually important. Because CIV is also conservative, the tracing is conservative and no

light transport can be done through geometry.

 The presented voxelization method does not provide exact visibility, but it provides a fast

conservative approximation of it. This property is sufficient for some light transport algorithms

such as many light methods or secondary light shadowing. For real-time rendering purposes the

presented structure provides a much faster generation method while still maintaining raster

resolution accuracy inside the visualization volume. The presented conservative inexact

voxelization is used in a modified instant radiosity algorithm in the next chapter.

 The algorithm is also used to improve the fail cases of the screen space cone tracing

algorithm, a high frequency light transport algorithm which works with approximated geometric

information.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

146

4.1.3. Light transport for Secondary Lights

Light transport for secondary lights is a notoriously difficult real-time rendering problem,

for which a large number of solutions has been proposed. The difficulty to solve this is given by

the nature of the simulated transport, which is expressed in the following equation, after [Kaj86]:

The bulk of the rendering time is usually dominated by visibility determination

operations [Hav14] and the equation is by definition recursive, which quickly leads to incoherent

visibility determination tests. But incoherent data accesses lead to the most costly operations in

computer science, cache misses. And if the visibility queries are forced to be coherent through

rasterization algorithms, than this leads to large number of passes over the entire scene as

rasterization does not support recursion, as do path/ray/photon tracing. Furthermore,

path/ray/photon tracing require acceleration structures, which have to be recomputed per frame,

which further complicate rendering.

The problem is a long standing one and many approximations have been proposed. One

of these approximations families, the many light algorithms, use few visibility operations to

transfer large amounts of light, an approach compatible with the needs of real-time rendering.

While this is practical with only a relatively small number of light transfers, the visual quality

downgrade is acceptable in the context of real-time applications. Furthermore, this class of

algorithms is inefficient for high frequency light transport.

This chapter uses a decoupled light transport solution, using different algorithms for low

frequency and high frequency light transport. For low frequency (diffuse) light transport a novel

method is presented. For high frequency (specular) light transport, a modified version of screen

space cone tracing is used, which has its failure cases augmented with data from the low

frequency solution. The two light transports algorithms have their results combined, to obtain the

total light transport.

4.1.3.1. Light transport for Low Frequency Light

The many lights methods are based on instant radiosity [Kel97], which uses random

walks inside the scene to transfer large amounts of light at once, which spawn many virtual lights,

giving the many/virtual lights method its name. But in order to transfer these large amounts of

light, the algorithm requires recursive visibility operations, which are impossible to implement

efficiently through rasterization, therefore in the presented variant they are performed with rays.

This problem makes instant radiosity especially difficult to implement for scenes with poor light

transport, where the random walks need to trace more rays.

In this chapter a novel variant of instant radiosity is presented, in which the random walks

are performed using ray tracing over a conservative inexact voxelization of the scene geometry.

Because of this, the rendering equation used by this method has a different visibility operator

than the exactly traced normal operator. But the introduced operator is both conservative and

coherent, therefore it is sufficient for virtual light transport, as this operator is not used in the

illumination computations directly. The modified visibility operator concept is shown in Figure

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

147

57. The visibility operator is used for both tracing the random walks which spawn the virtual

lights, as displayed in Figure 58, and for tracing the shadows for the virtual lights.

The virtual lights are generated with a random walk process. A small number of samples are

generated for each scene light. Distant lights are clustered together in hierarchic impostors,

which then have their light emission sampled. The same procedure is applied to skyboxes, area

and volume lights and impostor lights. The samples are generated from Halton sequences, which

converge faster in

 , compared to using random number series

 , where is the

number of sampled dimensions and is the number of samples. Care must be taken to drop the

first few entries every other entry in the series, to minimize sample correlation and variance.

Each sample is traced, in a process similar to light tracing. Mutation strategies like [Seg07]

[Seg061] can be optionally used. Each vertex of the path is treated as a potential virtual point

light (VPL).

Depending on the type of CIV storage, the presented variation of instant radiosity can

correctly perform color bleeding or not. For a CIV structure that does stores color (color bleeding

is not available for the 1bit storing mode), the energy received and assigned to each virtual point

light is given by the following equation (based on [Vea95]):

Where is the sample position on the light, is the next vertex in the path, is the last

vertex in the path, is the length of the path, is the reflectance function and is the

angle between the incident light direction and the surface normal. If a Lambertian reflectance

function is used, as in the original instant radiosity paper [Kel97], then the equation becomes

identical to that given by Veach and Guibas, with the

 term [Vea95].

Scattering is also considered, if the used CIV storage supports it, changing the VPL energy

equation to:

Where is the number of scattering events between and , is the scattering

probability, is the incoming radiance to the j-th scattering event.

Not all the generated VPLs are saved, the rejection criteria for unimportant samples [Geo10]

is that a sample must be either directly visible from the camera, or be directly linked with VPL

that is directly visible from the camera.

The VPL generation process is presented in Figure 59.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

148

Figure 59 Virtual lights generation. Virtual lights are generated though random walk process, in which rays are

traced in the conservative inexact voxelization acceleration structure. Each vertex of a random light path is a

potential virtual point light. The samples are rejected based on their impact in visualization volume, shown in blue:

the red samples are rejected, while the green samples are accepted.

The pseudocode for the modified instant radiosity is the following:

PREPROCESS
allocate texture with mipmaps for CIV
compute CIV

VPL GENERATION
scenelights ← scene lights
lightsqueue ← scene lights and light impostors
WHILE lightsqueue not empty
 node ← pop lightqueue
 samples ← generate n samples with Halton sequence, with position and radiance
 FOR sample in samples
 walkvpl ← Ø
 WHILE max recursion depth not reached
 trace until surfacehit
 FOR event in scattering events
 compute inscatter and outscatter
 compute surface interaction
 vpl ← generate potential virtual point light
 walkvpl ← walkvpl vpl
 WHILE walkvpl not empty
 vpl← pop walkvpl
 IF vpl succeeds rejection sampling

 scenelights ← scenelights vpl

 The presented instant radiosity variation can benefit from established scalability methods

for many light algorithms such as the amortization of virtual light generation over multiple

frames for both reduced computational effort and flickering prevention. While lightcuts [Wal05]

[Wal061] [Wal12] [Dav12] and light grouping [Don09] [Pru12] are established methods for

many lights storage, this thesis uses a clustered structure like one of the acceleration structures

presented in Figure 60 to better integrate into the deferred inspired pipeline. All the secondary

lights, VPLs and scene lights, are stored in a cluster.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

149

Figure 60 Scene lights acceleration structures. Secondary lights like small scene lights and generated virtual lights

can be stored in a variety of methods which are easy to integrate with a deferred pipeline: per pixel linked lists (left

top corner), tiles (right top corner), 2.5D tiles which uses a binary mask for light rejection (left bottom corner) and

clusters (right bottom corner).

Rendering with virtual lights is performed by querying the light storage acceleration structure

and solving all surface – light interactions. For the illumination with virtual lights the following

equation is used (based on [Vea95]):

 Where is the VPL used for illumination, is the point being illumination by , is the

previous vertex to in the random walk, is the angle between the VPL surface normal and the

incident ray from , is the angle between the illuminated point normal and the incident ray

from and the visibility factor is traced over CIV, as shown in Figure 61.

Figure 61 Secondary lights visibility. For each secondary light one or more shadow rays are traced over the

conservative inexact voxelization acceleration structure. Scattering samples are also taken.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

150

Illumination with virtual lights is not artifact free, as artifacts appear as structured illuminated

hotspots, in contrast to the noise found in path tracing. This can be seen in Figure 61. These

artifacts are caused by the singularities generated by the

 (part of the

 form

factor) term in illumination equation. A common solution to this problem is to clamp the

contribution of each light [Kol04]. Another possibility is to store indirect diffuse illumination in

a screen space buffer and filter it in a manner similar to SSPCSS [Bag10]. A scene illuminated

with this method is presented in Figure 62.

Figure 62 Illumination with virtual lights. The upper left corner of the image presents the intersection between

virtual lights and the scene geometry. The lower left corner presents the results of lighting with these virtual lights,

by using a color enabled conservative inexact voxelization acceleration structure. Artifacts can be seen at the top of

the Sponza building, as structured illuminated hotspots, caused by an un-clamped form factor. Color bleeding can

also be observed, especially on the columns. In the right upper corner the image is divided: the top shows the direct

illumination and the bottom shows the indirect illumination computed with many virtual lights, using a colorless

CIV. The combined result of both direct and indirect illumination is presented in the right bottom corner of the

image.

4.1.3.2. Light transport for High Frequency Light

High frequency light transport is a difficult problem for the real-time rendering of

dynamic scenes, and because of this, it is handled in a decoupled manner in this thesis, since

many-light methods struggle to efficiently transport specular light [Dav10] [Sim15].

While high quality specular light transport is possible in real-time static scenes with

heavy preprocessing [Cra09], the state of the art algorithm requires per-frame high resolution

voxelization in order to work with dynamic scenes. Furthermore, the storage costs are extremely

expensive.

The specular light transport method used in this thesis is based on screen space cone

tracing [Her14] [Ulu14], which is an approximated variant of cone tracing. It can be executed

before or after the diffuse light transport,

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

151

Screen space cone tracing generates one or more cones per pixel, which are then traced

over the screen space. The direction of the reflected cone is given by the reconstructed surface –

cone interaction. The size of the cone is based on the traced distance. In order to minimize the

number of texture reads, the screen buffers are mipmapped and each cone surface intersection is

performed at the fitting mipmap level, as determined by the cone size.

The screen space cone tracing algorithm has many fail cases, some of which are

presented in Figure 63: lack of information due to depth overlap, tracing outside of the screen

space or tracing through unknown space behind the screen space.

Figure 63 Screen space cone tracing. The image presents screen space cone tracing, an approximative tracing

algorithm that works in screen space. Each pixel traces cones over the mipmapped screen buffers, reading from the

fitting mipmap based on cone size. This is depicted in the three surface-ray interactions colored in pink (mipmap 0),

blue (mipmap 1) and yellow (mipmap 2). The gray normals represent the averaged normal over the impact surface.

The fail cases of this approximative algorithm are depicted in the upper right corner of the image: rays can be traced

outside of the screen space, they can intersect surfaces behind the screen space, or they can pass through areas

lacking information. All fail cases are directly caused by lack of geometric information outside the visualization

volume. In this thesis, the conservative inexact voxelization is used to augment the rays which are traced outside the

visualization volume, which greatly ameliorates the results of the fail cases.

The conservative inexact voxelization (CIV) acceleration structure used for low

frequency light transport is used to augment screen space cone tracing in the failure cases, which

can greatly lower visual artifacts, even if CIV is not designed for high frequency light transport.

The CIV structure has to be one with color information enabled, which increases the storage

costs drastically, as highlighted in Table 10.

Because the CIV resolution is usually significantly lower than the resolution of the screen

space buffers, the cones are traced over both CIV and screen space, in order to maximize the

accuracy of the resulting visibility determination operators. Scattering in participating media can

also be implemented using CIV. Furthermore, cone tracing on the screen space and CIV is

almost equivalent to cone tracing over an octree, if the voxelization for the CIV method is set to

produce high quality results and the scene objects are cut into multiple other objects, but then the

complexity of the method would be approximately equal to the one used in [Cra14] as the

number of objects would soon be roughly the same as the number of primitives.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

152

4.1.4. Opaque shading

This subchapter discusses opaque shading operations, in which lights and virtual lights

generated and clustered in the previous subchapters are used to shade the opaque objects

represented in the geometry buffers stored by the deferred opaque rasterization. The algorithm is

the decoupled shading stage of the Virtual Deferred algorithm, using the virtual data mechanism

as described in the 3.5.2 Chapter.

The method has two shading stages. In the first shading stage, the texture data is fetched

and shading is performed with direct and indirect diffuse light transport and direct specular

transport. In the second shading stage indirect high frequency light transport is performed, based

on the results of the first shading phase.

The method starts by loading the Virtual Deferred G-Buffer data into work tiles, one

GPGPU thread per pixel, in a GPGPU render pass. This is done in order to determine basic

object properties such as which is the visible object which is being shaded in the pixel.

After loading the virtual G-Buffer data the algorithm has two alternate rendering paths,

depending on the storage of texture coordinate derivatives. The more storage intensive

bandwidth stores the texture coordinates derivatives per pixel. The more computationally

intensive variant does not store the texture coordinates derivatives. Since proper texturing

requires texture coordinates and their derivatives, the former rendering path is included in the

latter rendering path.

The latter rendering path uses a texture derivative reconstruction process, which

differentiates the texture coordinates stored in the pixel with the texture coordinates stored in

neighboring pixels, if the neighboring pixels are of the same object id and material id. Thus,

texture coordinate derivatives are reconstructed in the same manner they are initially generated

by the hardware rasterization pipeline, through neighbor fragment texture coordinate

differentiation. The algorithm then uses the texture coordinate derivatives to determine the

mipmap levels required to properly perform the pixel texture fetches. This is done on a material

basis. The shading method can include geometry reconstruction elements such as screen space

tangent reconstruction through the use of normals and screen space position derivatives.

After the texture fetches have been performed and have been locally stored within the

work group, the algorithm tackles illumination. It first solves dominant lights illumination

through the use of the visibility operator provided by shadow maps techniques. The secondary

scene lights are solved by using the visibility operator approximate in the conservative imperfect

voxelization algorithm. Thus, the interaction of each secondary or virtual light with a pixel is

determined through the tracing of one or a few rays. The illumination is then performed normally.

If multiple geometry frusta are used in the geometry pass the shading algorithm is not run

multiple times, because the virtual geometry buffers produced by the multiple frusta are

accumulated into a single coherent geometry buffer. A potential optimization is to perform

multiple material paths, in order to minimize work tile divergence. On the other hand, if the

algorithm is used in a rendering system where an asset format can be imposed, a proven and

flexible reflectance function such as Cook Torrance [Coo82], is a good choice as it implicitly

minimizes work tile thread divergence.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

153

The pseudocode for the low frequency illumination and shading stage of the virtual

deferred algorithm is:

LOW FREQUENCY ILLUMINATION AND SHADING STAGE

FOR tile in screenpixels

 allocate tilecache

 FOR pixel in tile

 FOR material in materials // TEXTURE FETCHING

 IF the texture derivatives are not stored in the virtual G -Buffer

 neighborlist ← Ø

 texderivatives←0

 FOR neighbor of pixel in 2x2 region

 IF pixel and neighbor share object id and material id

 neighborlist ← neighborlist neighbor

 IF neighborlist not empty

 avgderivative ← 0

 FOR neighbor in neighborlist

 difference ← compute texcoord difference between

 neighbor and pixel

 avgderivative ← accumulate difference

 texderivatives ← compute derivatives with avgderivative

 ELSE

 Set derivatives ← 1 (highest mipmap)

 mipmap ← determine mipmap with texture coordinates , object ID, mat ID

 inf , sup ← use texderivatives to find the inf and sup texture mipmaps

 IF inf not stored

 inf ← closest stored mipmap level

 IF sup not stored

 sup ← closest stored mipmap level

 physicalcoordinates ← texture coordinates, inf, sup

 texturedata ← sample virtual texture with physicalcoordinates

 tilecache ← texturedata

 SYNCHRONIZE TILE

 dominantlights ← load dominant lights in tile //ILLUMINATION PSEUDOCODE

 FOR pixel in tile

 pixelcolor ← 0

 FOR light in dominantlights

 IF light intersects pixel

 visibility← query dominant light shadow map

 FOR material in materials

 shadedcolor ← lighting&shading← visibility, tilecache

 pixelcolor . ← pixelcolor + shadedcolor

 secondarylights ← load the frustum secondary lights in tile

 SYNCHRONIZE TILE

 FOR pixel in tile

 FOR light in secondarylights
 IF light intersects pixel

 cone ← light, pixel

 visibility ← TRACE CIV(0, cone)

 FOR material in materials

 shadedcolor ← lighting and shading using visibility and tilecache data

 pixelcolor ← pixelcolor + shadedcolor

 OUTPUT pixelcolor

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

154

The second shading pipeline computes indirect approximative specular light transport.

This is an optional stage and it should be disabled if a scene does not contain perceptible high

frequency specular transport. The second shading stage is computed in screen space, based on

the shading results of the first shading stage and because of this, the visibility operator used to

transfer specular light between the surfaces is very poorly approximated and will not produce

exact results. Because of this the illumination pipeline uses screen space cone tracing instead of

screen space ray tracing, because cone tracing includes additional filtering which decreases the

occurrence of artifacts.

The algorithm can trace color into the Conservative Inexact Voxelization structure, if the

colors and normals are saved, which augmented by the screen space cone tracing makes the

entire method work like a fast, low quality voxel cone tracing algorithm. The color/normal

variant of the CIV is also a support for scattering, as it is explained in Chapter 4.1.2. While CIV

is not created for high frequency visibility determination, it can be used to produce acceptable

results from a perception standpoint. More importantly using CIV helps alleviate the many visual

artifacts that appear in screen space cone tracing, by providing geometric information outside the

visualization volume.

The pseudocode for the second shading pipeline of the virtual deferred algorithm is:

PREPROCESS

SS ← Create a mipmap with the depth, normal and the color outputted from the first shading pass

CIV ← compute inexact voxelization

IF using CIV AND CIV support normal and color
 CIV← CIV project each normal and color from ssmipmaps into CIV

TRACE CIV(recursiondepth, cone)

mipmaplevel ← max mipmap level (coarsest) of CIV

scatter ← 0

surfacehit ← null, trace cone over the mipmaplevel
IF surfacehit

 WHILE no exact surfacehit
 IF mipmaplevel > minimum mipmap level (given by cone angle and traced distance)
 surfacehit, scatter ← trace until approximative surfacehit and accumulate scattering
 mipmaplevel ← mipmaplevel – 1
 ELSE
 surfacehit, scatter ← trace until exact surfacehit and accumulate scattering
IF surfacehit
 radiance ← 0
 normal ← normal at surfacehit in CIV (either filtered or directly stored)
 cluster ← get cluster from lightgrid in vicinity of surfacehit
 IF surfacehit reflective
 IF recursiondepth < max recursion depth //SAMPLE SURFACES
 reflectedcone = reflect(cone, normal, distance traced, material)
 incomingradiance← TRACECIV(recursiondepth+1, reflectedcone)
 scatteredincomingradiance← compute scattering with scatter, lightradiance
 reflectedradiance ← scatteredincomingradiance, normal
 radiance ← radiance + reflectedradiance
 RETURN radiance
ELSE

 RETURN 0

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

155

TRACE SCREEN (recursiondepth, cone)

mipmaplevel ← max mipmap level (coarsest) of SS

surfacehit ← trace cone over the highest mipmaplevel

WHILE exact surfacehit not found AND inside of screen space
 IF mipmaplevel > minimum mipmap level (given by cone and traced distance)
 surfacehit ← trace until approximative surfacehit or outside of screen space
 mipmaplevel ← mipmaplevel - 1
 ELSE
 surfacehit ← trace until exact surface hit or outside of screen space
radiance ← 0

IF surfacehit found
 IF the surfacehit reflective AND recursiondepth < max recursion level
 position, normal, color, material ← read data from the mipmaplevel at surfacehit
 reflectedcone ← reflect(cone, normal, angle based on material)
 incomingradiance ← TRACE SCREEN (recursiondepth +1, reflectedcone)
 reflectedradiance ← incomingradiance, normal, material
 radiance ← radiance + reflectedradiance
ELSE
 IF using CIV

 radiance ← TRACE CIV (recursiondepth, cone)
RETURN radiance

LOW FREQUENCY ILLUMINATION AND SHADING STAGE

FOR tile in screen
 tilecache ← load data from virtual deferred G-buffer (depth, normals, colors, material id)
 SYNCHRONIZE tile
 FOR pixel in tile
 diffusecolor ← LOW FREQUENCY ILLUMINATION AND SHADING STAGE

 depth, normal, material ← read from G -buffer, pixel

 position ← reconstruct position from depth, camera

 cameraray ← ray from camera to position

 coneangle ← compute cone angle based on material, normal

 cone← cameraray, angle based on material

 indirectradiance←0

 IF using a sufficiently high resolutio n colored CIV

 indirectradiance← TRACE CIV (0, cone)

 ELSE

 indirectradiance←TRACE SCREEN (0, cone)

 specularcolor ← indirectradiance, normal, material

 pixelcolor ← diffusecolor + specularcolor

 OUTPUT pixelcolor

The presented shading pipeline perfectly integrates with the Virtual Deferred algorithm,

and can be used as a self standing algorithm, outside of the rendering framework proposed in this

thesis.

The shading pipeline is continued with the decoupled sub-pixel reconstructed antialiasing

(DSRAA) method, a decoupled antialiasing algorithm especially designed for solving

antialiasing in deferred pipelines. DSRAA can be used to tackle the aliasing inherent to the low

sample reconstruction processes which take place in deferred algorithms. DACRT can also be

used to counter the micro aliasing produced by texture coordinate derivative reconstruction,

especially if the texture coordinates are stored in compressed format.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

156

4.1.5. Decoupled sub pixel reconstructed anti-aliasing

In rendering there are many sources of aliasing such as geometric aliasing, texture

aliasing or shading aliasing. Geometric aliasing is usually the easiest to perceive [Hum09] and

also the most difficult to handle, especially in a deferred rendering context, therefore geometric

antialiasing is one of the largest forms of aliasing in rasterization rendering. Deferred rendering

is in particular prone to aliasing artifacts as storing the information for the entire set of shading

samples quickly leads to excessive bandwidth and storage costs. Anti-aliasing methods can be

categorized into a small number of algorithm families: sampled antialiasing, morphological

antialiasing, temporal antialiasing, analytical antialiasing and hybrid sampled antialiasing.

Like in any digital signal processing problem, an increased number of samples leads to a

better, more accurate, reconstructed result. In the case of rasterization rendering the original

signal is represented by the analytically rasterized geometry, which is then reconstructed through

samples multiple geometry samples per pixel. Sampled antialiasing methods keep multiple

shading samples per pixel, which increase the resolution of the rasterization process. Sampled

antialiasing methods either fully shade each of the samples of the pixels or use different rates in

order to perform visibility determination at the maximum sample rate and shade at a reduced rate.

Because shading is much more costly than basic visibility determination in rasterization, a

reduced shading rate is almost always employed. Supersampling antialiasing (SSAA) [Jim11],

Multisampling Antialiasing (MSAA) [Jim11], Coverage antialiasing (CSAA) [Jim11], enhanced

quality antialiasing (EQAA) [Jim11] and deferred MSAA are all examples of techniques based

on sampling. Because sampled techniques need to store data per sample they are extremely

costly to use with deferred rendering.

Morphological antialiasing takes a different approach to antialiasing. Instead of trying to

reconstruct the original signal, in this case geometry, morphological antialiasing methods try to

find known patterns in the un-filtered result and then use precomputed filtering solutions for

these cases. Because of this, morphological antialiasing is not an exact reconstruction method,

and while algorithms from this category can produce visually antialiased results, they suffer from

temporal instability. Fast Approximate antialiasing (FXAA) [Lot09], Morphological antialiasing

(MLAA) [Jim11], Sub-pixel morphological antialiasing (SMAA) [Jim12] are all examples of

solutions and processes which tackle aliasing from a morphological perspective. A variant of

morphological solution are edge antialiasing solutions such as Directionally Localized

antialiasing (DLAA) [And11], normal filter antialiasing (NFAA) and screen space SSAA

[Uni11].

Analytical antialiasing methods solve aliasing through analytical reconstruction. They are

rarely used in real-time rendering, because they are very expensive. Therefore, they are only

used for specific scenes. Geometry Buffer antialiasing (GBAA) [Jim11] , Distance to edge

antialiasing (DEAA) [Jim11] and phone wire antialiasing (PWAA) [Per15] are all analytical

antialiasing methods.

Temporal solutions aim to increase the number of samples through the reuse of samples

from previous frames, basically amortizing the sampling cost. These methods are usually

combined with other antialiasing methods, leading to algorithms such as temporal antialiasing

(TXAA) [Yan09] and Subpixel morphological antialiasing (SMAA) [Jim12].

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

157

Hybrid sampled algorithms completely decouple the sampling rate of visibility

determination operations from the sampling rate of shading. These methods generally use

multiple stages, in which sampling data is either aggregated or decoupled, only to be resampled

and resolved in post-processing stage. Aggregate geometry buffer antialiasing (AGAA) [Cra15],

surface based antialiasing (SBAA) [Sal12], Subpixel reconstruction antialiasing (SRAA) [Cha11]

and resampling antialiasing (RSAA) [Res12] are examples of hybrid sampling antialiasing

techniques. Hybrid methods have seen the most development in recent period, but they still do

not decouple bandwidth usage.

While supersampled methods are excessively costly from a storage and bandwidth

standpoint and morphological algorithm require temporal antialiasing methods to prevent frame

to frame artifacts, hybrid methods take the best from both approaches, sampling only critically

important data and then reconstructing the samples.

The thesis presents an improvement over hybrid methods, which completely decouples

shading bandwidth from visibility determination from the antialiasing point of view, further

lowering the bandwidth and storage costs of antialiasing methods while. The presented method,

decoupled sub pixel reconstructed antialiasing, shades only once per pixel and uses the shaded

results to reconstruct the other samples, at a sub-pixel level. The algorithm then uses the

reconstructed samples in a standard resolve process. The method is similar to SRAA, but the

reconstruction method is based on shaded sample matching and not on direct filtering.

Furthermore, the reconstruction method is much easier to implement and less computationally

expensive than SRAA.

Decoupled sub pixel reconstructed antialiasing is easily incorporated into any deferred

rendering pipeline. The presented method has two stages. In the first stage, named the sampling

stage, the method is integrated into any deferred renderer, such as the virtual deferred method

presented in Chapter 3.5.2, which is slightly modified to sample visibility determination at a

large rate. Therefore, the deferred renderer saves depth and performs the z-Buffer algorithm at

many sub-pixel samples but saves all the other bandwidth-heavy information in a single sample.

With this system, the increased bandwidth is comparable to that of a low bandwidth hybrid

antialiasing algorithm such as SRAA. Optionally, normals can also be saved along with depths,

as they can be used to increase the accuracy of the method, albeit increasing the bandwidth cost.

The second stage, named the reconstruction stage, of the algorithm works as a post

process, in which both the shaded samples generated by the deferred renderer and the unshaded

visibility determination samples are loaded in a tiled format. The unshaded samples are first

linked to the pixel shading sample, based on a depth, and optionally normal, distance metric,

such as SADP [Res12]. Then, the unshaded samples linked to the pixel samples have their color

set to that of the pixel shaded sample, and are now considered “shaded”.

In the next step the remaining unshaded samples are linked to the shading samples from

the neighbors of the processes pixel, again based on a metric of depth and optionally normal

distances. When a sample is linked to more than one neighbor, each of the neighbors is given a

weight, based on the following metric:

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

158

Each unshaded sample is then resolved based on the linked neighbors:

If unshaded samples remain they are set to the background color. The final pixel color is

obtained by resolving all the samples:

The algorithm is visually presented in Figure 64.

Figure 64 Decoupled sub-pixel reconstructed antialiasing. The antialiasing algorithm is designed for deferred

renderers, and it has two stages. In the first stage the method slightly modifies a deferred renderer to sample all the

bandwidth heavy attributes once per pixel, but to keep many visibility determination samples. After this, the

deferred renderer shades each pixel with a single, central sample. The second stage of the algorithm has multiple

steps. In the first steps all the unshaded samples are loaded per tile, in the second step the unshaded samples which

are similar in depth to the shaded samples are linked to the shaded sample. The rest of the unshaded samples are

linked to the neighbor pixels and colored through the interpolation of the colors of the linked neighbors. The final

color is obtained by resolving all the sub-pixel samples.

The presented method computes the minimum bandwidth required to correctly perform

sub pixel visibility determination while still working within a single geometry pass deferred

renderer. Compared to the state of the art SRAA the bandwidth is equal and the reconstruction

mechanism is easier to implement and less computationally expensive. Compared to other

deferred oriented antialiasing algorithms such as AGAA, the method is material aware, and does

not filter pre-shaded data or geometry.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

159

This is the pseudocode for the decoupled sub-pixel reconstructed antialiasing method:

(ONCE) PREPROCESS

select a pixel sampling strategy and a centralsample for shading

allocate multisampled msdepthbuffer

IF using normals

 allocate multisampled msnormalbuffer

SAMPLING STAGE (DEFERRED RENDERER INTEGRATION)

FOR pixel in screenpixels

 FOR sample in pixel

 depth ← compute sample depth

 msdepthbuffer ← store sample depth

 IF using normals

 normal ← compute sample normal

 msnormalbuffer ← store sample normal

 normal deferred renderer

 attributes saved once per pixel, in centralsample

Between the sampling stage and the reconstruction stage the once per pixel sampled

attributes of the geometry buffer are used for shading and illumination, thus shading is

performed exactly once per pixel. The reconstruction stage takes place after the shading stage:

RECONSTRUCTION STAGE (TILED)

FOR tile in screenpixels

 FOR pixel in screenpixels

 tilecache ← load the centralsample from the deferred renderer results, with color

 SYNCHRONIZE tile

 pixelcolor←0

 FOR pixel in screenpixels

 centralsample ← load the shaded central sample from tilecache

 samples← load all the unshaded depth (and optionally normal) samples

 samplecolors[num samples]←0

 sampleshaded[num samples] ←false

 FOR sample in samples

 distance ← distance metric sample to centralsample, use depth (optionally normals)

 IF distance < threshold

 samplecolors [sample] ← centralsample color

 sampleshaded[sample] ← true

 FOR sample in samples

 IF sampledshaded[sample] = false

 linked ← Ø

 FOR neighborpixel in neighbor pixels

 distance ← dist. metric sample to centralsample of neighborpixel

 IF distance < threshold

 linked ← linked (neighborpixel, distance)

 IF linked empty

 samplecolors [sample] ← background

 ELSE

 FOR neighbor in linked

 weight ← neighbor distance

 samplecolors [sample] ← average linked neighbors

 pixelcolor ← pixelcolor + samplecolors [sample] * 1/(num samples)

 OUTPUT pixelcolor

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

160

A comparison of the introduced algorithm, along with various antialiasing techniques is

given in Table 11.

Algorithm\Quantity per pixel Depth

Samples

Coverage

Samples

Geometry

Data

Shading

Data

Storage

Requirements

Bandwidth

No antialiasing 1 0 1 1 1 1

Multisampling Antialiasing (MSAA) +++ +++ 1 1 + +

Coverage Sampling (CSAA/EQAA) +++ +++++ 1 1 + +

Supersampling Antialiasing (SSAA) +++++ 0 +++++ +++++ +++++ +++++

Deferred MSAA +++++ 0 +++++ +++++ +++++ +++++

Fast Approximate Antialiasing (FXAA 1 0 1 1 1 +

Morphological Antialiasing (MLAA) 1 0 1 1 1 +

Subpixel Morphological Antialiasing (SMAA) + 0 + + + +++

Directionally Localized Antialiasing (DLAA) 1 0 1 1 1 +

Geometry Buffer Antialiasing (GBAA) 1 0 +++++ 1 + +

Distance to Edge Antialiasing (DEAA) 1 0 +++ 1 + +

Phone Wire Antialiasing (PWAA) 1 0 +++ 1 + +

Temporal Antialiasing (TXAA) 1 0 1 1 +++ +++

Aggregate G-Buffer Antialiasing (AGAA) 1 + 1 1 1 +

Surface Based Antialiasing (SBAA) +++ +++ +++ 1 +++ +++

Subpixel Reconstruction Antialiasing (SRAA) +++ 0 1/+++ 1 +/+++ +/+++

Resampling Antialiasing (RSAA) +++ +++ +++ 1 + +

Decoupled Subpixel Reconstructed Antialiasing

(DSRAA)

+++ 0 1/+++ 1 +/+++ +/+++

Table 11 DSRAA and antialiasing algorithms. The table compares the presented algorithm in terms of sampling

rates per pixel. Legend: 0 – no samples or not used, 1 - a single sample, + – a small number of samples or a small

amount, +++ – many samples or a large amount, +++++ – a very high number of samples/amount .

 In comparison to the state of the art SRAA algorithm, the presented method uses a better

reconstruction stage, in which exact links are created between each of the unshaded visibility

samples and either the shaded central sample of the pixel or the shaded central samples of the

neighboring pixels. Because of this, instead of approximating each unshaded sample contribution

with a bilateral filter, each unshaded sample is first linked to the existing shading samples,

reconstructed, and only then used in the pixel resolve. Thus, this method produces results closer

to the correct value that would be obtained if full supersampling would be applied. Figure 65

presents a comparison between DSRAA 8x and MSAA 8x.

Figure 65 Decoupled sub-pixel reconstructed antialiasing Results. This image presents the difference between

DSRAA 8x and MSAA 8x. The visual results are extremely similar.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

161

4.1.6. Transparent Shading

This subchapter discusses transparent shading operations. The approximated distribution

occupancy maps method is a coupled solution, and it is discussed as a geometry method, in

chapter 3.6.2. The subchapter presents various shading methods for the objects represented in the

virtual a-buffer nodes, stored by the VOIT algorithm. The first presented method shades in the

classical A-Buffer style, but with adaptive texture loading and shading. The second presented

method is an adaptive texture loading and shading limited ray tracing method. Compared to the

Virtual deferred shading stage which was presented in the previous sub-chapter, the shading

stage for the virtual order independent transparency (VOIT) algorithm (also named virtual a-

buffer) is a more intricate process.

If the texture coordinate derivatives are not stored at the virtual order independent

transparency node level, they need to be reconstructed, and VOIT uses a micro tile phase in

which it reconstructs the texture coordinate derivatives. The algorithm loads the fragment node

lists into micro-tiles, which are smaller than the tiles used in virtual deferred because of the

hardware memory per tile limitations, usually limited to just 2x2 pixel groups. The 2x2 limit is

the minimum required to reconstruct texture coordinate derivatives, which are needed for proper

texturing. After the fragment nodes are loaded in micro tiles, they are sorted by their depth,

therefore multiple lists are sorted together. Thus, each pixel first sorts its own list and then one of

the pixels does a merge step, like in the merge sort algorithm. This per-pixel sort operation can

be implemented through in-place quicksort, or any other fast in-place sorting algorithm. Each

pixel thread walks the sorted micro tile list, reconstructing the texture coordinates only for the

nodes which it owns. For each owned micro tile list node each pixel search the vicinity of the

micro tile list node in the micro tile list, for neighbors which have the same object id and

material id. Based on the found neighbors the texture coordinates are differentiated in screen

space and the texture coordinate derivatives are obtained.

If the texture coordinate derivatives are stored, than the virtual order independent

transparency algorithm does not need to reconstruct them. The algorithm only loads the nodes of

each pixel in local memory, where it sorts them.

After the texture coordinate derivatives are available, the algorithm walks the depth

sorted nodes in front to back order, loading the texture data and shading and illuminating each

walked node. The walk is adaptive, stopping as soon as the alpha channel reaches an opacity

threshold. The front to back composition is done using the following equations:

In the above equation is the fragment opacity, is the fragment color, is the

composited color and is the background color. Because of the front to back composition

strategy, the process stops as soon as the alpha channel is occluded. This can drastically reduce

both shading computations and texture bandwidth. In order to determine the fragment color and

opacity, VOIT uses the same virtual texturing backed mechanism as virtual deferred: the texture

coordinate derivatives are used to determine the mipmap levels required to properly perform the

pixel texture fetches, and the mipmaps are then sampled and interpolated.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

162

The pseudocode for the shading pipeline of the virtual order independent transparency

algorithm is:

SHADING STAGE

IF lighting

 lightgrid← scene lights

IF VOIT doesn’t store texture coordinate derivatives

 FOR microtile(2x2) in screenpixels

 microtilecache ← allocate space for node lists per micro tile, each microtile node stores parent

 FOR pixel in microtile

 microtilecache, list← load the pixel fragment list into the microtile storage cache

 microtilecache,list← sort the list in place, in the microtilecache

 SYNCHRONIZE microtile
 mergedlist ← one pixel in microtile merges the lists

 SYNCHRONIZE microtile
 FOR pixel in pixels

 finished ← false

 WHILE not finished

 node ← next node in mergedlist, owned by pixel

 avgderiv ← Ø

 FOR neighbornode in mergedlist

 IF neighbors (distance+ material metric)

 coord ← texture coordinates of node

 ncoord ← texture coordinates of neighbornode

 texturederivatives ← differentiate coord, ncoord

 avgderiv ← avgderiv texturederivatives

 derivatives← reconstruct avgderiv

 node ← store derivatives

ELSE

 FOR pixel in screenpixels

 locallist ← load the pixel fragment list into the local storage cache

 locallist ← sort the list in place, in the local storage cache

FOR pixel in screenpixels

 pixelcolor, pixelalpha ← 0

 IF VOIT doesn’t store texture coordinate derivatives

 list ← mergedlist in microtile

 ELSE

 list ← locallist

 WHILE pixelalpha < threshold

 node ← get next fragment owned by the pixel, in front to back order, from list

 texture ← texture coordinates, object ID, material ID, like in standard virtual texturing

 inf , sup ← use texderivatives to find the inf and sup texture mipmaps

 IF inf not stored

 inf ← closest stored mipmap level

 IF sup not stored

 sup ← closest stored mipmap level

 physicalcoordinates ← texture coordinates, inf , sup

 texturedata ← sample virtual texture with physicalcoordinates

 IF using lighting

 determine visibility through shadow maps or ray tracing over CIV

 perform illumination with intersected scene lights

 pixelcolor , ← the fragment with the already walked fragments ,front to back order

 pixelalpha ← compute the new fragment alpha occlusion in front to back order

OUTPUT pixelcolor

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

163

The presented shading method is more efficient than the standard classic a-buffer method

because virtual order independent transparency has adaptive bandwidth consumption and

adaptive shading, performing only the texture fetches and shading computations which have an

impact in the final visual result. Thus, virtual order independent transparency decouples shading,

bandwidth consumption and geometry processing for transparent object rasterization.

The presented method can be further visually improved through better support for

specular light transport in order independent transparency, albeit at a steep bandwidth penalty.

High quality high frequency light transports for transparent objects inside the visualization

volume can be achieved through a sparse volume representation of the rendered transparent

objects in the scene, in which rays can be traced.

Because virtual order independent transparency is an accurate rendering method, the

visibility approximation operator can’t be applied here. Instead of a conservative inexact

voxelization an indexed cluster grid is used, which can accurately detect ray-surface intersection.

On the other hand, if slight approximations are permitted, the visual results can be augmented

with inaccurate data from a transparents enabled CIV, in similar fashion to the extension done in

the high frequency light transport for opaque objects, as shown in chapter 4.1.4.

The visual volume is guaranteed to lack occluders, as the fragments generated by the

VOIT algorithm are generated after the depth buffer is populated with opaque fragments. If a ray

is reflected or refracted outside of the visualization volume it can either be traced inside the

scene with CIV, or just be discarded.

 If the rendering process is concerned with occlusion from opaque data, the conservative

inexact voxelization is evaluated in clusters, which have the same size as the clusters used by the

index cluster grid. These are used to

The method runs in two stages: the link stage, which links the linked list nodes to the

index cluster grid, and the shading stage in which the index cluster grid is traced and the

referenced nodes are adaptively shaded. Each index cluster from the index cluster grid holds a

linked list with pointers to all the virtual order transparency nodes which are spatially located

inside the cluster.

The shading stage spawns for each pixel reflection and refraction rays, for the closest

camera-surface interaction. These rays are then traced inside the index cluster grid and new

refraction and reflection rays are spawned for each contact. If a ray intersects an index cluster

and the cluster is not empty, the ray is tested for intersection with each node linked to the cluster.

Since the index cluster grid is a very sparse volume representation, this does not lead to

excessive computation tests.

The linked list nodes are shaded on demand, the first time a node is reference by a ray, it

has its textures fetched through the virtual data method and it is shaded. Instead of reconstructing

the texture derivatives by walking multiple lists in micro-tiles this variant of virtual order

independent transparency queries the nearby clustered nodes in order to obtain local texture

coordinate differences. The texture derivatives are then obtained, the texel fetches performed and

the color for the node is computed. The color is then written in the space of the texture

coordinates, in a single atomic operation.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

164

Figure 66 Virtual order independent transparency with a cluster grid. A cluster grid can be used together with

virtual order independent transparency, which enables refractions and reflections with ray tracing over the fragments

saved in the clusters. The fragments are mapped to the cluster grid, which stores a list of the mapped fragments per

cluster. Because of this the visibility determination operator is accurate over this sparse voxelization. The algorithm

runs over the objects visible in screen space, therefore occlusion from opaque objects is not considered, since

transparent objects are rendered after the depth buffer is populated with opaque objects.

This variation of the VOIT algorithm is presented in Figure 66. The method still shades

and reads texture data adaptively, only now it follows rays. The new shading pseudocode is:

PREPROCESSING

indexgrid ← allocate an index grid of clusters, which hold pointers to VOIT nodes

FOR cluster in indexgrid

 clusternodes ← Ø

LINK STAGE (integrated in GEOMETRY STAGE)

indexgrid ← clear
FOR pixel in pixels
 list ← load the pixel fragment list into local shader memory
 FOR node in list
 position ←use node depth to reconstruct the position of the stored fragment
 cluster ← use position to determine in which cluster in indexgrid would the node reside
 index← fragment index inside the nodebuffer, flag index as unshaded
 clusternodes ← clusternodes index

SHADING STAGE

FOR pixel in pixels

 list ← load the pixel fragment list into local shader memory

 IF list empty

 OUTPUT background color

 node ←first node in list, front to back order

 position ←depth from node

 cameraray ← create ray from camera to position

 normal ← the normal of the node

 refractedray ← refract cameraray against normal

 reflectdray ← reflect cameraray against normal

 cluster ←indexgrid cluster, closest to node

 incomingrefractedcolor ← TRACE(refractedray, cluster)

 incomingreflectedcolor ← TRACE(reflectdray, cluster)

 refractedcolor ← incomingrefractedcolor, normal, material

 reflectedcolor ← incomingreflectedcolor, normal, material

RETURN refractedcolor + reflectedcolor

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

165

TRACE(ray, cluster)

trace starting from cluster, over the indexgrid until a hit with non empty cluster is detected
IF no hit
 RETURN 0
ELSE

 cluster ←indexgrid cluster for closest to hit

 intersectednodes← Ø

 FOR index in cluster

 node ←LOAD(cluster,index)

 position ← reconstruct fragment position, from depth

 nodegeometry ←sphere, with radius of pixel size, centered at position

 IF ray intersects nodegeometry

 intersectednodes ← intersectednodes node

 IF intersectednodes not emptry

 sort intersectednodes, over ray

 ELSE

 TRACE(ray, cluster)

 node ← first node in intersectednodes

 normal ← the normal of the node

 refractedray ← refract ray against normal

 reflectdray ← reflect ray against normal

 incomingrefractedcolor ← TRACE(refractedray, cluster)

 incomingreflectedcolor ← TRACE(reflectdray, cluster)

 refractedcolor ← incomingrefractedcolor, normal, material

 reflectedcolor ← incomingreflectedcolor, normal, material

 RETURN refractedcolor + reflectedcolor

LOAD(cluster, index)

IF index flagged as unshaded
 IF VOIT variation is not storing texture coordinate derivatives
 finished ← false

 WHILE not finished

 node ← next node in mergedlist, owned by pixel

 avgderiv ← Ø

 FOR neighbornode in mergedlist

 IF neighbors (distance+ material metric)

 coord ← texture coordinates of node

 ncoord ← texture coordinates of neighbornode

 texturederivatives ← differentiate coord, ncoord

 avgderiv ← avgderiv texturederivatives

 derivatives← reconstruct avgderiv

 texture ← texture coordinates, object ID, material ID, like in standard virtual texturing

 inf , sup ← use texderivatives to find the inf and sup texture mipmaps

 IF inf not stored

 inf ← closest stored mipmap level

 IF sup not stored

 sup ← closest stored mipmap level

 physicalcoordinates ← texture coordinates, inf , sup

 texturedata ← sample virtual texture with physicalcoordinates

 IF using lighting

 visibility ← determine visibility through shadow maps or ray tracing over CIV

 color ← perform illumination with intersected scene lights

 STORE color in place of texture coordinates, flag index as shaded

RETURN position ,normal ,color ← node ← index

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

166

4.2. Correct Illumination

The correct illumination module is not directly concerned with real-time rendering, as it

presents a correct path traced rendering solution. While it is not a real-time solution, the correct

illumination pipeline runs interactively on off the shelf hardware, and which will become real-

time with more performant hardware.

The correct illumination modules uses ray tracing acceleration structures in order to

accelerate the operation of tracing rays, which dominate the rendering time for tracing algorithms

[Hav14]. While the module uses certain approximations to speed up the rendering process, the

light transport is performed exactly, in the limits of photorealistic computer rendering. The

algorithms used in this module can run both on the CPU and on the GPU.

The module rendering process contains three large stages: construction and management

of ray tracing acceleration structures, light flux importance sampling and bidirectional path

tracing.

In the construction and management of ray tracing acceleration structures stage Bounding

Interval Hierarchies (BIH) are used for the exact tracing of rays. A variant of conservative

inexact voxelization can be used as a secondary acceleration structure, with which rays are

quickly tested for surface-cluster interaction before being fully traced. Thus by using two

acceleration structures the complexity of tracing a ray is amortized.

In the correct illumination module images are rendered with a modified bidirectional path

tracing algorithm which traces rays with amortized complexity. The algorithm uses a novel

importance sampling mechanism, named Light Flux Importance Sampling (LFIS), which

approximates the flux of light in the scene, and uses this approximation to guide unproductive

paths to the vertices of light paths. Compared to the state of the art methods [Vea97] [Cli05]

[Bir12] Light Flux Importance Sampling is faster and stores significantly less memory.

The bidirectional path tracer uses both light flux and amortized visibility to quickly

produce images, with an algorithm that can run on both CPU and GPU.

4.2.1. Acceleration structures

In tracing rendering algorithms the rendering time is dominated by the visibility

determination operations [Hav14]. Because of this the acceleration data structures used as

support for tracing have to be implemented with the utmost care for performance.

The acceleration structures create scene geometry trees based on either space partitioning

or object partitioning, a choice which stems from the fundamental acceleration structure question:

to partition the space that contains the objects or to partition the objects into sets. Hybrid

structures combine space partitioning with object partitioning. While the 2.2.4 chapter from the

state of the art discusses all the acceleration structure topics relevant to rendering, a short

comparison is given here, as background for the usage of the Bounding Interval Hierarchy (BIH).

Space partitioning acceleration structures cluster the scene objects based on space

subdivision. Rendering space partitioning structures include grids, perspective grids [Hun08],

hierarchical grids, hierarchical hash-grids [Sch09], 1.5D and 2.5D grids [Har12], binary space

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

167

partitioning trees [Fuc80], image space pyramids [Had98], quad/octrees, sparse quad/octrees

[Lai101] [Sim12] and kd-trees[Ben75] [Moo91].

The kd-tree structure is commonly used in rendering due to its performance and advanced

partitioning metrics such as the surface area heuristic [Wal06], and the binned surface area

heuristic [Dan10]. The greatest problem of this class of structures it that primitives are

partitioned along with space, making the scene geometry trees artificially large and data access

coherency suffers. Also the scene geometry trees need to be reconstructed for dynamic geometry.

Inexact space partitions, like the one done with grids, suffer from high storage requirements,

because they use coherently but inefficiently.

Object partitioning acceleration structures cluster the scene objects based on their shape

and proximity, and usually work with bounding volumes. Rendering object partitioning

structures include object trees, B-trees, R-tree, sphere trees, AABB trees, bounding volume

hierarchies, many partitioning metrics [Wal072] [Ern07] [Dam081] and variants [Sti09] [Pop09]

[Dam08] [Tsa09], spatial kd-trees [Ooi87] [Zac02], h-trees and ah-trees [Hav06] and bounding

interval hierarchies [Wäc06]. Object partitioning acceleration structures suffer from overlapping

of sibling nodes.

In this thesis the bounding interval hierarchy (BIH) variant of the spatial kd-trees is used

as the tracing acceleration structure, a choice motivated by several useful properties of BIH. The

BIH is constructed through object partitioning, subdividing objects into potentially overlapping

nodes, with two splitting planes. The splitting planes are parallel to one of the dominant axes.

BIH has very fast tracing performance compared to other object partitioning acceleration

structures, because it stores its children in an implicit order, thus the tree traversal can quickly

access the child closest to the ray origin, similar to how a kd-tree is traced. Furthermore BIH

traversal adapts to empty space, as shown in Figure 67.

BIH has the lowest memory footprint out of all the object partitioning algorithms,

because it stores only critical data, bitwise compressed, and the majority of the data is

determined implicitly (during traversal, from parent splitting planes). It stores the axis and the

leaf information in a compressed binary format, cheaply reconstructing each node bounding box

on traversal. The total memory cost for a BIH node is only 12 bytes, which is much less than the

node cost in other object partitioning structures. This information is depicted in Figure 67.

Figure 67 Bounding Interval Hierarchy Traversal. Bounding Interval Hierarchy (BIH) leaf nodes store pointers to

the scene geometry primitives and the other BIH nodes use two splitting planes to partition the enclosed objects. The

splitting planes are parallel to one of the dominant axes, as shown in right side of the image. This splitting strategy

results in 3 object partitioning cases: one in which a node is perfectly partitioned, one in which the nodes overlap,

and one in which empty space remains between the child nodes. This last case is used to accelerate tracing by

skipping the empty space.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

168

Because BIH doesn’t need to load object bounding boxes on space traversal, as it

computes them implicitly, it exhibits excellent bandwidth consumption and data coherency.

Tracing the acceleration structure can be done either trough a traversal which uses a stack, or

through a stackless traversal. Stackless traversals are particularly useful on the GPU, since the

storage and bandwidth consumption for stack maintenance are very expensive, therefore

stackless traversal consume significantly less storage and bandwidth per ray.

 Stackless kd-tree traversal techniques [Fol05] [Pop07] are not suitable for object

partitioning schemes because object partitioning nodes overlap [Lai10]. [Lai10] uses fixed sized

buffer for local storage and a bitwise trail mask to represent the current ray tree traversal.

Because the local storage for ray traversal is limited, ray traversal is performed through trail

restarts, in which the bitmask trail is used to quickly guide the ray through the already traversed

path. On the other hand the trail restarts make this method visit more than twice the nodes a stack

based traversal would visit. [Hap11] uses parent links for each node but this increases storage

requirements and needs to re-evaluate traversal order for revisited nodes. [Afr14] extends

bitwise traversal to MBVH and makes traversal restart-less. Ray stream traversal bundles many

rays in a stream and traverses them coherently [Bar14]. Acceleration structure-less traversals are

a recent development [Mor11] [Kel11] [Nab13] [Afr12], but the extra costs during tracing make

them inapplicable to interactive tracing.

The BIH tracing pseudocode is based on MBVH2 from [Afr14], which uses the while-

while kernel introduced by Aila in [Ail09] [Ail12]. The method uses a 32bit or 64bit bitwise

stack, called the bitstack, which stores 0 when the sibling of the current node doesn’t need to be

traversed and 1 when the sibling has to be traversed. The stack push and pop operators are

implemented through binary shifting. The pseudocode for ray traversal is:

INTERSECT(ray)

 node ← root

 bitstack ← 0

 WHILE true

 IF node is inner // NODE INTERSECTION

 intersect ray with node children

 IF any child is intersected

 bitstack ← bitstack 1

 IF a single child was intersected

 node ← that child

 ELSE

 node ← nearest child

 bitmask ← bitmask 1

 CONTINUE

 ELSE // LEAF INTERSECTION

 intersect ray with leaf primitives

 shorten ray if intersection found

 WHILE bitstack 1 = 0 // BACKTRACK

 IF bitstack = 0

 RETURN surface intersection data

 node ← parent of node

 bitstack ← bitstack 1

 node ← sibling of node

 bitstack ← bitstack 1

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

169

4.2.2. Amortized Visibility Determination

The cost of ray-based visibility determination operations can be lowered through

coherent ray-packets [Bou07] [Bou08] [Ove08], which can’t be used by path tracing, and

through imperfect geometry representations like voxelizations, which make the tracing operation

approximated and not analytical. Tracing over voxel representations can greatly decrease the

quality of the renderings, if the voxel representations have insufficient resolution.

The idea of amortized visibility is to combine two acceleration structures, one exact

(analytical) and one approximative (voxel based) and to trace costly exact rays only when the

approximative rays shows an apparent clear path between traced points.

Approximative rays can never determine whether a surface-ray interaction takes place,

but they can conservatively query the potential ray surface interactions along an already

established ray. Thus, amortized visibility can never be used to create new path segments, as this

can only be accurately handled analytically. On the other hand amortized visibility can be used

for visibility determination queries on already available potential path segments. An example of

such usage is to test the visibility between already established entities such as: rays connecting

path vertices with light vertices in bidirectional path tracing, rays connecting directly sampled

lights with surfaces, and so on.

In such cases amortized visibility is used to ascertain if two points are probably visible or

not. If the probability is high enough an exact visibility determination ray is traced over the

bounding interval hierarchy, as described in Chapter 4.2.1. The exact ray receives the probable

conservative intersection events from the approximative ray, and partitions the ray into multiple

segments which are traced together. Therefore, during the single BIH traversal for all the ray

segments, not all the BIH nodes that would normally be evaluated have to be visited, only those

intersecting the ray segments.

Therefore, in the worst case cost of the amortized visibility for ray tracing, the cost for a

ray traced with both approximated and exact tracing methods is approximately equal to the cost

of ray fully traced with exact tracing. But the total cost for tracing all the rays in the path tracing

algorithm with this amortized technique is lower than the total cost with only exact tracing,

because the approximative rays quickly filter out statistically improbable connections.

The correct illumination pipeline can use any voxelization algorithm to create the

imperfect representation of the scene geometry. One option is to use the conservative inexact

voxelization algorithm (CIV) presented in Chapter 4.1.2.

Because a binary scene geometry representation consumes little memory (134MB for a

detailed representation) and it is generated very fast in , with CIV, or

 , with the state of the art, the benefits outweigh the costs.

Tracing with approximative and exact rays is presented in Figure 68 along with a

visualization of a BIH structure for a small scene, in which the objects are colored in dark gray.

The Bounding Interval Hierarchy is represented with the same color encodings as the one used in

Figure 67, red for left splitting planes and blue for right splitting planes. The depth of the BIH

nodes is encoded in shades of green, darker being closer to leafs.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

170

Figure 68 Amortized Rays in 2D. In the upper part of the image the Bounding Interval Hierarchy (BIH) for a small

scene is displayed. The red lines depict the left partitioning plane and blue lines depict the right partitioning plane,

keeping the color coding from Figure 67, in which BIH is presented. Objects are represented with gray. The depth of

the nodes is represented with increasingly dark shades of green. The lower part of the image shows approximated

tracing over the same scene, using a voxel representation for the scene. This is used to determine if there exists the

potential for a clear path between points, for which an exact ray is then traced. If the potential is considered low, as

would be for A → B then the costly exact ray would not be traced. If the potential is high, like for C → D, an exact

ray is traced, which uses intersection data from the approximated ray, in order to test the intersection with less BIH

nodes.

While amortized sampling shouldn’t be used on all traced rays, as previously described,

when used it can be considered as a form rejection importance sampling, because it pays the

costs of the expensive analytic ray-scene intersection test only for the rays which are very likely

to collect radiance. Amortized tracing can also be used to approximately compute expensive

effects such as participating media.

The voxel representation used for amortized tracing can also be used to compute skeleton

importance sampling. On the other hand, Light Flux importance sampling is global importance

sampling method which is both faster and more reliable than skeleton importance sampling.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

171

4.2.3. Light Flux Importance Sampling

The real problem with tracing rays is not necessarily their cost, which can only be

minimized to a certain extent but the sheer number of rays generated during any path/ray/photon

based algorithm. Decreasing requires more sophistication than raw intersection test efficiency

and it is done through importance sampling. Importance sampling generates visibility

determination rays which are much more likely to explore relevant surface and light interactions,

and therefore to accumulate radiance and to be contribute to the final visual result. Radiance

accumulation is very importance since path tracing requires many samples to converge, and the

noise is easily observable in under sampled images, such as the ones found in real-time

rendering, and shown in Figure 71, in the 4.2.4 subchapter.

Importance sampling strategies can be performed at many levels, but a simple taxonomy

can be observed: local sampling methods, path sampling methods and global sampling methods.

Local sampling methods can be combined through multiple importance sampling [Vea97]. Local

importance sampling methods include general variance decreasing strategies such as

pseudorandom low discrepancy series sampling [Pha10], adaptive sampling [Dam09], which

can be used for a variety of things such as pixel sample generation, BSDF probability

distribution function importance sampling, direct lighting [Pha10], resampled importance

sampling [Tal05], which uses existing samples, volumetric sampling [Kul12], which can be used

to sample rays for scattering events. Eye reprojection [Hen11] and radiance filtering [Sch12] and

radiance filtering can also be considered local sampling methods.

Path space importance sampling methods include metropolis light transport [Vea97],

primary space metropolis light transport [Kel02], energy redistribution [Cli05], manifold

exploration [Jak12], gradient domain metropolis [Leh13] and multiplexed metropolis [Hac14].

All these methods use different mutation strategies on the entire path, to generate new radiance

rich mutated paths. Vertex connection merging [Geo12] and path space regularization [Kap13]

can also be considered importance sampling methods, as they try to maximize the connectivity of

subpaths generated with bidirectional path tracing [Laf93]. Light field reconstruction [Leh11]

can also be considered a path space importance sampling method as it reconstructs paths from

light fields, basically importance sampling the path space of previously traced paths. The

purpose of path space algorithms is to find productive paths, even in hard to sample light

transport situations. Path space algorithms can inherently sample local events (surface interaction,

scattering, etc.).

Global importance sampling are based on skeleton importance sampling methods [Bir12]

[Cha13], which globally explore the scene to find potentially radiance rich areas. The strategy of

this importance sampling family is to find the most productive empty space, which can then be

easily linked to the lights and camera. The productive empty space is usually near the

skeletonization of the empty space in the scene. Because the strategy is global, it is much more

efficient in transporting light in extremely difficult scenes like those containing holes or barely

opened doors. Bidirectional Importance [Laf93] sampling can be itself considered a global

importance sampling method, because it samples paths from both camera pixels and scene lights

and links the generated subpaths into full light transport paths.

Light flux importance sampling (LFIS), also named light flow importance sampling, is a

new global importance sampling, designed to be used with bidirectional path tracing. The idea

is inspired by flow maps, which are maps that describe the flux of fluids. The light flux map is

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

172

extremely similar as a concept, as it describes the flux of light in the scene. Light flux

importance sampling differs from the state of the art by creating a light flux map (LFM) which

can be queried to quickly determine a source of light in any area of the scene. The source of light

can be any scene light or any light vertex generated by light tracing.

The light flux map is implemented as a tridimensional grid. It is populated by generating

a small number of samples for each light and generating light paths for these samples. The light

paths segments are voxelized, inside the tridimensional grid of the light flux map. Each cluster

over which a light path is rasterized holds a reference to the scene light or light vertex from

which the light originated. If a cluster is already populated, the radiance coming from the light

vertex source of the newly voxelized path segment is compared to the one coming from the

stored light vertex, and the vertex with the greatest radiance is kept. The light flux map thus

contains sparse information about the scene light transport. A tridimensional push-pull process,

akin to the one used in Conservative Inexact Voxelization in chapter 4.1.2 is used populate the

entire map, guaranteeing a light connection for each cluster of the light flux map. A bit flag is

kept for the approximated entries.

Thus, the light flux map enables indirect light importance sampling, by being able to link

any light vertex spawned by random walks originating from the light. The light sources are

modified to store sufficient data in order to evaluate the radiance for the entire path from which

they originated. For each camera path vertex generated inside the light flux cluster, a linkage is

generated to one of the referenced light vertices.

In the light tracing pass of the bidirectional path tracing algorithm, the light flux map

entries which were flagged as approximated are updated when a light is found inside the flagged

entry, either as a light segment or as a vertex. After a true, un-approximated, reference is stored

in an entry, the entry is flagged as final and will not be sampled anymore. Thus, while the light

flux map starts as a raw approximation of the scene it converges to an exact solution. Therefore,

light flux enables a very fast connection between the path tracing vertices and light tracing

vertices generated in bidirectional path tracing, which brings BDPT closer to real-time rendering.

Compared to path importance sampled path tracing algorithms, such as metropolis light

transport [Vea97], primary space metropolis light transport [Kel02], energy redistribution

[Cli05], manifold exploration [Jak12], gradient domain metropolis [Leh13] and multiplexed

metropolis [Hac14], the light flux method is much faster in producing paths that contribute to the

visual results, and it does not need any complex, storage and computational intensive mutation

process. Light flux has minuscule storage costs as compared to vertex connection merging

[Geo12] and path space regularization [Kap13]. Compared to the other global importance

sampling method, skeleton importance sampling [Bir12] [Cha13], the light flux map is much

more exact because it directly samples light paths, and it adapts to the illumination conditions of

the scene. Skeleton importance sampling samples the scene based on the supposition that high

energy will be concentrated in the empty areas of the scene, but this estimate isn’t always

accurate and it often leads to an oversampling of the empty space of the scene.

A weakness of the presented method is that the map can generate bad light linkage when

it is extremely under sampled, like right after the sampling stage, such as linking to a light that is

directly occluded. The number of such events is extremely small compared to the number of

useful connections, and the map converges rapidly. The light flow sampling algorithm is

displayed in Figure 69.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

173

Figure 69 Light flux importance sampling. This algorithm stores light flux information inside a tridimensional grid,

where each entry references the light vertex bringing the most radiance, here shown as the direction from it. Initially

the algorithm starts with a seeding process, in which a small number of light paths is generated for each light and the

generated light path segments have their flux information stored in the flux map, as depicted in the upper image. The

stored data is then interpolated in a tridimensional push-pull process, generating an approximated flux of light for all

entries, as depicted in the lower image. The upper image also presents an optimization of the light flux algorithm,

which can be used to better generate light paths in the light tracing pass of the BDPT. Each light stores the direction

of the seeding sample which generated the most light vertices which were visible from the camera. The difference

between the best direction seeding light path and the rest of the seeding light paths is shown in the surface contacts:

the best direction light path has green surface contacts while the other light path has red surface contacts. The

direction of the best light path is then importance sampled during light tracing.

 The pseudocode for the light flux map creation is the following:

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

174

PREREQUISTE

create voxelization for approximated tracing, can use CIV

allocate lightfluxmap and lightfluxmipmaps

LIGHTFLUX SEEDING (scenelights)

Reinitialize lightflux, flag all clusters to empty

scenelights ← Ø

FOR light in scene IF light is considered relevant (radiance, distance to camera)

 scenelights ← scenelights + light

FOR light in scenelights

 samples ← generate a number of samples with pseudo random series (Halton/Sobol/vdCorput)

 bestdirection ← direction of first sample

 maxssprojections← 0

 FOR sample in samples

 lightvertex ← sample

 numssprojections, recursion depth ← 0

 ray ← sample position, sample direction

 WHILE recursiondepth < Threshold

 surfacehit ← trace until next surface contact

 clusters ← clusters from lightfluxmap which were traced over

 FOR cluster in clusters

 IF cluster empty

 cluster ← radiance and reference to previous lightvertex

 cluster ← flag contents to exact

 ELSE
 storedradiance ← radiance of stored in cluster

 radiance ← previous lightvertex radiance

 IF radiance > stored radiance

 cluster ← radiance and reference to previous lightvertex

 lightvertex ← generate new light vertex, at surfacehit

 ray ← ray, surfacehit data

 projection ← randomly project lightvertex to screen space

 IF projection is unoccluded

 numssprojections ← numssprojections+1

 IF numssprojections > maxssprojections

 bestdirection ← current sample direction

 maxssprojections ← numssprojections

RETURN lightfluxmap (sparse)

LIGHTFLUX PUSHPULL (lightfluxmap)

mipmaplvl ← 0

WHILE mipmaplvl < (highest lightflux mipmaplvl-1)

 FOR cluster (texel) in mipmaplvl+1

 lightvertex← light vertex with most radiance among the four children from mipmaplvl

 cluster← lightvertex

 mipmaplvl← mipmaplvl+1

mipmaplvl← highest lightflux mipmaplvl

WHILE mipmaplvl > 1

 FOR cluster(texel) in mipmaplvl

 FOR childcluster (texel in mipmaplvl-1) of cluster IF childcluster not exact

 childcluster ← store the lightvertex from cluster

mipmaplvl← mipmaplvl-1

RETURN lightfluxmap (approximated)

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

175

LIGHT FLUX ADDITION DURING LIGHT TRACING

FOR lightpath in paths generated by light tracing

 IF using only light vertices

 extrasamples ← vertices in lightpath

 ELSE
 extrasamples ← vertices in lightpath, generate vertices over lightpath segments

 clusters ← lightflux clusters intersected by extrasamples

 FOR cluster in clusters IF cluster not exact

 cluster ← radiance and reference to previous lightvertex

 cluster ← flag contents to exact

Light flux importance sampling is compared to the state of the art importance sampling

methods in Table 12. Light flux importance sampling can be combined with other importance

sampling methods through multiple importance sampling [Vea97].

Importance Sampling Method &

Sampling Space(s)

Efficient with

bad starting

samples

Computation

Complexity

Required

Storage

Requires

Vertex

Mutations

Efficient

Specular Path

Exploration

Explicit

knowledge

of light data

adaptive sampling

(local/general)
low low low no no no

BSDF sampling

(local)
no low none no yes no

direct lighting

(local)
no low none no no yes

resampled importance sampling

(local/existing samples)
no low low no no no

volumetric sampling

(local, path)
no medium low no no no

eye reprojection

(local, camera)
no low low no no no

radiance filtering

(local, camera, path)
no low medium no no no

temporal light field reconstruction

(local, camera, path, temporal)
no high medium yes no no

metropolis light transport

(local, path)
medium high high yes medium no

primary space metropolis transport

(local, path)
high high high yes medium no

energy redistribution

(local, path)
high medium high yes medium no

manifold exploration

(local, path, manifold)
medium high high yes v. high no

gradient domain metropolis

(local, path, gradients)
high high high yes high no

multiplexed metropolis

(local, path)
high high high yes v. high no

vertex connection merging

(local, path)
high high high no high no

path space regularization

(local, path)
high high high no high no

Bidirectional

(local, path, global)
low medium high no no yes

Skeleton

(local, global)
medium low medium no no no

Light Flux - this algorithm

(local, path, global)
high low medium no no yes

Table 12 Path tracing sampling strategies. The table compares the Light Flux with other importance sampling

algorithms or processes. Light Flux importance sampling exhibits desirable properties for fast light transport, with

the exception of the exploration of difficult specular paths, which need special importance sampling mechanisms.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

176

4.2.4. Bidirectional Path Tracing

Bidirectional path tracing (BDPT) is the path tracing variant with the highest quality that

does not need heavy path mutation in order to transport light, and is therefore sufficiently

compatible with many core architectures in order to obtain low interactivity levels. The

bidirectional path tracing algorithm runs in two stages: the light tracing stage and the path tracing

stage. The light tracing stage samples the lights and generates light paths through the scene,

directly sampling the lights. Usually, in BDPT the path tracing stage samples the camera and

generates camera paths through the scene. If the GPU implementation of the current pipeline is

used, the path tracing stage can use the geometry-buffer data for the first camera path vertex,

which introduces a tiny amount of bias but speeds up rendering and eases the integration

between the geometry processing chapter and the correct illumination pipeline.

The generated light and camera paths are then combined, creating full light transport

paths, from the scene lights to the camera. Both the lights and the camera pixels are sampled

with pseudorandom low discrepancy series like Halton series [Pha10] and are stochastically

terminated with Russian Roulette [Pha10]. The connection between the two stages is done with

an acceleration structure, like a hierarchical cluster grid or a spatial hierarchical hash gird

[Sch09], as used in [Geo12].

The bidirectional path tracing algorithm can be integrated tightly with the previously

presented Light Flow importance sampling mechanism. As depicted in Figure 69, the seeding

stage of the light flow map can be used to approximately determine the most productive

sampling direction per light, by using the direction of the sample that generated the path with the

most screen space visible light vertices. The computed direction can be then used as a minor

importance sampling mechanism, which generates extra light paths around the determined

productive direction.

The presented correct illumination pipeline is based on a bidirectional path tracer that

uses light flux importance sampling to explicitly and indirectly sample the scene lights and

bidirectional scattering distribution function (BSDF) importance sampling, which creates

samples based on probability distribution of the BSDF. These sampling mechanisms are

combined with MIS [Vea97], as they would otherwise decrease local variance but increase

global variance. The combination function is the power heuristic introduced by [Vea97]:

Where is the number of importance sampling strategies, is the number of samples

for each sampling strategies, is the estimated function, is the sampling

probability, and is the power heuristic function. If , the resulting weighting

function is called the balance heuristic.

Adaptive importance sampling, eye reprojection importance sampling and radiance

filtering are used to importance sample data at the camera level. The BDPT algorithm is visually

presented in Figure 70, with the most relevant sampling methods.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

177

Figure 70 Bidirectional path tracing with light flux. In the upper part of the image, the light tracing pass of BDPT is

displayed, which stores light vertices in an acceleration structure, shown in yellow. The light tracing algorithm

sometimes generates lucky samples that directly light the screen, as shown in blue. The light tracing pass is

importance sampled with the most productive light direction found in the light flux map construction step, shown in

green. The bottom part of the image displays the path tracing pass of BDPT, which is explores the scene through

camera paths (blue), which collect radiance. Different radiance collection algorithms are used, shown above with

numbers 1,2,3,4,5. 1 and 3 are direct connection between a vertex path and a light path. 2 is the light flux importance

sampling which is used on unproductive paths to quickly find light connections (3). 4 shows eye reprojection, in

which the vertices of the traced camera paths are projected on the screen, along with their collected radiance. 5

displays radiance filtering, in which the pixels directly sample the first camera path vertices from neighboring paths.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

178

While not used in this thesis, the quality of the connection between light tracing and path

tracing can be further improved with connection streams, like those used in streaming path

tracing [van11], a modified sampling strategy such as the one presented in [Bog13] or through

path regeneration [Nov10]. Path mollification [Kap13] and vertex connection merging [Geo12]

can be used for offline rendering.

 The presented bidirectional path tracer can use two strategies for lightflux map extra

sampling. The first strategy is to fill the approximated lighflux map entries in the vicinity of light

vertices generated in the light tracing stage. The second, more exact but much more expensive

strategy is to fill all the approximated lightflux map entries which enter in contact with light

paths from the light tracing phase. This can be achieved through tridimensional segment

rasterization over the lightflux map, and will produce a high quality lightflux map. The

pseudocode for the light flux enabled light tracing BDPT algorithm is the following:

BDPT LIGHT TRACING

hashgrid ← allocate spatial hierarchical hash grid, hashgrid ← Ø

scenelights ← all scene lights

lightfluxmap ← LIGHTFLOW SEEDING with scenelights //LIGHTFLUX SEEDING

lightfluxmap ← LIGHTFLOW PUSHPULL lightflowmap

WHILE scenelights not empty //GENERATE SAMPLES

 light ← pop scenelights

 samples ← generate samples for light

 lightflow_direction_samples ← generates samples for light using lightflow light direction

 samples ← samples lightflow_direction_samples

 WHILE samples not empty // LIGHT TRACING

 sample ← pop samples

 pathlength ← 0

 path ← sample

 previousvertex ← sample

 ray ← create ray with light sample

 WHILE pathlength < max path level // MAX LENGTH

 surface_intersection_data ← INTERSECT ray

 vertex ← create light vertex with surface_intersection_data

 store vertex in hashgrid

 path ← path vertex

 pathlength ← pathlength + 1

 bsdfsample ← sample BSDF

 ray ← create ray with bsdfsample

 IF lightfluxmap is sampled during light tracing // LIGHTFLUX SAMPLES

 IF sampled with vertices

 cluster ← lightflux cluster for vertex

 IF cluster approximated

 cluster ← previous vertex, flag as not approximated

 ELSE IF sampled with segments (very expensive!)

 segment ← vertex previousvertex

 emptyclusters ← INTERSECT segment with lightflux

 approximated clusters

 WHILE emptyclusters not empty

 cluster ← pop emptyclusters

 cluster ← previous vertex, flag as not approximated

 previousvertex ← vertex

 IF random (0,1)< extinction probability //RUSSIAN ROULETTE

 BREAK

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

179

 The camera path tracing stage of the BDPT algorithm samples the scene like a normal

path tracer, but also looks to connect each path vertex to a light vertex generated by the light

tracing pass, in order to created complete light transport paths. This connection is done through

explicit paths, in which a camera path vertex directly connects, or is in a very close vicinity of a

light vertex, or through implicit paths, which use connectors suggested by the light flux map.

 Russian Roulette (RR) [Pha10] is used to stochastically terminate long paths, and it is an

unbiased estimator since each path that survives the Russian roulette is weighted in order to

compensate in expected value, as done in this equation:

 Adaptive importance sampling can be used to generate more camera paths, especially for

paths starting in pixels prone to aliasing. These pixels can be determined with gradients like in

[Leh13], which are extremely cheap to obtain if the camera path tracer is implemented starting

from the deferred G-buffer. Another adaptive algorithm is based on the hierarchical automatic

stopping condition presented in [Dam09], in which the screen is subdivided into tiles, over

which path tracing phases are performed. After each path tracing phase the newly created tile

image is compared to the existing tile image and if the error is under a very small threshold the

tile is terminated. Otherwise, if the error is small enough the tile is split into multiple tiles, which

then follow the same hierarchic process. If the error is large, the tile is not split, the radiance

from the current path tracing pass is accumulated and a new path tracing pass over the tile is

initiated. This technique is adapted to the correct illumination rendering pipeline, but instead of a

hierarchic process which requires CPU synchronization a simpler micro-tile only structure is

used, where samples are generated for each micro-tile until convergence is obtained. The error

metric used by [Dam09] is adapted to:

 Where is the total number of pixels in the tile,
 ,

 and

 are the values for the red,

green and blue channels which were determined in the last path tracing pass over the tile and
 ,

 and
 are the already accumulated values for the red, green and blue channels.

 Eye reprojection is a cheap performance improver, which uses the existing camera paths

bring additional radiance to the camera, by projecting each camera path vertex onto the screen

and transporting radiance. In this thesis eye reprojection is used only at micro tile level, in order

for this algorithm to be compatible with adaptive sampling and to avoid GPU races. Radiance

filtering follows the same principle of sample re-usage as eye reprojection, but instead of

projecting camera path vertices onto the screen it performs micro path mutations on the paths

created by the neighbor camera path tracing samples. The neighbor paths are mutated to

terminate on the current sample and not on the neighbor sample, re-using the radiance transport

computed by the neighbor samples. Both sampling strategies are displayed in Figure 70. Sub

pixel reconstruction for ray-tracing can be used if the BDPT is implemented with a deferred

renderer [Chi12].

 The pseudocode for the BDPT camera path tracing stage is:

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

180

BDPT PATH TRACING

scenelights← scene lights

lightfluxmap, hashgrid← BDPT LIGHT TRACING

microtiles ←separate the screen into microtiles

FOR tile in microtiles //ADAPTIVE SAMPLE

 converged ← false

 sampler ← create Halton series low discrepancy sampler from camera and pixel

 FOR pixel in microtile

 pixelaccumulatedcolor ← 0

 WHILE not converged

 samples ← generate camera samples with sampler in microtile

 projectedsamples← Ø

 FOR sample in samples //TRACING

 pathlength ← 0

 path ← sample

 ray ← create ray with sample

 samplecolor ← 0

 previousvertex ← sample

 contribution ← 1

 WHILE pathlength < max path level //MAX LENGTH

 surface_intersection_data ← INTERSECT ray

 vertex ← create light vertex with surface_intersection_data

 path ← path vertex

 pathlength ← pathlength + 1

 entry ← hashgrid entry for vertex

 IF entry not empty //EXPLICIT LINK

 connected ← false

 index ← random index from 0 to entry size

 WHILE not connected

 lightvertex ← select light vertex at index

 lightray ← ray from vertex to lightvertex

 IF no INTERSECT lightray

 samplecolor ← contribution, vertex, lightvertex

 BREAK

 ELSE

 index←index+1

 normal, bsdf, mis ← surface_intersection_data

 IF lightflux importance sampling //INDIRECT LINK

 lightfluxcluster ← get lightflux cluster //MIS LIGHTFLUX

 light← get light from lightfluxcluster

 lightray ← ray from vertex to lightvertex

 IF no INTERSECT lightray

 Lightfluxestimator ← MIS

 samplecolor ← contribution, vertex, lightvertex

 BREAK

 IF direct light importance sample //MIS DIRECT LIGHT

 light← pick a light from scenelights

 lightray ← ray from vertex to sampled point on light

 IF no INTERSECT lightray

 lightestimator ← use ray, normal, mis

 directcolor ← evaluate path & lightvertex

 samplecolor←samplecolor + lightestimator *directcolor

 IF bsdf importance sampling //MIS BSDF

 bsdfestimator, ray ← use ray, normal, mis to sample bsdf

 contribution ← contribution bsdfestimator

 IF eye reprojection && samplecolor>0 //EYE REPROJECTION

 camerasample ← sample camera in microtile

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

181

 projectedvertex ← project previousvertex on camerasample

 projectedray ← create ray from previousvertex to projectedvertex

 IF no INTERSECT projectedray

 projectedcolor ← projectedray, previousvertex, vertex

 projectedsamples ← projectedsamples projectedcolor

 IF random(0,1) < extinction probability //RUSSIAN ROULETTE

 BREAK

 ELSE

 contribution ← contribution

 previousvertex ← vertex

 END WHILE

 END FOR

 FOR sample in samples //RADIANCE FILTERING

 FOR neighborsample in samples

 path← path of neighborsample

 firstvertex←first vertex in path

 secondvertex←first vertex in path

 projectedray ← create ray from sample to firstvertex

 IF no INTERSECT projectedray

 projectedcolor←projectedray, firstvertex, secondvertex

 projectedsamples ← projectedsamples projectedcolor

 pixeltotalcolor ← 0

 pixeltotalweight ← 0

 FOR pixel in microtile //SAMPLE FILTERING

 FOR sample in microtile

 sampleweight ← determine sample weight, based on screen space distance

 pixeltotalweight← pixeltotalweight + sampleweight

 pixeltotalcolor ← pixeltotalcolor + samplecolor

 IF pixeltotalweight > 0

 pixelcolor ← pixeltotalcolor / pixeltotalweight

 ELSE

 pixelcolor ← 0

 IF using deferred renderer //SRAART

 extrasamples← sub pixel reconstruction antialiasing

 pixelcolor← average with extrasamples

 pixelerror ← compute with error between pixelcolor and accumulatedcolor

 microtileerror← 0

 numpixels← number of pixels in microtile

 FOR pixel in microtile //ADAPTIVE SAMPLING CONVERGENCE

 pixelerror ← error or pixel

 microtileerror ← microtileerror + pixelerror

 microtileerror← microtileerror/ numpixels

 IF microtileerror < convergence threshold

 converged←true

 ELSE //ADAPTIVE SAMPLING ACCUMULATION

 FOR pixel in microtile

 FOR sample in pixel

 accumulate samplecolor in pixelaccumulatedcolor

 The BDPT algorithm with the presented sampling algorithm creates the images in Figure

71 interactively. The figure also shows that the light flux importance sampling method

speeds up light transport, especially for difficult to sample global light paths.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

182

Figure 71 Interactive BDPT with light flux importance sampling. The presented bidirectional path tracer produces

the above images interactively, on consumer hardware GPUs. The images show that light flux sampling is very

productive for all light paths, as it generates light-camera paths very fast which ensure faster image convergence.

 Figure 72 presents results obtained with rendering times outside interactivity.

Figure 72 Offline bidirectional path tracing. The presented correct illumination can be used in offline mode to

produce photorealistic results. Classic global illumination rendering scenes are shown in the figure.

 Due to the very low memory usage and the fast connection between light vertices and

path vertices, the light flow importance sampled bidirectional path tracing is an algorithm

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

183

designed for the GPU, which can be used to produce interactive previsualisations for offline

rendering.

 Fast and accurate previsualisations are critical in CAD modeling, because the final

renderings use extremely large sample counts and are thus too expensive for interactive

modeling.

4.3. Post Processing

Post processing is performed independently of the illumination rendering pipeline, and

both the approximate illumination pipeline and the correct illumination pipeline can be post

processed. The post processing stage implements many filters, which improve the visual result of

the rendering by either enhancing it perceptually or by augmented the rendered image. Some of

the implemented filters are shown in Figure 73.

Figure 73 Post processing. This image shows various post processing algorithms such as edge detection in the upper

left corner, perception enhancing in the upper right corner, micro ambient occlusion in the right lower corner.

Because the pipeline is GPGPU computed, it can benefit from explicit caching methods, which enable the

implementation of very wide kernels, such as the blur kernel used in the lower left corner.

The post processing stage works as a completely GPGPU stage, which uses outputs

produced by illumination pipeline, such as depth, normals or color. These values are read into

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

184

tiles, which act as small caches, and which greatly speed up data access, because all the filters

are implemented as kernels over some vicinity of image space.

The filters implemented in the post processing module are tone mapping, high dynamic

range rendering, gamma correction, depth of filed, edge detection, motion blur and perception

enhancing. They can be categorized into two types: perception enhancing filters and rendering

enhancing filters. The rendering enhancing filters are particularly important, because they

improve the approximated illumination visual results with motion blur and bokeh depth of field,

as described in [McI12] and [Gue14].

A notable omission from this sub-chapter is the decoupled sub pixel reconstruction anti-

aliasing algorithm, which is a post processing algorithm seamlessly integrated in the deferred-

based in the approximated rendering illumination pipeline.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

185

5. CONCLUSIONS

This thesis has introduced a modular rendering pipeline based on several novel real-time

and interactive rendering techniques. The presented real-time algorithms are based on the

principles of decoupling and bandwidth reduction, and can handle a large number of light paths.

The correct rendering path runs at the edge of interactivity. The contributions are presented in

detail in chapters 3 and 4.

The most important contributions to real-time rendering which are presented in this thesis

are the virtual rasterization and antialiasing algorithms for opaque and transparent objects, the

hierarchical culling algorithm, the conservative inexact voxelization method and its applications

to approximative low and high frequency light transport. Other contributions include a variant of

the marching cubes algorithm specialized for large datasets, a hierarchical impostor system using

virtual texturing, a small rasterization task generator, measurement metrics for deferred

algorithms, an approximative order independent transparency algorithm and a geometry selection

method.

The correct rendering path introduces light flux sampling, a novel global importance

sampling method, which adapts to scene light transport faster than the other global importance

sampling methods. The correct rendering path also amortizes the cost of some of the visibility

determination rays, by using the conservative inexact voxelization algorithm.

The rest of the chapter continues with a short description for each introduced algorithm

and with an overview of the potential research directions that continue the ideas discussed in this

thesis.

5.1. Summary of Contributions

In this small sub-chapter each contribution is shortly described.

The indirect rendering solution used in this thesis is based on a serialization method for

the marching cubes algorithm, which enables running the algorithm on the GPU, for very large

datasets. The algorithm is described in chapter 3.2.1, and also published in [Pet11].

A hierarchical impostor method is presented in chapter 3.2.3, which creates impostors for

entire scene tree nodes. Compared to state of the art methods, this technique operates at scene

level and it is integrated within a virtual texturing based streaming system while also being

parallax mapping aware. It is then used for scene rendering scalability and anti-aliasing.

 This thesis introduces a GPU task generator, which, compared to all the other state of the

art task generators and schedulers, is capable of working within the rasterization thread scheduler.

Because of this, the task generator can be used to augment the performance of rasterization-

based rendering algorithms. This task generator is described in chapter 3.3, and published in

[Pet14]. It is then applied to a hierarchical view frustum culling algorithm in chapter 3.4. The

task generator is used to generate and solve culling tasks which appear during the culling scene

tree traversal.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

186

 The multi frame culling algorithm culls objects hierarchically, over multiple frames

without CPU control besides the initialization synchronization, and without any pre-processing

like occlusion impostors. On the other hand if such impostors are available, it can be integrated

with hierarchical depth occlusion to benefit from. The algorithm can be also be integrated with

other hierarchic or non-hierarchic algorithms, such as hierarchical depth occlusion, though it can

benefit from the latter if it is available. The algorithm can also be implemented using dynamic

parallelism. Moreover, the method introduces a multi-frame culling mechanism based on the

solid angle obtained from the camera orientation. By culling objects for multiple frames, the

algorithm significantly lowers computational costs.

 Novel measurement metrics for deferred algorithms are provided in this thesis, in chapter

3.5.1, and they are used to compare all the relevant deferred and decoupled algorithms. They are

also published in [Pet15]. By using these methods a developer can easily select the most suitable

deferred algorithm, depending on the constraints of the rendering problem and on the

deployment hardware strengths and weaknesses.

 This thesis introduces virtual rasterization rendering methods for both opaque and

transparent objects. Both algorithms use virtual texturing to completely decouple texture fetching

from geometry processing.

 The opaque objects are rasterized with virtual deferred (VD), presented in Chapter 3.5.2.

The shading part is presented in Chapter 4.1.4. Virtual deferred is a novel type of deferred

algorithm, which combines the benefits of single geometry pass deferred rendering with the

useful properties of virtual texturing and multi-pass deferred algorithms. In doing so, virtual

deferred possesses the best deferred metrics for bandwidth, shading and geometry processing,

while also being easy to incorporate in a streaming solution. The method was published in

[Pet151].

 Decoupled sub pixel reconstructed anti-aliasing (DSRAA) is a new method which is

inspired by the sub geometric reconstruction anti-aliasing (SRAA), improving it by performing

the sub-geometric reconstruction as a sample matching method. This antialiasing method does

not introduce further storage and bandwidth costs and has cheaper reconstruction costs than

SRAA. It is also used in combination with virtual deferred, to render antialiased rasterized

opaque objects, as discussed in chapter 4.1.5.

 Virtual deferred is also adapted for transparent object rendering. The thesis introduces

Virtual A-Buffer (VA-Buffer), also named Virtual Order Independent Transparency (VOIT), in

Chapter 3.6.1. The shading part is offered in Chapter 4.1.6. VOIT modifies the GPU variant of

the A-Buffer algorithm with virtual deferred principles, lowering the bandwidth and storage

requirements. By relaxing the greatest constraint of the A-Buffer algorithm, VOIT is able to

handle scenes with increased material complexity. Moreover VOIT shades adaptively, based on

the opacity of each pixel, thus it shades and textures only the nodes which are guaranteed to have

a visual impact in the final image. Furthermore, VOIT scales much better than A-Buffer when

high quality results are needed and can be used to compute antialiasing without storing multiple

samples per fragment. The method is also adapted for specular light transfer.

 Another novel order independent transparency algorithm is also introduced, which

modifies occupancy maps with depth distributions, adaptively increasing the depth resolution for

each pixel. The method is named distribution occupancy maps and it is presented in chapter 3.6.2.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

187

Each pixel stores a small resolution depth occupancy map, which is used to approximate the

depth distribution over the pixel. Using this depth distribution, the full resolution occupancy map

has its sampling points modified, to better adapt to the fragments rendered over the pixel. While

this technique is not applicable to sharp geometric features, because of the approximated per-

pixel opacity, it can still produce very good results for fuzzy objects, such as participating media

and particle systems.

 A selection algorithm is presented in chapter 3.7, which integrates seamlessly in any

rasterization process. The selection algorithm improves upon state of the art methods, being able

to select anything renderable, include alpha culling, the instances of instanced geometry,

transient geometry generated with hardware tessellation, or alpha occlusion. The method was

published in [Pet13].

 Conservative Inexact Voxelization (CIV) is a novel type of imperfect voxelization, which

exchanges correctness for speed. It is introduced in chapter 4.1.2. Compared to the state of the art

voxelization solutions CIV has a drastically lowered complexity. Instead of working at a triangle

level it works directly on objects, which are approximated, diced and stored in a hierarchic voxel

representation. A push-pull process is then applied to the hierarchic voxel representation, which

quickly updates the content for all levels of the hierarchy. The CIV structure is designed for

tracing approximative rays, such as the ones used in approximative global illumination or

stochastical collision rays. CIV integrates seamlessly into deferred pipelines as the depth samples

from the depth buffer can be back projected to create extra geometric information for the objects

inside the visualization frustum.

 The CIV method is then used to relax the visibility operator in the rendering equation,

acting as a visibility determination structure for virtual light generation. Because the CIV

contains more data closer to the visualization volume, it permits tracing with an adaptive

visibility operator, which is highly accurate inside the visualization volume and coarse outside it.

Virtual lights are generating with random walks through the CIV, starting from the scene lights,

like in any instant radiosity variant. The illumination with virtual lights is then performed with a

deferred lighting algorithm. CIV is also used to trace local shadow. Compared to the state of the

art methods, this enables fast diffuse light transport without any precomputation or special cases

for animated or moving objects, as discussed in Chapter 4.1.3.1.

 CIV can also be used in conjunction with approximated screen space specular light

transport algorithms, to augment the approximated methods in their many fail cases. This is

presented in Chapter 4.1.3.2.

 This thesis also provides algorithms for rendering methods which are only at the edge of

interactivity as of today, but will be used on consumer hardware for real-time rendering in the

future. Photorealistic images are rendered with a bidirectional path tracer, which amortizes the

cost of visibility determination operations through the imperfect but conservative visibility

computed with CIV. Because CIV is also used to approximate the visibility operator for the real-

time global illumination solution presented in this thesis, the two rendering paths - correct and

approximate - are easily interchangeable.

 The correct illumination solution introduces a new type of importance sampling, light

flux sampling, which quickly approximates the flow of light in the scene and uses this

approximation to quickly create productive paths. Compared to other state of the art methods, it

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

188

does not need to use a metropolis process or scene-wide geometry skeletonization to generate

high-energy paths. Furthermore, for scenes with normal light transport, it creates paths much

faster than the other sampling algorithms. Light flux can be considered an indirect light

importance sampling mechanism, as it indirectly samples lights with a connection probability

comparable to direct importance sampling.

 Light flux importance sampling and amortized visibility are then used in a bidirectional

path tracer to create photorealistic images. The bidirectional path tracer also employs state of the

art algorithms such as adaptive sampling per tile, multiple importance sampling, radiance

filtering, eye reprojection sampling, Russian roulette extinction, sample filtering and explicit

connection testing through a spatial hash grid.

5.2. Conceptual Contributions

 The decoupled algorithms presented in this thesis completely separate visibility

determination, texture fetching and shading, in the context of rasterization rendering. This is

performed without storing a very large number of samples or needing to synchronize a dynamic

programming solution like in [Rag11]. Decoupled solutions ease aliasing analysis, frame rate

stability and analysis and software development.

 Conservative inexact voxelization is a unique type of voxelization because it works in

 instead of working in , as do the other state of the art algorithms.

Approximative light transport over the presented conservative inexact voxelization data structure

is a reliable solution for real-time transport of low frequency light, offering a true real-time

solution for many lights shadowing. The rendering algorithms presented in this thesis use

conservative inexact voxelization to solve low frequency light transport in real-time, but, like all

other rendering solutions, including voxel cone tracing [Cra09], fail to produce high quality

specular light transport, especially caustics, leaving place for improvement. The adaptation of the

conservative inexact voxelization acceleration structure to screen space high frequency light

transport mechanics offers perceptually pleasing specular transport, through the augmentation of

the screen space algorithm with information needed for its fail cases. This is done without the

harsh requirements of sparse octrees: streaming, storage and bandwidth consumption catalyzed

be resolution requirements, and expensive voxelization.

 The concept of perception influenced degradation of the visibility operator in the

rendering equation, as introduced by conservative inexact voxelization, can lead to comparable

results with the current [Cra09] [Mar14] [Gan14] or emerging [Bik07] [Bik13] interactive high

frequency light transport solutions, but with only a fraction of the computational costs. This is

especially valuable for storage and bandwidth poor hardware.

 From a non real-time standpoint, the novel light flux importance sampling method has

shown that links between paths can be constructed efficiently without much computation, and

that the light distribution in the scene can be progressively approximated and harnessed for more

efficient transportation algorithms.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

189

REFERENCES

[Wat13] A. B. Watson, "High Frame Rates and Human Vision: A View Through the Window

of Visibility", vol. 122, no. 2, pp. 18-32, doi: 10.5594/j18266 , Mar. 2013.

[Eis10] C. Eisenacher and C. Loop, "Data-parallel Micropolygon Rasterization",

Eurographics, 2010.

[Kan01] T. Kaneko, T. Takahei, M. Inami, N. Kawakami, Y. Yanagida, T. Maeda, and S.

Tachi, "Detailed Shape Representation with Parallax Mapping", in Proceedings of

ICAT, pp. 205-208, 2001.

[Bra04] Z. Brawley and N. Tatarchuk, "Parallax Occlusion Mapping: Self-Shadowing,

Perspective-Correct Bump Mapping Using Reverse Height Map Tracing", in ShaderX

3, 2004.

[Tat06] N. Tatarchuk, "Practical parallax occlusion mapping with approximate soft shadows

for detailed surface rendering", in ACM SIGGRAPH 2006 Courses , pp. 81-112, 2006.

[Pre06] M. Premecz, "Iterative parallax mapping with slope information", in Central

European Seminar on Computer Graphics, 2006.

[Mik08] M. Mikkelsen, "Simulation of Wrinkled Surfaces Revisited," 2008.

[Nog12] G. Nogrega de Lima, H. Batagelo, and P. Gois, "Displacement Mapping Techniques :

Analysis and Comparisons", in SIBGRAPI - Workshop of Undergraduate Works, pp.

59-64, 2012.

[Ris07] E. Risser, M. Shah, and S. Pattanaik, "Faster relief mapping using the secant method",

Journal of Graphics Tools, vol. 12, no. 3, 2007.

[Lob08] R. Lobel, "SSDM: Screen Space Displacement Mapping," 2008.

[Ola10] M. Olano and D. Baker, "LEAN mapping", in Proceedings of the 2010 ACM

SIGGRAPH symposium on Interactive 3D Graphics and Games , pp. 181-188, 2010.

[Bak11] D. Baker, "Spectacular Specular -LEAN and CLEAN specular highlights", in GDC,

2011.

[Mcg10] M. Mcguirre, E. Enderton, P. Shirley, and D. Luebke, "Real-Time Stochastic

Rasterization on Conventional GPU Architectures", Proceedings of High

Performance Graphics, pp. 173-182, Jun. 2010.

[Tok04] M. Toksvig, "Mipmapping Normal Maps," NVIDIA, 2004.

[Hun08] W. Hunt and W. Mark, "Ray-Specialized Acceleration Structures for Ray Tracing",

IEEE/EG Symposium on Interactive Ray Tracing , 2008.

[Sch09] F. Schornbaum, "Hierarchical Hash Grids for Coarse Collision Detection", PhD

Thesis, University of Erlangen-Nurnbergm, Nuremberg, 2009.

[Har12] T. Harada, "A 2.5D culling for Forward+", SIGGRAPH Asia 2012 Technical Briefs ,

2012.

[Fuc80] H. Fuchs, Z. Kedem, and B. Naylor, "On visible surface generation by a priori tree

structures", SIGGRAPH '80 Proceedings of the 7th annual conference on Computer

graphics and interactive techniques , pp. 124-133, 1980.

[Had98] M. Hadwiger and A. Varga, "Visibility Culling," 1998.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

190

[Lai101] S. Laine and T. Karras, "Efficient sparse voxel octrees", Proceedings of the 2010

ACM SIGGRAPH symposium on Interactive 3D Graphics and Games , pp. 55-63,

2010.

[Sim12] I. Simecek, D. Langr, and C. Tvrdik, "Minimal Quadtree Format for Compression of

Sparse Matrices Storage ", 14th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), pp. 359-364, Sep. 2012.

[Moo91] A. Moore, "An introductory tutorial on kd-trees," 1991.

[Ben75] J. L. Bentley, "Multidimensional binary search trees used for associative searching",

Communications of the ACM, vol. 18, no. 9, p. 509, 1975.

[Bik07] J. Bikker, "Real-time Ray Tracing through the Eyes of a Game Developer",

Interactive Ray Tracing, 2007. RT '07. IEEE Symposium on, pp. 1-10, DOI

10.1109/RT.2007.4342584, Sep. 2007.

[Wal06] I. Wald and V. Havran, "On building fast kd-Trees for Ray Tracing, and on doing that

in O(N log N)", IEEE Syposiom of Interactive Ray Tracing, pp. 61-69, Sep. 2006.

[Dan10] P. Danilewski, S. Popov, and P. Slusallek, "Binned SAH Kd-Tree Construction on a

GPU", in High Performance Graphics, 2010.

[Wal072] I. Wald, "On fast Construction of SAH-based Bounding Volume Hierarchies",

Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, pp. 33-40,

2007.

[Ern07] M. Ernst and G. Greiner, "Early Split Clipping for Bounding Volume Hierarchies", in

IEEE Symposium on Interactive Ray Tracing, pp. 73-78, 2007.

[Dam081] H. Dammertz and A. Keller, "The edge volume heuristic - robust triangle subdivision

for improved BVH performance", in IEEE Symposium on Interactive Ray Tracing, pp.

155-158, 2008.

[Sti09] M. Stich, H. Friedrich, and A. Dietrich, "Spatial splits in bounding volume

hierarchies", Proceedings of the Conference on High Performance Graphics, pp. 7-

13, 2009.

[Pop09] S. Popov, I. Georgiev, R. Dimov, and P. Slussallek, "Object partitioning considered

harmful: space subdivision for BVHs", in Proceedings of the Conference on High

Performance Graphics, pp. 15-22, 2009.

[Dam08] H. Dammertz, J. Hanika, and A. Keller, "Shallow bounding volume hierarchies for

fast SIMD ray tracing of incoherent rays", Proceedings of the Nineteenth

Eurographics conference on Rendering, pp. 1225-1233, 2008.

[Tsa09] J. Tsakok, "Faster incoherent rays: Multi-BVH ray stream tracing", in Proceedings of

the Conference on High Performance Graphics, pp. 151-158, 2009.

[Vin14] M. Vinkler, V. Havran, and J. Bittner, "Bounding volume hierarchies versus kd-trees

on contemporary many-core architectures", in Proceedings of the 30th Spring

Conference on Computer Graphics , pp. 29-36, 2014.

[Bik13] J. Bikker and J. van Schneidel, "The Brigade Renderer: A Path Tracer for Real-Time

Games", International Journal of Computer Games Technology, vol. vol. 2013, p. 14,

Article ID 578269, doi:10.1155/2013/578269, Sep. 2013.

[Ooi87] B. Ooi, "Spatial kd-Tree: A Data Structure for Geographic Database", Informatik-

Fachberichte, vol. 136, 1987.

[Zac02] G. Zachmann, "Minimal Hierarchical Collision Detection", in "Proc. ACM

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

191

Symposium on Virtual Reality Software and Technology, Hong Kong, pp. 121-128,

2002.

[Wäc06] C. Wächter and A. Keller, "Instant ray tracing: the bounding interval hierarchy",

Proceedings of the 17th Eurographics conference on Rendering Techniques , pp. 139-

149, 2006.

[Hav06] V. Havran, R. Herzog, and P. Slusalek, "On the Fast Construction of Spatial

Hierarchies", IEEE Symposium of Interactive Ray Tracing, pp. 71-80, 2006.

[Wal071] I. Wald, S. Boulos, and P. Shirley, "Ray tracing deformable scenes using dynamic

bounding volume hierarchies", ACM Transactions on Graphics (TOG), vol. 26, no. 1,

Jan. 2007.

[Fol05] T. Foley and J. Sugerman, "KD-tree acceleration structures for a GPU raytracer", in

Proceeding HWWS '05 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware , pp. 15-22, 2005.

[Pop07] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek, "Stackless KD-Tree Traversal for

High Performance GPU Ray Tracing", Computer Graphics Forum, vol. 26, no. 3, p.

415–424, Sep. 2007.

[Hap11] M. Hapala, T. Davidovič, I. Wald, V. Havran, and P. Slusallek, "Efficient stack-less

BVH traversal for ray tracing", in Proceedings of the 27th Spring Conference on

Computer Graphics , pp. 7-12, 2011.

[Afr14] A. Afra and L. Szirmay-Kalos, "Stackless Multi-BVH Traversal for CPU, MIC and

GPU Ray Tracing", in Computer Graphics Forum, pp. 129-140, 2014.

[Bar14] R. Barringer and T. Akenine-Möller, "Dynamic ray stream traversal", Journal ACM

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH, vol. 33, no. 4,

Jul. 2014.

[van11] D. van Antwerpen, "Improving SIMD efficiency for parallel Monte Carlo light

transport on the GPU", in High Performance Graphics, New York, USA, pp. 41-50,

2011.

[Mor11] B. Mora, "Naive ray-tracing: A divide-and-conquer approach", ACM Transactions on

Graphics (TOG), vol. 30, no. 5, Oct. 2011.

[Kel11] A. Keller and C. Waechter, "Efficient Ray Tracing without Auxiliary Acceleration

Data Structure," NVIDIA, 2011.

[Nab13] K. Nabata, K. Iwasaki, Y. Dobashi, and T. Nishita, "Efficient divide-and-conquer ray

tracing using ray sampling", in Proceedings of the 5th High-Performance Graphics

Conference , pp. 129-135, 2013.

[Afr12] A. Afra, "Incoherent ray tracing without acceleration structures", in Proc. of

Eurographics Short Paper, pp. 97-100, 2012.

[Wal03] I. Wald, C. Benthin, and P. Slusallek, "Distributed interactive ray tracing of dynamic

scenes ", IEEE Symposion of Parallel and Large-Data Visualization and Graphics,

pp. 77-85, Oct. 2003.

[Sha98] J. Shade, S. Goertler, L. He, and R. Szeliski, "Layered depth images", Proceedings of

the 25th annual conference on Computer graphics and interactive techniques,

SIGGRAPH, pp. 231-242, Aug. 1998.

[Rad14] M. Radwan, S. Ohrhallinger, and M. Wimmer, "Efficient Collision Detection While

Rendering Dynamic Point Clouds", in Proceedings of the 2014 Graphics Interface

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

192

Conference, pp. 25-33, 2014.

[Nga05] A. Ngan, F. Durand, and W. Matusik, "Experimental analysis of BRDF models", in

Proceedings of the Sixteenth Eurographics conference on Rendering Techniques , pp.

117-126, 2005.

[Edw03] A. Edward, Interactive Computer Graphics: A Top-Down Approach Using OpenGL,

3rd ed. Addison-Wesley, 2003.

[Tor67] K. Torrance and E. Sparrow, "Theory for Off-Specular Reflection from Roughened

Surfaces", Journal of Optical Society of America, vol. 57, p. 1105–1114, 1967.

[Cra09] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, "GigaVoxels : Ray-Guided

Streaming for Efficient and Detailed Voxel Rendering", in ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (I3D), Boston, MA, USA, 2009.

[Bli77] J. Blinn, "Models of light reflection for computer synthesized pictures", in

Proceedings of the 4th annual conference on Computer graphics and interactive

techniques , pp. 192-198, 1977.

[Min41] M. Minnaert, "The reciprocity principle in lunar photometry", The reciprocity

principle in lunar photometry, vol. 93, pp. 403-410, May 1941.

[War92] G. Ward, "Measuring and modeling anisotropic reflection", in Proceedings of the 19th

annual conference on Computer graphics and interactive techniques , pp. 265-272,

1992.

[Sch98] C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", in

Computer Graphics Forum, 1998.

[Ore94] M. Oren and S. Nayar, "Generalization of Lambert's reflectance model", in

Proceedings of the 21st annual conference on Computer graphics and interactive

techniques , pp. 239-246, 1994.

[Hei98] W. Heidrich and H.-P. Seidel, "Efficient Rendering of Anisotropic Surfaces Using

Computer Graphics Hardware", in Image and Multi-dimensional Digital Signal

Processing Workshop (IMDSP), 1998.

[Ash00] M. Ashikmin, S. Premože, and P. Shirley, "A microfacet-based BRDF generator", in

Proceedings of the 27th annual conference on Computer graphics and interactive

techniques, pp. 65-74, 2000.

[Kel01] C. Kelemen and L. Kalos, "A microfaced based coupled specular-matte brdf model

with importance sampling", in Eurographics Short Presentations, 2001.

[Wal07] B. Walter, S. Marschner, H. Li, and K. Torrance, "Microfacet models for refraction

through rough surfaces", in Proceedings of the 18th Eurographics conference on

Rendering Techniques , pp. 195-206, 2007.

[Slo11] P.-P. Sloan, D. Nowrouzezahrai, and H. Yuan, "Wrap Shading", Journal of Graphics,

GPU, and Game Tools, vol. 15, no. 4, 2011.

[Mar13] M. Mara, D. Luebke, and M. McGuirre, "Toward Practical Real-Time Photon

Mapping : Efficient GPU Density Estimation", Interactive 3D Graphics and Games

2013, Mar. 2013.

[Bur12] B. Burley, "Physically-Based Shading at Disney," Walt Disney Animation Studios,

2012.

[Sch11] K. Schwenk, "A Survey of Shading Models for Real-time Rendering," 2011.

[Hen41] L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy", Astrophysical

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

193

Journal, vol. 93, pp. 70-83, 1941.

[Sch93] S. C. Schlick, B. Le Saëc, and P. Blasi, "A Rendering Algorithm for Discrete Volume

Density Objects", Computer Graphics Forum (Eurographics), vol. 12, no. 3, pp. 201-

210, 1993.

[Hec90] P. Heckbert, "Adaptive radiosity textures for bidirectional ray tracing", in

Proceedings of the 17th annual conference on Computer graphics and interactive

techniques , pp. 145-154, 1990.

[Sut74] I. Sutherland, R. Sproull, and R. Schumacker, "A Characterization of Ten Hidden-

Surface Algorithms", ACM Computing Surveys (CSUR), vol. 6, no. 1, pp. 1-55, Mar.

1974.

[Hav14] V. Havran and J. Bittner, "Efficient Sorting and Searching in Rendering Algorithms",

in Eurographics - Tutorials, 2014.

[Dav121] T. Davidovič, T. Engelhardt, I. Georgiev, P. Slusallek, and C. Dachsbacher, "3D

rasterization: a bridge between rasterization and ray casting", in Proceedings of

Graphics Interface 2012, Toronto, pp. 201-208, 2012.

[App68] A. Appel, "Some techniques for shading machine renderings of solids", in AFIPS '68

(Spring) Proceedings of the April 30--May 2, 1968, spring joint computer conference ,

New York, pp. 37-45, 1968.

[Wei06] D. Weiskopf, "Volume Ray Casting", in GPU-Based Interactive Visualization

Techniques. Springer Science & Business Media., 2006, p. 21.

[Dav12] T. Davidovič, I. Georgiev, and P. Slusallek, "Progressive Lightcuts for GPU", in

Proceeding SIGGRAPH '12 ACM SIGGRAPH 2012 Talks, New York, USA, 2012.

[Whi79] T. Whitted, "An improved illumination model for shaded display", ACM SIGGRAPH

Computer Graphics, vol. 13, no. 2, p. 14, Aug. 1979.

[Jen96] H. W. Jensen, "Global illumination using photon maps", in Proceedings of the

eurographics workshop on Rendering techniques '96 , London, pp. 21-30, 1996.

[Kel97] A. Keller, "Instant radiosity", in SIGGRAPH '97 Proceedings of the 24th annual

conference on Computer graphics and interactive techniques , New York, pp. 49-56,

1997.

[Coz09] P. Cozzi, "Z-Buffer Optimizations," Analytical Graphics, Inc, 2009.

[Dur99] F. Durand, "3D Visibility: analytical study and applications," Université Joseph

Fourier, Grenoble I, 1999.

[Bit04] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer, "Coherent Hierarchical

Culling: Hardware Occlusion Queries Made Useful", Computer Graphics Forum, vol.

23, no. 3, pp. 615-624, Sep. 2004.

[Llo04] B. Lloyd, J. Wendt, N. Govindaraju, and D. Manocha, "CC shadow volumes", in

EGSR'04 Proceedings of the Fifteenth Eurographics conference on Rendering

Techniques , pp. 197-205, 2004.

[Bit11] J. Bittner, O. Mattausch, A. Silvennoinen, and M. Wimmer, "Shadow caster culling

for efficient shadow mapping", in Symposium on Interactive 3D Graphics and

Games , pp. 81-88, 2011.

[Mar11] J. Marvie, P. Gautron, and G. Sourimant, "Triple depth culling", in ACM SIGGRAPH

Talks , 2011.

[Déc05] X. Décoret, "N-Buffers for efficient depth map query", Computer Graphics Forum,

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

194

vol. 24, no. 3, Dec. 2005.

[Dac14] C. Dachsbacher, J. Křivánek, M. Hašan, A. Arbree, B. Walter, and J. Novák,

"Scalable Realistic Rendering with Many-Light Methods", Computer Graphics

Forum, vol. 33, no. 1, pp. 88-104, DOI: 10.1111/cgf.12256, Feb. 2014.

[Nie12] M. Niessner and L. Charles, "Patch-based Occlusion Culling for Hardware

Tessellation", Computer Graphics International, vol. 2, 2012.

[Bar12] L. Barbagallo, M. Leone, M. Banquiero, D. Agromayor, and A. Bursztyn,

"Techniques for an Image Space Occlusion Culling Engine," 2012.

[Has07] J. Hasselgren and T. Akenine-Möller, "PCU: the programmable culling unit", ACM

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH, vol. 26, no. 3,

Jul. 2007.

[Lot09] Lottes, Timothy; NVIDIA, "FXAA", 2009.

[Jim12] J. Jimenez, J. Echevarria, D. Gutierrez, and T. Sousa, "SMAA: Enhanced

Morphological Antialiasing", Computer Graphics Forum, vol. 31, no. 2, 2012.

[Neh07] D. Nehab, P. Sander, J. Lawrence, N. Tatarchuk, and J. Isidoro, "Accelerating real-

time shading with reverse reprojection caching", Proceedings of the 22nd ACM

SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, pp. 25-35, 2007.

[Yan09] L. Yang, D. Nehab, P. Sander, P. Sitthiamon, J. Lawrence, and H. Hoppe, "Amortized

supersampling", ACM Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH Asia, vol. 28, no. 5, Dec. 2009.

[Cha11] M. Chajdas, M. Mcguirre, and D. Luebke, "Subpixel Reconstruction Antialiasing",

Interactive 3D Graphics and Games, 2011.

[Res12] Reshetov, Alexander; Intel Labs, "Reducing Aliasing Artifacts through Resampling",

High Performance Graphics, 2012.

[Cra15] C. Crassin, M. McGuirre, K. Fatahalian, and A. Lefohn, "Aggregate G-Buffer Anti-

aliasing", Proceedings of the ACM Symposium on Interactive 3D Graphics and

Games, Feb. 2015.

[Sha73] R. M. Shapley and D. J. Tolhurst, "Edge detectors in human vision", The Journal of

Physiology, vol. 229, no. 1, pp. 165-183, PMCID: PMC1350218, Feb. 1973.

[Sai90] T. Saito and T. Takahashi, "Comprehensible rendering of 3-D shapes", in Proceedings

of the 17th annual conference on Computer graphics and interactive techniques

SIGGRAPH, pp. 197-206, 1990.

[Lee09] M. Lee, "Prelighting in Resistance 2", 2009.

[van13] M. van de Hoef, "Hybrid Deferred Rendering," 2013.

[Thi09] N. Thibieroz, "Deferred Shading with Multisampling Anti-Aliasing in DirectX 10", in

ShaderX 7, 2009.

[Hol13] M. Holländer, T. Boubekeur, and E. Eisemann, "Adaptive Supersampling for

Deferred Anti-Aliasing", Journal of Computer Graphics Techniques, vol. 2, no. 1,

2013.

[Kel011] A. Keller, E. Keller, and W. Heidrich, "Interleaved Sampling", in Rendering

Techniques (Proc. 12th Eurographics Workshop on Rendering), pp. 269-276, 2001.

[Seg06] B. Segovia, J. C. Iehl, R. Mitanchey, and B. Péroche, "Non-interleaved deferred

shading of interleaved sample patterns", Proceedings of the 21st ACM

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

195

SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, pp. 53-60, 2006.

[Tre09] D. Treblico, "Light Indexed Deferred Rendering", in ShaderX 7, 2009.

[Lau12] A. Lauritzen, "Intersecting Lights", in , 2012.

[Hob09] J. Hoberock, V. Lu, Y. Jia, and J. Hart, "Stream Compaction for Deferred Shading",

Proceedings of the Conference on High Performance Graphics 2009 , pp. 173-180,

2009.

[Hum09] L. Humes, T. Busey, J. Craig, and D. Kewly-Port, "The effects of age on sensory

thresholds and temporal gap detection in hearing, vision, and touch", Atten Percept

Psychophys, vol. 71, no. 4, pp. 860-871, doi: 10.3758/APP.71.4.860, May 2009.

[Kaj86] J. T. Kajiya, "The Rendering Equation", ACM SIGGRAPH Computer Graphics, vol.

20, no. 4, pp. 143-150, Aug. 1986.

[Cla13] P. Clarberg, R. Toth, and J. Munkberg, "A sort based deferred shading architecture for

decoupled sampling", ACM Transactions of Graphics (Proceedings of SIGGRAPH

2013), vol. 32, no. 4, pp. 141-151, Jul. 2013.

[Cha15] J. Chapman. (2015, Apr.) http://john-chapman-graphics.blogspot.com. [Online].

http://john-chapman-graphics.blogspot.de/2013/01/good-enough-volumetrics-for-

spotlights.html

[Mit071] K. Mitchell, "Volumetric Light Scattering as a Post-Process", in GPU Gems 3.

Addison-Wesley Professional, 2007, ch. 13.

[Tot09] B. Toth and T. Umenhoffer, "Real-time Volumetric Lighting in Participating Media",

in Eurographics Short Papers, 2009.

[Eng10] T. Engelhardt and C. Dachsbacher, "Epipolar sampling for shadows and crepuscular

rays in participating media with single scattering", in Proceedings of the 2010 ACM

SIGGRAPH symposium on Interactive 3D Graphics and Games , pp. 119-125, 2010.

[Fus00] A. Fusiello, E. Trucco, and A. Verri, "A compact algorithm for rectification of stereo

pairs", Machine Vision and Applications, vol. 12, pp. 16-22, 2000.

[Che11] J. Chen, I. Baran, F. Durand, and W. Jarosz, "Real-Time Volumetric Shadows using

1D Min-Max Mipmaps", in Proceedings of ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games, 2011.

[Bil10] M. Billeter, E. Sintorn, and U. Assarsson, "Real Time Volumetric Shadows using

Polygonal Light Volumes", in Proceedings of the Conference on High Performance

Graphics, Saarbrucken, Germany, pp. 39--45, 2010.

[Bor03] G. Borshukov and J. P. Lewis, "Realistic human face rendering for "The Matrix

Reloaded"", in ACM SIGGRAPH 2003 Sketches & Applications , pp. 1-1, 2003.

[dEo07] E. d'Eon, D. Luebke, and E. Enderton, "Efficient rendering of human skin", in

Proceedings of the 18th Eurographics conference on Rendering Techniques , pp. 147-

157, 2007.

[Jan10] J. Jansen and L. Bavoil, "Fourier opacity mapping", Proceedings of the 2010 ACM

SIGGRAPH symposium on Interactive 3D Graphics and Games , pp. 165-172, 2010.

[Bri11] C. Brisebois and M. Bouchard, "Approximating Translucency for a Fast, Cheap and

Convincing Subsurface Scattering Look", in Game Developers Conference, 2011.

[Jim09] J. Jimenez, V. Sundstedt, and D. Gutierrez, "Screen-space perceptual rendering of

human skin", ACM Transactions on Applied Perception (TAP), vol. 6, no. 4, Sep.

2009.

http://john-chapman-graphics.blogspot.de/2013/01/good-enough-volumetrics-for-spotlights.html
http://john-chapman-graphics.blogspot.de/2013/01/good-enough-volumetrics-for-spotlights.html

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

196

[Jim15] J. Jimenez, K. Zsolnai, A. Jarabo, C. Freude, T. Auzinger, X.-C. Wu, J. von der

Pahlen, M. Wimmer, and D. Gutierrez, "Separable Subsurface Scattering", Computer

Graphics Forum, 2015.

[Cro77] F. Crow, "Shadow algorithms for computer graphics", in SIGGRAPH '77 Proceedings

of the 4th annual conference on Computer graphics and interactive techniques , pp.

242-248, 1977.

[Wil78] L. Williams, "Casting curved shadows on curved surfaces", in SIGGRAPH '78

Proceedings of the 5th annual conference on Computer graphics and interactive

techniques , pp. 270-274, 1978.

[Sta02] M. Stamminger and G. Drettakis, "Perspective Shadow Maps", in Proceedings of the

29th annual conference on Computer graphics and interactive techniques , pp. 557-

562, 2002.

[Wim04] M. Wimmer, D. Scherzer, and W. Purgathofer, "Light space perspective shadow

maps", in Proceedings of the Fifteenth Eurographics conference on Rendering

Techniques , pp. 143-151, 2004.

[Mar04] T. Martin and T.-S. Tan, "Anti-aliasing and continuity with trapezoidal shadow

maps", in Proceedings of the Fifteenth Eurographics conference on Rendering

Techniques , pp. 153-160, 2004.

[Kol12] I. Kolic and Z. Mihajlovic, "Camera space shadow maps for large virtual

environments", in Virtual Reality, pp. 289-299, 2012.

[Llo06] B. Lloyd, N. Govindaraju, D. Tuft, S. Molnar, and D. Manocha, "Practical logarithmic

shadow maps", in ACM SIGGRAPH 2006 Sketches , 2006.

[Mar14] M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke, "Fast Global Illumination

Approximations on Deep G-Buffers", pp. 1-16, Jun. 2014.

[Dim07] R. Dimitrov, "Cascaded Shadow maps," NVIDIA, 2007.

[Zha06] F. Zhang, H. Sun, L. Xu, and L. K. Lun, "Parallel-split shadow maps for large-scale

virtual environments", in Proceedings of the 2006 ACM international conference on

Virtual reality continuum and its applications, pp. 311-318, 2006.

[Lau11] A. Lauritzen, M. Salvi, and A. Lefohn, "Sample distribution shadow maps", in

Symposium on Interactive 3D Graphics and Games , pp. 97-102, 2011.

[Fer01] R. Fernando, S. Fernandez, K. Bala, and D. Greenberg, "Adaptive shadow maps", in

Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, pp. 387-390, 2001.

[Gue07] G. Guennebaud, L. Barthe, and M. Paulin, "High-Quality Adaptive Soft Shadow

Mapping", Computer Graphics Forum, vol. 26, no. 3, pp. 525-533, Sep. 2007.

[Ros12] P. Rosen, "Rectilinear texture warping for fast adaptive shadow mapping", in

Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games , pp. 151-158, 2012.

[Dai08] Q. Dai, B. Yang, and J. Feng, "Reconstructable geometry shadow maps", in

Proceedings of the 2008 symposium on Interactive 3D graphics and games , 2008.

[Lok00] T. Lokovic and E. Veach, "Deep shadow maps", in Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, pp. 385-392, 2000.

[Pag04] C. A. Pagot, J. Comba, and M. Neto, "Multiple-Depth Shadow Maps", in SIBGRAPI

'04 Proceedings of the Computer Graphics and Image Processing, pp. 308-315, 2004.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

197

[Yuk08] C. Yuksel and J. Keyser, "Deep Opacity Maps", Computer Graphics Forum, vol. 27,

no. 2, 2008.

[Bar11] P. Barta, B. Kovács, L. Szécsi, and L. Szirmay-kalos, "Order Independent

Transparency with Per-Pixel Linked Lists", in CESCG, 2011.

[Sal10] M. Salvi, K. Vidimče, A. Lauritzen, and A. Lefohn, "Adaptive volumetric shadow

maps", in 1289-1296 , p. Proceedingsofthe21stEurograhicsconferenceonRendering,

2010.

[Kim01] T.-y. Kim and U. Neumann, "Opacity Shadow Maps", in Rendering Techniques, pp.

177-182, 2001.

[Sal101] M. Salvi, K. Vidimce, A. Lauritzen, and A. Lefohn, "Adaptive volumetric shadow

maps", Proceedings of the 21st Eurographics conference on Rendering , pp. 1289-

1296, 2010.

[Ran05] F. Randima, "Percentage-closer soft shadows", ACM SIGGRAPH 2005 Sketches ,

2005.

[Sch13] M. Schwärzler, C. Luksch, D. Scherzer, and M. Wimmer, "Fast percentage closer soft

shadows using temporal coherence", in Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games , pp. 79-86, 2013.

[Bag10] M. Bagher, J. Kautz, N. Holzschuch, and C. Soler, "Screen-space Percentage-Closer

Soft Shadows", in ACM SIGGRAPH 2010 Posters , 2010.

[Ann08] T. Annen, T. Mertens, H.-P. Seidel, E. Flerackers, and J. Kautz, "Exponential shadow

maps", in Proceedings of Graphics Interface 2008 , pp. 155-161, 2008.

[Don06] W. Donnelly and A. Lauritzen, "Variance shadow maps", in Proceedings of the 2006

symposium on Interactive 3D graphics and games, pp. 161-165, 2006.

[Ann07] T. Annen, T. Mertens, P. Bekaert, H. P. Seidel, and J. Kautz, "Convolution shadow

maps", in Proceedings of the 18th Eurographics conference on Rendering

Techniques , pp. 51-60, 2007.

[Sto15] Story, Jon; NVIDIA, "Hybrid Ray Traced Shadows", in Game Developers

Conference, 2015.

[Gre93] N. Greene, M. Kaas, and G. Miller, "Hierarchical Z-buffer visibility", SIGGRAPH '93

Proceedings of the 20th annual conference on Computer graphics and interactive

techniques, pp. 231-238, ISBN:0-89791-601-8, doi: 10.1145/166117.166147, Aug.

1993.

[Osm06] B. Osman, M. Bukowski, and C. McEvoy, "Practical implementation of dual

paraboloid shadow maps", in Proceedings of the 2006 ACM SIGGRAPH symposium

on Videogames , pp. 103-106, 2006.

[Ger07] P. Gerasimov, "Omnidirectional Shadow Mapping", in GPU Gems, 2007.

[Ols14] O. Olsson, E. Sintorn, V. Kämpe, M. Bieleter, and U. Assarsson, "Efficient virtual

shadow maps for many lights", in Proceedings of the 18th meeting of the ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games , pp. 87-96, 2014.

[Tar10] S. Tariq and C. Yuksel, "Transparency and Antialiasing", in SIGGRAPH 2010

Courses, 2010.

[Mes07] H. Meshkin, "Sort Independent Alpha Blending", in , 2007.

[McG13] M. McGuirre and L. Bavoil, "Weighted Blended Order-Independent Transparency",

Journal of Computer Graphics Techniques, vol. 2, no. 2, 2013.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

198

[Bav08] L. Bavoil and K. Myers, "Order Independent Transparency with Dual-Depth Peeling,"

NVIDIA, 2008.

[Mau12] M. Maule, J. Comba, R. Torchelsen, and R. Bastos, "Memory-Efficient Order-

Independent Transparency with Dynamic Fragment Buffer", in Proceedings of the

2012 25th SIBGRAPI Conference on Graphics, Patterns and Images , pp. 134-141,

2012.

[Ake07] T. Akenine-Möller, J. Munkberg, and J. Hasselgren, "Stochastic rasterization using

time-continuous triangles", in Proceedings of the 22nd ACM

SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, pp. 7-16, 2007.

[Gue14] J.-P. Guertin, M. McGuirre, and D. Nowrouzezahrai, "A Fast and Stable Feature-

Aware Motion Blur Filter", High Performance Graphics, vol. 33, no. 2, 2014.

[Joh05] G. Johnson, J. Lee, C. Burns, and W. Mark, "The Irregular Z-Buffer:Hardware

Acceleration for Irregular Data Structures", ACM Transactions on Graphics (TOG),

vol. 24, no. 4, pp. 1462-1482, Oct. 2005.

[Sou13] T. Sousa, "Cryengine 3 Graphic Gems", in Siggraph Talks, 2013.

[McI12] L. McIntosh, B. E. Riecke, and S. DiPaola, "Efficiently Simulating the Bokeh of

Polygonal Apertures in a Post-Process Depth of Field Shader", Computer Graphics

Forum, vol. 31, no. 6, pp. 1810-1822, Sep. 2012.

[Bli76] J. Blinn and M. Newell, "Texture and Reflection in Computer Generated Images", in

Communications of the ACM, 1976.

[Bjo04] K. Bjorke, "Image-based lighting", in GPU Gems, 2004, pp. 307-322.

[Lag12] S. Lagarde and A. Zanuttini, "Local image-based lighting with parallax-corrected

cubemaps", in ACM SIGGRAPH 2012 Talks, 2012.

[Ram01] R. Ramamoorthi and P. Hanrahan, "An efficient representation for irradiance

environment maps", in Proceedings of the 28th annual conference on Computer

graphics and interactive techniques , p. Hanrahan, 2001.

[Now12] D. Nowrouzezahrai, P. Simari, and E. Fiume, "Sparse Zonal Harmonic Factorization

for Efficient SH Rotation", ACM Transactions on Graphics, 2012.

[Gre03] R. Green, "Spherical Harmonic Lighting: The gritty details," Sony Computer

Entertainment America, 2003.

[Kap09] A. Kaplanyan, "Light Propagation Volumes in CryEngine 3," Crytek, 2009.

[Gil12] M. Gilabert and N. Stefanov, "Deferred Radiance Transfer Volumes", in Game

Developers Conference, 2012.

[Car84] L. Carpenter, "The A-buffer, an antialiased hidden surface method", ACM

SIGGRAPH Computer Graphics, vol. 18, no. 3, pp. 103-108, Jul. 1984.

[Zhu98] S. Zhukov, A. Iones, and G. Kronin, "An ambient light illumination model", in

Rendering Techniques, pp. 45-55, 1998.

[Mit07] M. Mittring, "Finding next gen: CryEngine 2", in ACM SIGGRAPH 2007 courses, pp.

97-121, 2007.

[Bav081] L. Bavoil, M. Sainz, and R. Dimitrov, "Image-space horizon-based ambient

occlusion", in ACM SIGGRAPH 2008 talks , 2008.

[Dru06] J. Drummer, "Cone step mapping," 2006.

[Loo10] B. Loos and P. P. Sloan, "Volumetric obscurance", in Proceedings of the 2010 ACM

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

199

SIGGRAPH symposium on Interactive 3D Graphics and Games , pp. 151-156, 2010.

[McG11] M. McGuirre, B. Osman, M. Bukowski, and P. Hennessy, "The alchemy screen-space

ambient obscurance algorithm", in Proceedings of the ACM SIGGRAPH Symposium

on High Performance Graphics, pp. 25-32, 2011.

[Mcg12] M. Mcguirre, M. Mara, and D. Leubke, "Scalable ambient obscurance", in

Proceedings of the Fourth ACM SIGGRAPH / Eurographics conference on High-

Performance Graphics , Aire-la-Ville, pp. 97-103, 2012.

[Var13] K. Vardis, G. Papaioannou, and A. Gaitatzes, "Multi-view ambient occlusion with

importance sampling", in Proceedings of the ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games , pp. 111-118, 2013.

[Tim13] V. Timonen, "Line-sweep ambient obscurance", in Proceedings of the Eurographics

Symposium on Rendering , pp. 97-105, 2013.

[Tim131] V. Timonen, "Screen-space far-field ambient obscurance", in Proceedings of the 5th

High-Performance Graphics Conference , pp. 33-43, 2013.

[Dee88] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, "The triangle processor

and normal vector shader: a VLSI system for high performance graphics",

SIGGRAPH '88 Proceedings of the 15th annual conference on Computer graphics

and interactive techniques, pp. 21-30, ISBN:0-89791-275-6, Jul. 1988.

[Sch10] D. Scherzer, L. Yang, and O. Mattausch, "Exploiting temporal coherence in real-time

rendering", in ACM SIGGRAPH ASIA 2010 Courses , 2010.

[Rit09] T. Ritschel, T. Grosch, and H.-P. Seidel, "Approximating dynamic global illumination

in image space", in Proceedings of the 2009 symposium on Interactive 3D graphics

and games , pp. 75-82, 2009.

[Lan02] H. Landis, "Production-ready global illumination", in SIGGRAPH Course, pp. 87-

102, 2002.

[Rit11] T. Ritschel, O. Klehm, E. Eisemann, and H.-P. Seidel, "Bent Normals and Cones in

Screen Space", in Proceedings of the Vision, Modeling, and Visualization Workshop,

Berlin, pp. 177-182, 2011.

[Rob09] A. Robinson and P. Shirley, "Image space gathering", in Proceedings of the

Conference on High Performance Graphics, pp. 91-98, 2009.

[Sol10] C. Soler, O. Hoel, and F. Rochet, "A deferred shading pipeline for real-time indirect

illumination", in ACM SIGGRAPH Talks , 2010.

[Her14] L. Hermanns and T. Franke, "Screen Space Cone Tracing for Glossy Reflections", in

SIGGRAPH '14, pp. 102-103, 2014.

[Ulu14] Y. Uludag, "Hi-Z Screen-Space Cone-Traced Reflections", in GPU Pro 5, W. Engel,

Ed. CRC Press, 2014, p. 149–192.

[Mcg14] M. Mcguirre and M. Mara, "Efficient GPU Screen-Space Ray Tracing", Journal of

Computer Graphics Techniques, vol. 3, no. 4, 2014.

[McG09] M. McGuirre and D. Luebke, "Hardware-accelerated global illumination by image

space photon mapping", in Proceedings of the Conference on High Performance

Graphics , pp. 77-89, 2009.

[Ols11] O. Olsson and U. Assarson, "Tiled Shading", Journal of Graphics, GPU, and Game

Tools, vol. 15, no. 4, pp. 235-251, doi = 10.1080/2151237X.2011.621761, 2011.

[Gan14] P. Ganestam and M. Doggett, "Real-time multiply recursive reflections and

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

200

refractions using hybrid rendering", The Visual Computer, Sep. 2014.

[PIX15] PIXAR. (2015, Apr.) https://renderman.pixar.com. [Online].

https://renderman.pixar.com/resources/current/RenderMan/home.html

[Pat08] A. Patney and J. Owens, "Real-time Reyes-style adaptive surface subdivision", ACM

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia 2008 TOG,

vol. 27, no. 5, Dec. 2008.

[Vea95] E. Veach and L. Guibas, "Optimally combining sampling techniques for Monte Carlo

rendering", in Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques , pp. 419-428, 1995.

[Laf96] E. Lafortune, "Mathematical Models and Monte Carlo Algorithms for Physically

Based Rendering ," 1996.

[Coo84] R. Cook, T. Porter, and L. Carpenter, "Distributed ray tracing", in Proceedings of the

11th annual conference on Computer graphics and interactive techniques , pp. 137-

145, 1984.

[Dut93] P. Dutre, E. Lafortune, and Y. D. Willems, "Monte carlo light tracing with direct

computation of pixel intensities", in Compugraphics, pp. 128-137, 1993.

[Ige99] H. Igehy, "Tracing ray differentials", in Proceedings of the 26th annual conference on

Computer graphics and interactive techniques , pp. 179-186, 1999.

[Pai89] J. Painter and K. Sloan, "Antialiased ray tracing by adaptive progressive refinement",

in Proceedings of the 16th annual conference on Computer graphics and interactive

techniques , pp. 281-288, 1989.

[Bou07] S. Boulos, D. Edwards, D. Lacewell, J. Kniss, J. Kautz, P. Shirley, and I. Wald,

"Packet-based whitted and distribution ray tracing", in Proceedings of Graphics

Interface, pp. 177-184, 2007.

[Ols12] O. Olsson, M. Billeter, and U. Assarsson, "Clustered Deferred and Forward Shading",

HPG '12: Proceedings of the Conference on High Performance Graphics 2012, 2012.

[Ove08] R. Overbeck, R. Ramamoorthi, and W. R. Mark, "Large ray packets for real-time

Whitted ray tracing", in IEEE Symposion on Interactive Ray Tracing, pp. 41-48, 2008.

[Pha97] M. Pharr, C. Kolb, R. Gerschbein, and P. Hanrahan, "Rendering complex scenes with

memory-coherent ray tracing", in Proceedings of the 24th annual conference on

Computer graphics and interactive techniques , pp. 101-108, 1997.

[Nav07] P. Navratil, D. Fussell, C. Lin, and W. Mark, "Dynamic Ray Scheduling to Improve

Ray Coherence and Bandwidth Utilization", in Proceedings of the 2007 IEEE

Symposium on Interactive Ray Tracing, pp. 95-104, 2007.

[Ail10] T. Aila and T. Karras, "Architecture considerations for tracing incoherent rays", in

Proceedings of the Conference on High Performance Graphics , pp. 113-122, 2010.

[Bou08] S. Boulos, I. Wald, and C. Benthin, "Adaptive ray packet reordering", in IEEE

Symposium on Interactive Ray Tracing, pp. 131-138, 2008.

[Hec84] P. Heckbert and P. Hanrahan, "Beam tracing polygonal objects", in Proceedings of

the 11th annual conference on Computer graphics and interactive techniques , pp.

119-127, 1984.

[Ama84] J. Amanatides, "Ray tracing with cones", in Proceedings of the 11th annual

conference on Computer graphics and interactive techniques , pp. 129-135, 1984.

[Shi87] M. Shinya, T. Takahashi, and S. Naito, " Principles and applications of pencil

https://renderman.pixar.com/resources/current/RenderMan/home.html

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

201

tracing", ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 45-54, Jul. 1987.

[Har96] J. Hart, "Sphere tracing: a geometric method for the antialiased ray tracing of implicit

surfaces", The Visual Computer, vol. 12, no. 10, pp. 527-545, Dec. 1996.

[Chi12] Y. F. Chiu, Y. C. Chen, C. F. Chang, and R. R. Lee, "Subpixel Reconstruction Anti-

aliasing for Ray Tracing", Journal of WSCG, vol. 20, no. 3, pp. 171-178, 2012.

[Ble15] Blender Foundation. (2015, Aug.) Blender. [Online]. https://www.blender.org/

[Rag11] J. Ragan-Kelley, J. Lehtinen, J. Chen, M. Doggett, and F. Durand, "Decoupled

sampling for graphics pipelines", ACM Transactions on Graphics (TOG), vol. 30, no.

3, Article No. 17, doi: 10.1145/1966394.1966396, May 2011.

[Pha10] M. Pharr and G. Humphreys, Physically Based Rendering. 2010.

[Szi00] L. Szirmay-Kalos, "Monte-Carlo Methods on Global Illumination," Institute of

Computer Graphics, Vienna University of Technology, 2000.

[Dam09] H. Dammertz, J. Hanika, A. Keller, and H. Lensch, "A Hierarchical Automatic

Stopping Condition for Monte Carlo Global Illumination", in Proceedings of WSCG,

pp. 159-164, 2009.

[Vea97] E. Veach and L. Guibas, "Metropolis light transport", in Proceedings of the 24th

annual conference on Computer graphics and interactive techniques , pp. 65-76,

1997.

[Leh13] J. Lehtinen, T. Karras, S. Laine, M. Aittala, F. Durand, and T. Aila, "Gradient-domain

metropolis light transport", ACM Transactions on Graphics (TOG) - SIGGRAPH

Conference Proceedings, vol. 32, no. 4, Jul. 2013.

[Tal05] J. Talbot, D. Cline, and P. Egbert, "Importance resampling for global illumination", in

Rendering Techniques , Eurographics Symposium on Rendering, pp. 139-146, 2005.

[Kul12] C. Kulla and M. Fajardo, "Importance Sampling Techniques for Path Tracing in

Participating Media", Computer Graphics Forum, vol. 31, no. 4, pp. 1519-1528, Jun.

2012.

[Laf93] E. Lafortune and Y. Willems, "Bi-Directional Path Tracing", in Proceedings of

Compugraphics, pp. 145-153, 1993.

[Geo12] I. Georgiev, J. Křivánek, T. Davidovič, and P. Slusallek, "Light transport simulation

with vertex connection and merging", ACM Transactions on Graphics (TOG) -

Proceedings of ACM SIGGRAPH Asia , vol. 31, no. 6, Nov. 2012.

[Tok12] Y. Tokuyoshi and S. Ogaki, "Real-time bidirectional path tracing via rasterization",

Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games , pp. 183-190, 2012.

[Lik12] G. Liktor and C. Dachsbacher, "Decoupled deferred shading for hardware

rasterization", Proceeding I3D '12 Proceedings of the ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games, pp. 143-150, ISBN: 978-1-4503-1194-6, doi:

10.1145/2159616.2159640, 2012.

[Kel02] C. Kelemen, L. Szirmay-Kalos, L. Antal, and G. Csonka, "Simple and Robust

Mutation Strategy for Metropolis Light", Computer Graphics Forum, vol. 21, no. 3,

pp. 531-540, 2002.

[Cli05] D. Cline, J. Talbot, and P. Egbert, "Energy redistribution path tracing", ACM

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH, vol. 24, no. 3,

pp. 1186-1195, Jul. 2005.

https://www.blender.org/

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

202

[Jak12] W. Jakob and S. Marschner, "Manifold exploration: a Markov Chain Monte Carlo

technique for rendering scenes with difficult specular transport", ACM Transactions

on Graphics (TOG) - Proceedings of ACM SIGGRAPH, vol. 31, no. 4, Jul. 2012.

[Hac14] T. Hachisuka, A. Kaplanyan, and C. Dachsbacher, "Multiplexed metropolis light

transport", ACM Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH, vol. 33, no. 4, Jul. 2014.

[Vea98] E. Veach and L. Guibas, "Robust monte carlo methods for light transport simulation",

PhD Thesis, Stanford University, Stanford, CA, 1998.

[Kap13] A. Kaplanyan and C. Dachsbacher, "Path Space Regularization for Holistic and

Robust Light Transport", Computer Graphics Forum (Proc. of Eurographics), vol.

32, no. 2, pp. 63-72, 2013.

[Eis13] C. Eisenacher, G. Nichols, A. Selle, and B. Burley, "Sorted Deferred Shading for

Production Path Tracing", Computer Graphics Forum, vol. 32, no. 4, Jul. 2013.

[Hen11] N. Henrich, J. Baerz, T. Grosch, and S. Müller, "Accelerating Path Tracing by Eye

Path Reprojection", International Congress on Graphics and Virtual Reality, 2011.

[Bog13] D. Bogolepov, D. Ulyanov, D. Sopin, and V. Turlapov, "GPU-Optimized Bi-

Directional Path Tracing", in International Conferences in Central Europe on

Computer Graphics, Visualization and Computer Vision, 2013.

[Jen95] H. W. Jensen and N. J. Christensen, "Optimizing Path Tracing using Noise Reduction

Filters", WSCG, pp. 134-142, 1995.

[Bur13] C. Burns and W. Hunt, "The Visibility Buffer: A Cache-Friendly Approach to

Deferred Shading", Journal of Computer Graphics Techniques, vol. 2, no. 2, pp. 55-

69, Aug. 2013.

[Leh11] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand, "Temporal light field

reconstruction for rendering distribution effects", ACM Transactions on Graphics

(TOG) - Proceedings of ACM SIGGRAPH, vol. 30, no. 4, 2011.

[Sch12] K. Schwenk and T. Drevensek, "Radiance filtering for interactive path tracing", ACM

SIGGRAPH 2012 Posters , 2012.

[Bir12] J. Biri and J. Chaussard, "Skeleton based importance sampling for path tracing", in

Eurographics Short Papers, 2012.

[Cha13] J. Chaussard, L. Noel, V. Biri, and M. Couprie, "A 3D curvilinear skeletonization

algorithm with application to path tracing", Discrete Geometry for Computer Imagery

Lecture Notes in Computer Science, vol. 7749, pp. 119-130, 2013.

[Hac09] T. Hachisuka and H. W. Jensen, "Stochastic progressive photon mapping", ACM

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia, vol. 28,

no. 5, Dec. 2009.

[Hav05] V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel, "Ray Maps for Global

Illumination", in Eurographics Symposium on Rendering, pp. 43-54, 2005.

[Vor11] J. Vorba, "Bidirectional Photon Mapping", in CESCG, 2011.

[Hac08] T. Hachisuka, S. Ogaki, and H. W. Jensen, "Progressive photon mapping", ACM

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia, vol. 27,

no. 5, Dec. 2008.

[Kap131] A. Kaplanyan and C. Dachsbacher, "Adaptive progressive photon mapping", ACM

Transactions on Graphics (TOG), vol. 32, no. 2, Apr. 2013.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

203

[Spe13] B. Spencer and M. Jones, "Progressive photon relaxation", ACM Transactions on

Graphics (TOG), vol. 32, no. 1, Jan. 2013.

[Eph06] A. Ephanov and C. Coleman, " Virtual texture: A large area raster resource for the

gpu", The Interservice/Industry Training, Simulation and Education Conference

(I/ITSEC), 2006.

[Jen98] H. W. Jensen and P. Christensen, "Efficient simulation of light transport in scenes

with participating media using photon maps", in Proceedings of the 25th annual

conference on Computer graphics and interactive techniques , pp. 311-320, 1998.

[Jar08] W. Jarosz, M. Zwicker, and H. W. Jensen, "The Beam Radiance Estimate for

Volumetric Photon Mapping", Computer Graphics Forum (Proceedings of

Eurographics), vol. 27, no. 2, pp. 557--566, Apr. 2008.

[Jar11] W. Jarosz, D. Nowrouzezahrai, R. Thomas, P.-P. Sloan, and M. Zwicker, "Progressive

Photon Beams", ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia),

vol. 30, no. 6, Dec. 2011.

[Dac05] C. Dachsbacher and M. Stamminger, "Reflective shadow maps", in Proceedings of

the 2005 symposium on Interactive 3D graphics and games , pp. 203-231, 2005.

[Nov11] J. Novak, T. Engelhardt, and C. Dachsbacher, "Screen-space bias compensation for

interactive high-quality global illumination with virtual point lights", in Symposium

on Interactive 3D Graphics and Games , pp. 119-124, 2011.

[Geo10] I. Georgiev and P. Slusallek, "Simple and Robust Iterative Importance Sampling of

Virtual Point Lights", in Eurographics Short Papers, 2010.

[Seg061] B. Segovia, J. C. Iehl, R. Mitanchey, and B. Peroche, "Bidirectional Instant

Radiosity", in Proceedings of the 17th Eurographics Workshop on Rendering, pp.

389-398, 2006.

[Seg07] B. Segovia, J. C. Iehl, and B. Peroche, "Metropolis Instant Radiosity", Computer

Graphics Forum, vol. 26, no. 3, p. 425–434, Sep. 2007.

[Dav10] T. Davidovič, J. Křivánek, M. Hašan, P. Slusallek, and K. Bala, "Combining global

and local virtual lights for detailed glossy illumination", ACM Transactions on

Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia, vol. 29, no. 6, Dec. 2010.

[Sim15] F. Simon, J. Hanika, and C. Dachsbacher, "Rich-VPLs for Improving the Versatility

of Many-Light Methods", Computer Graphics Forum (Proceedings of Eurographics),

vol. 34, no. 2, pp. 575-584, May 2015.

[Jim11] J. Jimenez, et al., "Filtering Approaches for Real-Time Anti-Aliasing", ACM

SIGGRAPH Courses, 2011.

[War88] G. Ward, F. Rubinstein, and R. Clear, "A ray tracing solution for diffuse

interreflection", ACM SIGGRAPH Computer Graphics , vol. 22, no. 4, pp. 85-92,

Aug. 1988.

[Kři07] J. Křivánek, "Extension to glossy surfaces: radiance caching", ACM SIGGRAPH 2007

courses , 2007.

[Deb09] K. Debattista, P. Dubla, F. Banterle, L. P. Santos, and A. Chalmers, "Instant Caching

for Interactive Global Illumination", Computer Graphics Forum, vol. 28, no. 8, p.

2216–2228, Dec. 2009.

[Geo121] I. Georgiev, J. Křivánek, S. Popov, and P. Slusallek, "Importance Caching for

Complex Illumination", Computer Graphics Forum, vol. 31, no. 2, part 3, pp. 701-

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

204

710, May 2012.

[Kol04] T. Kollig and A. Keller, "Illumination in the Presence of Weak Singularities", Monte

Carlo and Quasi-Monte Carlo Methods, pp. 245-257, 2004.

[Eng12] T. Engelhardt, J. Novak, T. Schmidt, and C. Dachsbacher, "Approximate Bias

Compensation for Rendering Scenes with Heterogeneous Participating Media",

Computer Graphics Forum (Proceedings of Pacific Graphics 2012), vol. 31, no. 7,

pp. 2145-2154, 2012.

[Haš09] M. Hašan, J. Křivánek, B. Walter, and K. Bala, "Virtual spherical lights for many-

light rendering of glossy scenes", ACM Transactions on Graphics (TOG) -

Proceedings of ACM SIGGRAPH Asia 2009, vol. 28, no. 5, Dec. 2009.

[Nov121] J. Novak, D. Nowrouzezahrai, C. Dachsbacher, and W. Jarosz, "Virtual ray lights for

rendering scenes with participating media", ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH 2012), vol. 31, no. 4, pp. 60-71, Jul. 2012.

[Nov122] J. Novak, D. Nowrouzezahrai, C. Dachsbacher, and J. Wojciech, "Progressive Virtual

Beam Lights", Computer Graphics Forum (Proceedings of EGSR 2012), vol. 31, no.

4, pp. 1407-1413, Jun. 2012.

[Don09] Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H.-P. Seidel, "Real-time Indirect

Illumination with Clustered Visibility", in Vision, Modeling, and Visualization

Workshop, 2009.

[Por84] T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH '84 Proceedings of

the 11th annual conference on Computer graphics and interactive techniques , pp.

253-259, 1984.

[Pru12] R. Prutkin, A. Kaplanyan, and C. Dachsbacher, "Reflective Shadow Map Clustering

for Real-Time Global Illumination", in Eurographics Short Papers, p. 2012.

[Rus00] S. Rusinkiewicz and M. Levoy, "QSplat: a multiresolution point rendering system for

large meshes", in Proceedings of the 27th annual conference on Computer graphics

and interactive techniques, pp. 343-352, 2000.

[Rit091] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and C. Dachsbacher,

"Micro-Rendering for Scalable, Parallel Final Gathering", ACM Trans. Graph. (Proc.

SIGGRAPH Asia 2009), vol. 28, no. 5, 2009.

[Hol11] M. Hollander, T. Ritschel, E. Eisemann, and T. Boubekeur, "ManyLoDs: Parallel

Many-View Level-of-Detail Selection for Real-Time Global Illumination", Computer

Graphics Forum, vol. 30, no. 4, pp. 1233-1240, Aug. 2011.

[Ols141] O. Olsson, E. Sintorn, V. Kaumlpe, M. Billeter, and U. Assarsson, "Implementing

Efficient Virtual Shadow Maps for Many Lights", in ACM SIGGRAPH 2014 Talks,

2014.

[Lai07] S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila, "Incremental instant

radiosity for real-time indirect illumination", in Proceedings of the 18th Eurographics

conference on Rendering Techniques , pp. 277-286, 2007.

[Wal05] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. Greenberg,

"Lightcuts: a scalable approach to illumination", ACM Transactions on Graphics

(TOG) - Proceedings of ACM SIGGRAPH 2005, vol. 24, no. 3, pp. 1098-1107, Jul.

2005.

[Wal061] B. Walter, A. Arbree, K. Bala, and D. Greenberg, "Multidimensional lightcuts", ACM

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

205

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH, vol. 25, no. 3,

Jul. 2006.

[Wal12] B. Walter, P. Khungurn, and K. Bala, "Bidirectional lightcuts", ACM Transactions on

Graphics (TOG) - Proceedings of ACM SIGGRAPH, vol. 31, no. 4, Jul. 2012.

[Haš07] M. Hašan, F. Pellacini, and K. Bala, "Matrix row-column sampling for the many-light

problem", ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH

2007, vol. 26, no. 3, Jul. 2007.

[Liu09] F. Liu, M. C. Huang, X. H. Liu, and E. H. Wu, "Efficient depth peeling via bucket

sort", Proceedings of the Conference on High Performance Graphics, pp. 51-57,

2009.

[Tai09] J. Taibo, A. Seoane, and L. Hernández, "Dynamic Virtual Textures", The 17-th

International Conference on Computer Graphics, Visualization and Computer Vision

'2009 (WSCG 2009) , vol. 17, ISSN 1213-6972, 2009.

[Gar08] B. Garney, "Clipmapping on on SM1.1 and Higher", in Game Programming Gems 7.

Charles River Media, 2008, p. 413–422.

[Mit08] M. Mittring and C. GMBH, "Advanced virtual texture", in SIGGRAPH ’08: ACM

SIGGRAPH 2008 classes, pp. 23-51, 2008.

[Cuc09] G. Cuccuru, E. Gobbetti, F. Marton, R. Pajarola, and R. Pintus, "Fast low-memory

streaming MLS reconstruction of point-sampled surfaces", Graphics Interface, pp. 15-

22, May 2009.

[Lor87] W. E. Lorensen and H. E. Cline, "Marching Cubes : A high resolution 3D surface

reconstruction algorithm", in SIGGRAPH, Proceedings of the annual conference on

Computer Graphics and Interactive Techniques, 1987.

[Pet11] L. Petrescu, A. Morar, F. Moldoveanu, and V. Asavei, "Real time reconstruction of

volumes from very large datasets using CUDA", in 15th International Conference on

System Theory, Control, and Computing (ICSTCC), pp. 1-5, 2011.

[SAB15] SABIMAS. (2015, Aug.) Personalized implants for hip arthroplasty, (SABIMAS,

PNCDII-Joint Applied Research Projects, 2008-2011). [Online].

http://se.cs.pub.ro/SABIMAS/

[NEM15] NEMA. (2015, Aug.) http://medical.nema.org/Dicom/about-DICOM.html. [Online].

http://medical.nema.org/dicom/geninfo/Brochure.pdf

[Mor13] A. Morar, F. Moldoveanu, V. Asavei, L. Petrescu, A. Moldoveanu, and A. Egner,

"GPGPU Based Non-photorealistic Rendering of Volume Data", Control Engineering

and Applied Informatics (CEAI), vol. 15, no. 1, pp. 45-52, 2013.

[Gro13] M. Grossman, S. Chatterjee, A. Sbîrlea, and V. Sarkar, "Dynamic Task Parallelism

with a GPU Work-Stealing Runtime System", Languages and Compilers for Parallel

Computing, vol. 7146, pp. 203-217, 2013.

[Sin09] E. Sintorn and U. Assarsson, "Hair self shadowing and transparency depth ordering

using occupancy maps", Proceedings of the 2009 symposium on Interactive 3D

graphics and games , pp. 67-74, 2009.

[Gup12] K. Gupta, J. A. Stuart, and J. D. Owens, "A study of persistent threads style for GPU

programming for GPGPU workloads", Innovative Parallel Computing, pp. 1-14, May

2012.

[Jog13] A. Jog, O. Kayiran, N. Chidambaram, A. Mishra, M. Kandemir, O. Mutlu, R. Iyer,

http://se.cs.pub.ro/SABIMAS/
http://medical.nema.org/dicom/geninfo/Brochure.pdf

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

206

and C. Das, "OWL: cooperative thread array aware scheduling techniques for

improving GPGPU performance", ACM SIGARCH Computer Architecture News –

ASPLOS 13, vol. 41, no. 1, pp. 395-406, Mar. 2013.

[Tze12] S. Tzeng, B. Lloyd, and J. Owens, "A GPU task-parallel model with dependency

resolution", Computer Journal, vol. 45, no. 8, pp. 34-41, Aug. 2012.

[Mem12] R. Membarth, J. H. Lupp, F. Hanning, J. Teich, M. Korner, and W. Eckert, "Dynamic

task scheduling and resource management for GPU accelerators in medical imaging",

in Proceedings of the 25th International Conference on Architecture Computing

Systems, pp. 147-159, 2012.

[Pet14] L. Petrescu, F. Moldoveanu, V. Asavei, A. Moldoveanu, and O. Ferche, "A GPU Task

Generator for Rendering", in ICSTCC 2014 - 18th International Conference On

System Theory, Control and Computing, pp. 562-567, 2014.

[Rak15] D. Rakos. (2015, Aug.) http://rastergrid.com. [Online].

http://rastergrid.com/blog/2010/10/hierarchical-z-map-based-occlusion-culling/

[Ree15] Reed, Nathan; NVIDIA. (2015, Aug.) https://developer.nvidia.com. [Online].

https://developer.nvidia.com/content/depth-precision-visualized

[Sch06] C. Schüler, "Normal Mapping without Precomputed Tangents", in ShaderX 5, 2006.

[Sch15] C. Schüler. (2015, Aug.) http://www.thetenthplanet.de. [Online].

http://www.thetenthplanet.de/archives/1180

[Pet15] L. Petrescu, F. Moldoveanu, V. Asavei, and A. Moldoveanu, "Analyzing Deferred

Rendering Techniques", Control Engineering and Applied Informatics (CEAI),

accepted, to be published, 2015.

[End10] E. Enderton, E. Sintorn, P. Shirley, and D. Luebke, "Stochastic transparency",

Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics

and Games , pp. 157-164, 2010.

[Pet151] L. Petrescu, F. Moldoveanu, V. Asavei, and A. Moldoveanu, "Virtual deferred

rendering", in 20th International Conference on Control Systems and Computer

Science (CSCS), pp. 373-378, 2015.

[Had06] M. Hadwiger, A. Kratz, C. Sigg, and K. Buhler, "Gpu-accelerated deep shadow maps

for direct volume", in Proceedings of the 21st ACM SIGGRAPH/Eurographics

symposium on Graphics hardware, New York, pp. 49-52, 2006.

[Pet152] L. Petrescu, F. Moldoveanu, V. Asavei, and A. Moldoveanu, "Guarded Order

Independent Transparency", Scientific Bulletin of University POLITEHNICA of

Bucharest, Series C, Electrical Engineering and Computer Science, vol. 77, no. 1, pp.

3-14, Apr. 2015.

[Kno12] P. Knowles, G. Leach, and F. Zambetta, "Efficient Layered Fragment Buffer

Techniques", in OpenGL Insights. CRC Press, 2012, ch. 20.

[Cra10] C. Crassin. (2010, Jul.) http://blog.icare3d.org. [Online].

http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html

[Pet13] L. Petrescu, F. Moldoveanu, A. Moldoveanu, A. Morar, and V. Asavei, "Efficient

Picking Through Atomic Operations", in 19th International Conference on Control

Systems and Computer Science (CSCS), pp. 66-70, 2013.

[Las03] M. Lastra, J. Ravelles, R. Montes, and P. Cano, "A formal framework approach for

ray-scene intersection test improvement", in WCSG Posters Preceedings, pp. 3-7,

http://rastergrid.com/blog/2010/10/hierarchical-z-map-based-occlusion-culling/
https://developer.nvidia.com/content/depth-precision-visualized
http://www.thetenthplanet.de/archives/1180
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

207

2003.

[Nei93] J. Neider, T. Davis, and M. Woo, OpenGL Programming Guide: The Official Guide

to Learning OpenGL. Addison-Wesley, 1993.

[Wri10] R. Wright, N. Haemel, G. Sellers, and B. Lipchak, OpenGL Superbible:

Comprehensive Tutorial and Reference. Addison-Wesley Profesional, 2010.

[Ric12] C. Riccio, "OpenGL 4.2 Review," 2012.

[Sal11] M. Salvi, J. Montgomerrey, and A. Lefohn, "Adaptive transparency", Proceedings of

the ACM SIGGRAPH Symposium on High Performance Graphics , pp. 119-126,

2011.

[Zho05] K. Zhou, Y. Hu, S. Lin, B. Gao, and H.-Y. Shum, "Precomputed shadow fields for

dynamic scenes", ACM Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH 2005, vol. 24, no. 3, pp. 1196-1201, Jul. 2005.

[Mav11] P. Mavridis and G. Papaioannou, "Global Illumination Using Imperfect Volumes", in

Proceedings of the International Conference on Computer Graphics Theory and

Applications (GRAPP), 2011.

[And11] D. Andreev, "Anti-Aliasing from a different perspective", in Game Developers

Conference, 2011.

[Uni11] Unity Technologies. (2011) Unity Reference Manual.. [Online].

http://unity3d.com/support/documentation/Components

[Per15] E. Persson. (2015, Aug.) http://www.humus.name. [Online].

http://www.humus.name/index.php?page=3D&ID=89

[Sal12] M. Salvi and K. Vidimce, "Surface Based Anti-Aliasing", in ACM SIGGRAPH

Symposium on Interactive 3D Rendering and Games, 2012.

[Ail09] T. Aila and S. Laine, "Understanding the efficiency of ray traversal on GPUs", in

Proceedings of the Conference on High Performance Graphics, pp. 145-149, 2009.

[Nov10] J. Novak, V. Havran, and C. Daschbacher, "Path Regeneration for Interactive Path

Tracing", in Eurographics (Short Papers), pp. 61-64, 2010.

[Res09] Reshetov, Alexander; Intel Labs, "Morphological Antialiasing", 2009.

[Kap14] A. Kaplanyan, J. Hanika, and C. Dachsbacher, "The Natural-Constraint

Representation of the Path Space for Efficient Light Transport Simulation", ACM

Transactions on Graphics (Proc. SIGGRAPH), vol. 33, no. 4, 2014.

[Che13] J. Chen, D. Bautenbach, and S. Izadi, "Scalable Realtime Volumetric Surface

Reconstruction", ACM Transactions of Graphics, vol. 32, no. 4, pp. 1-16, Jul. 2013.

[Sal14] M. Salvi and K. Vaidyanathan, "Multi-layer alpha blending", Proceedings of the 18th

meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games ,

pp. 151-158, 2014.

[Dav122] T. Davidovič, I. Georgiev, and P. Slusallek, "Progressive Lightcuts for GPU", in ACM

SIGGRAPH Talks , 2012.

[Lai10] S. Laine, "Restart Trail for Stackless BVH Traversal", Proceedings of High-

Performance Graphics 2010, 2010.

[Ail12] T. Aila, S. Laine, and T. Karras, "Understanding the Efficiency of Ray Traversal on

GPUs – Kepler and Fermi Addendum", High-Performance Graphics, Jun. 2012.

[Mat08] O. Mattausch, J. Bittner, and M. Wimmer, "CHC++: Coherent Hierarchical Culling

http://unity3d.com/support/documentation/Components
http://www.humus.name/index.php?page=3D&ID=89

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

208

Revisited", Computer Graphics Forum (Proceedings Eurographics 2008), vol. 27, no.

2, pp. 221-230, Apr. 2008.

[Gut06] M. Guthe, A. Balzas, and R. Klein, "Near Optimal Hierarchical Culling: Performance

Driven Use of Hardware Occlusion Queries", Eurographics Symposium on Rendering

2006, 2006.

[Mat15] O. Mattausch, J. Bittner, A. Jaspe Villanueva, E. Gobbetti, M. Wimmer, and R.

Pajarola, "CHC+RT: Coherent Hierarchical Culling for Ray Tracing", Computer

Graphics Forum, vol. 34, no. 2, 2015.

[Zha97] H. Zhang, D. Manchoa, T. Hudson, and K. Hoff, "Visibility culling using hierarchical

occlusion maps", in Proceedings of the 24th annual conference on Computer graphics

and interactive techniques , pp. 77-88, 1997.

[McC11] C. McClanahan, "History and Evolution of GPU Architecture," 2011.

[Cla82] J. Clark, "The Geometry Engine: A VLSI Geometry System for Graphics", ACM

SIGGRAPH Computer Graphics, vol. 16, no. 3, pp. 127-133, 1982.

[NVI12] NVIDIA Corporation, "NVIDIA’s Next Generation CUDA Compute Architecture

Kepler GK110," NVIDIA, 2012.

[Lau09] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha, "Fast BVH

Construction on GPUs", Proceedings of EUROGRAPHICS ’09, vol. 28, no. 2, 2009.

[Man13] M. Mantor and M. Houston, "Amd Graphics Core Next Whitepaper," AMD, 2013.

[Low02] K.-L. Low, "Perspective-Correct Interpolation," 2002.

[NVI15] NVIDIA, "CUDA Runtime API version 6.5," 2015.

[KHR14] KHRONOS; Howes, Lee; Munshi, Aftab;, "The OpenCL Specification version 2.0,"

2014.

[Mic15] Microsoft. (2015, Aug.) DirectX Blog. [Online]. http://blogs.msdn.com/b/directx/

[AMD15] AMD. (2015, Aug.) Mantle. [Online]. http://www.amd.com/en-

us/innovations/software-technologies/mantle

[Vul15] Khronos. (2015, Aug.) Vulkan. [Online]. https://www.khronos.org/vulkan

[Wal01] I. Wald and P. Slussallek, "State of the Art in Interactive Ray Tracing", in

Eurographics, 2001.

[Pur02] T. Purcell, Y. Buck, W. Mark, and P. Hanrahan, "Ray Tracing on Programmable

Graphics Hardware", ACM Transactions on Graphics, vol. 21, no. 3, pp. 703-712, Jul.

2002.

[Rit08] T. Ritschel, T. Grosch, M. H. Kim, H. P. Seidel, C. Dachsbacher, and J. Kautz,

"Imperfect shadow maps for efficient computation of indirect illumination", ACM

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia 2008, vol.

27, no. 5, Dec. 2008.

[Eis08] E. Eisemann and X. Décoret, "Single-pass GPU solid voxelization for real-time

applications", GI '08 Proceedings of Graphics Interface 2008, pp. 73-80, ISBN: 978-

1-56881-423-0 , 2008.

[Kha06] M. Khazdan, M. Bolitho, and H. Hoppe, "Poisson surface reconstruction", in

Proceedings of the fourth Eurographics symposium on Geometry processing , pp. 61-

70, 2006.

[Iou99] K. Iourcha, N. Krishna, and H. Zhou, "System and method for fixed-rate block-based

http://blogs.msdn.com/b/directx/
http://www.amd.com/en-us/innovations/software-technologies/mantle
http://www.amd.com/en-us/innovations/software-technologies/mantle
https://www.khronos.org/vulkan

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

209

image compression with inferred pixel values," US Patent 5,956,431, Sep. 21, 1999.

[Khr15] Khronos. (2015, Apr.) ARB_texture_compression_bptc. [Online].

https://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt

[Dee95] M. Deering, "Geometry compression", Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques , pp. 13-20, 1995.

[Hop96] H. Hoppe, "Progressive meshes", in ACM SIGGRAPH Proceedings, pp. 99-108, 1996.

[Coh98] J. Cohen, M. Olano, and D. Manocha, "Appearance-preserving simplification", in

Proceedings of the 25th annual conference on Computer graphics and interactive

techniques , pp. 115-122, 1998.

[Pra15] A. Pranckevičius. (2015, Apr.) http://aras-p.info/. [Online]. http://aras-

p.info/texts/CompactNormalStorage.html

[Mey10] Q. Meyer, J. Süßmuth, G. Sußner, M. Stamminger, and G. Greiner, "On floating-point

normal vectors", Proceedings of the 21st Eurographics conference on Rendering , pp.

1405-1409, 2010.

[Ziv77] J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data Compression",

IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337-343, May 1977.

[Kat91] P. Katz, "String searcher, and compressor using same ," US Patent US Patent

5,051,745, Sep. 24, 1991.

[Seg15] M. Segal, K. Akeley, C. Frazier, J. Leech, and P. Brown, The OpenGL Graphics

System : a Specification version 4.5. USA: The Khronos Group Inc, 2015.

[Col15] Y. Collet. (2015, Apr.) https://code.google.com/p/lz4/. [Online].

https://code.google.com/p/lz4/

[Hop99] H. Hoppe, "New quadric metric for simplifying meshes with appearance attributes",

in EEE Visualization, pp. 59-66, 1999.

[Los03] F. Lossaso, H. Hoppe, S. Schaefer, and J. Warren, "Smooth geometry images",

Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry

processing , pp. 138-145, 2003.

[Cra14] C. Crassin and S. Green, "Octree-Based Sparse Voxelization Using the GPU

Hardware Rasterizer", in OpenGL Insights, 2014, ch. 22.

[Wym13] C. Wyman and Z. Dai, "Imperfect voxelized shadow volumes", in Proceedings of

ACM SIGGRAPH Talks , p. 18, 2013.

[Eis06] E. Eisemann and X. Décoret, "Fast scene voxelization and applications", in

Proceeding I3D '06 Proceedings of the 2006 symposium on Interactive 3D graphics

and games, pp. 71-78, 2006.

[Per85] K. Perlin, "An image synthesizer", in Proceedings of the 12th annual conference on

Computer graphics and interactive techniques , pp. 287-296, 1985.

[Per01] K. Perlin, "Noise Hardware", in Real-Time Shading SIGGRAPH Course Notes , 2001.

[Coo05] R. Cook and T. DeRose, "Wavelet noise", ACM Transactions on Graphics (TOG) -

Proceedings of ACM SIGGRAPH, vol. 24, no. 3, pp. 803-811, Jul. 2005.

[Lag09] A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, "Procedural noise using sparse

Gabor convolution", Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH, vol. 28, no. 3, p. 54, Aug. 2009.

[Coo87] R. L. Cook, L. Carpenter, and E. Catmull, "The Reyes Image Rendering

https://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://aras-p.info/texts/CompactNormalStorage.html
http://aras-p.info/texts/CompactNormalStorage.html
https://code.google.com/p/lz4/

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

210

Architecture", Computer Graphics, vol. 21, no. 4, ACM-0-89791-227-6/87/007/0095,

Jul. 1987.

[Ger88] S. Gernot, "Image-based object representation by layered impostors", Proceedings of

the ACM symposium on Virtual reality software and technology, pp. 99-104, 1988.

[Dec03] X. Decoret, F. Sillion, F. Durand, and J. Dorsey, "Billboard clouds for extreme model

simplification", ACM Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH, vol. 22, no. 3, pp. 689-696, Jul. 2003.

[And07] C. Andujar, J. Boo, P. Brunet, M. Fairen, I. Navazo, P. Vazquez, and A. Vinacua,

"Omni-directional Relief Impostors", Computer Graphics Forum, Preceedings of

Eurographics, vol. 26, no. 3, 2007.

[Ris06] E. Risser, "True Impostors", in ACM SIGGRAPH 2006 Research posters, 2006.

[Har10] A. Hardy and J. Venter, "3-view impostors", Proceedings of the 7th International

Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in

Africa , pp. 129-138, 2010.

[Pol07] F. Policarpo and M. Oliveira, "Relaxed Cone Stepping for Relief Mapping", in GPU

Gems 3, H. Nguyen, Ed. Addison-Wesley Professional, 2007, ch. 18, pp. 409-428.

[Dec09] P. Decaudin and F. Neyret, "Volumetric Billboards", Computer Graphics Forum, vol.

28, no. 8, pp. 2079-2089, 2009.

[Ume05] T. Umenhoffer and L. Szirmay-Kalos, "Real-Time Rendering of Cloudy Natural

Phenomena with Hierarchical Depth Impostors", in EUROGRAPHICS Short Papers,

2005.

[OHa02] N. O'Hara, "Hierarchical Impostors for the Flocking Algorithm in 3D", Computer

Graphics Forum, vol. 21, no. 4, pp. 723-731, Nov. 2002.

[Tar04] M. Tarini, K. Hormann, P. Cignoni, and C. Montani, "PolyCube-Maps", in ACM

SIGGRAPH, pp. 853-860, 2004.

[Tat10] Tatarinov, Andrei; NVIDIA;, "Reyes using DirectX 11", Proceeding of SIGGRAPH

'10, ACM SIGGRAPH 2010 Talks, ISBN: 978-1-4503-0394-1 , doi:

10.1145/1837026.1837071, Aug. 2010.

[Nov12] J. Novák and C. Dachsbacher, "Rasterized Bounding Volume Hierarchies", Computer

Graphics Forum, Proc. of Eurographics, vol. 31, no. 2, pp. 403-412, 2012.

[Ber11] R. Berthelot, J. Royan, T. Duval, and B. Arnaldi, "Scene graph adapter: an efficient

architecture to improve interoperability between 3D formats and 3D applications

engines", Proceedings of the 16th International Conference on 3D Web Technology,

pp. 21-29, 2011.

[Bar08] J. Barczak, N. Tatarchuk, and C. Oat, "GPU-based Scene Management for Rendering

Large Crowds", in SIGGRAPH Asia Talks, 2008.

[Mik10] M. Mikkelsen, "Bump Mapping Unparametrized Surfaces on the GPU," 2010.

[Bou081] T. Boubekeur and M. Alexa, "Phong Tessellation", ACM Transactions on Graphics

(TOG) - Proceedings of ACM SIGGRAPH Asia, vol. 27, no. 5, Dec. 2008.

[Vla01] A. Vlachos, J. Peters, C. Boyd, and J. Mitchell, "Curved PN triangles", in

Proceedings of the Symposium on Interactive 3D graphics , pp. 159-166, 2001.

[Loo09] C. Loop, S. Schaefer, T. Ni, and I. Castanao, "Approximating subdivision surfaces

with Gregory patches for hardware tessellation", ACM Transactions on Graphics

(TOG) - Proceedings of ACM SIGGRAPH Asia, vol. 28, no. 5, Dec. 2009.

R e n d e r i n g m a s s i v e s c e n e s i n r e a l - t i m e

211

[Dyk09] C. Dyken, M. Reimars, and J. Seland, "Semi-uniform Adaptive Patch Tessellation",

Computer Graphics Forum, vol. 28, no. 8, Sep. 2009.

[Coo82] R. Cook and K. E. Torrance, "A Reflectance Model for Computer Graphics", ACM

Transactions on Graphics (TOG) , vol. 1, no. 1, pp. 7-24, Jan. 1982.

[Bli78] J. Blinn, "Simulation of wrinkled surfaces", in Proceedings of the 5th annual

conference on Computer graphics and interactive techniques , pp. 286-292, 1978.

