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Abstract 

The distributed storage systems are one of the most I/O intensive systems, composed 

of multiple modules each with different demands from the networking subsystem, such as 

low latency or high throughput.  

The present thesis begins with the state-of-the-art of the technology analyzed from 

different perspectives including: scaling methods, architecture, topologies and protocols 

used, that underlie a proposal for eLearning infrastructures. 

Packet processing at multi-gigabit rates of I/O intensive systems imposes a great 

pressure especially at receiver side, while at sender side there are multiple techniques to 

solve any occurring bottleneck. A method of solving receiver’s weaknesses and even 

increasing its performance is the usage of integrated hardware systems of dedicated packet 

processors with general purpose cores. Therefore, the performance of each node is increased 

by combining software design with multicore capabilities and with features of hardware 

engines for classification and distribution of data flows. 

When combining applications with specific traffic requirements and general purpose 

traffic, the result is often inefficiency. In this context, Ethernet has become the primary 

network protocol used due to its undeniable advantages such as low cost, high speeds or ease 

of management. Being a best effort protocol, the IEEE Data Center Bridging Task Group 

developed a series of enhancements for Layer 2, including Quantized Congestion Notification 

(QCN) and enabled a lossless environment. QCN provides congestion control, but it doesn’t 

solve the fairness of congestion profile within the entire network. The proposed solution aims 

the usage, cooperatively or automatically, of several congestion indicatives computed by 

Quantized Congestion Notification – Weighted Flow Queue Ranking (QCN-WFQR) algorithm, 

to balance the traffic load and increase the system responsiveness. 
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1 INTRODUCTION 

During the last ten years internet traffic volume grew more than 300 times and the 

pressure on technologies used for network infrastructure increased significantly. Besides 

internet, there are systems such as clouds or data centers, where the pressure on I/O intensive 

systems, like storage systems, influenced the evolution of network infrastructure concerning 

the capital costs without performance penalty and pushed the design of the software towards 

distribution. 

Considering the above, I studied various features of storage systems and propose an 

infrastructure for eLearning technologies. Since storage systems are very I/O intensive, I 

propose a solution for increasing their performances based on dedicated hardware for packet 

processing. Furthermore, considering the trend of converged networks emerged from the need 

to ease the management and reduce the capital costs, I propose several improvements to 

Quantized Congestion Notification protocol as well as an algorithm for dynamic balancing of 

traffic flows: Quantized Congestion Notification – Weighted Flow Queue Ranking. 

In context of distributed storage systems, the scaling-out methods based on file system 

layers are very important. Each layer requires different type of network, thus generates 

different types of distributed storage systems. It is also important to see how they are 

characterized based on classifications and what are the main deficiencies of the existing 

implementations. Therefore, I propose a simple, yet comprehensive classification based on four 

main characteristics: locality, sharing, distribution level and semantics of concurrent access.  In 

terms of low level organization of data there are several ways, but all follow the same 

constituent elements, so I propose a suitable generalized data layout regardless the distribution 

status of the system. Within proposed layout, data is distributed in different units (i.e. files, 

objects, blocks or data segments) analyzed further, with an increasing trend towards objects, 

due to autonomous characteristic of object devices. Afterwards, I studied five different 

architectures of distributed storage systems (Andrew File System, Google File system, General 

Parallel File System, Lustre File System and Ceph) with more focus on Ceph’s particularities, 

used later as case study and performance measurements for the optimizations proposals. 

Afterwards, I studied the way that everything is linked together and using graph theory I 

present several key characteristics that influence properties such as throughput, capital cost, 

fault tolerance or high availability, followed by studies of protocol stacks used to identify 

different alternatives suited for converged networks. 

I propose several enhancements to solve issues related to system overheads due to 

processing of flows at multi-gigabit rates. The enhancements are based on integrated hardware 

systems of dedicated packet processors with general purpose cores. Besides system overhead 



Distributed Storage Solutions And Optimizations 

11 

issues, another challenge is the enhancement of the network hardware performance to make 

optimal use of the available network bandwidth. These problems are overcome by combining 

multi-core processors with parallel processing and multi-function network hardware 

capabilities. Thus, I propose a generic hardware packet processor emphasizing its components 

along with processing stages for each frame. I also designed two alternatives for coexistence of 

different applications with different traffic demands: Per Core Cluster Node and SMP Cluster 

Node. Using Ceph as case study, I propose two different optimizations: accelerations methods 

of each node using the proposed models listed above (i.e. A-MDS, A-MON and A-OSD) and a 

method of decreasing latency of sensitive flows based on queue weighting (A-RADOS). The 

proposed solutions are supported by several micro-benchmark results based on P2041 QorIQTM 

as integrated packet processor. 

Furthermore, in the context of network convergence in data centers, I/O protocols (such 

as SCSI) do not have contention or retransmission support and they require a lossless 

transmission environment, such as Fibre Channel – a high speed, low latency and lossless 

network by design. Ethernet by design is a best effort communication environment and with IP 

protocol it provides an end-to-end network for reliable transport protocols, such as TCP. In 

absence of reliable protocols, Ethernet has been enriched with a set of protocols which enabled 

a lossless medium: Priority Flow Control (PFC), Enhanced Transmission Selection (ETS), Data 

Center Bridging Capabilities exchange (DCBx) and Quantized Congestion Notification (QCN). 

Despite the main purpose of these enhancements, there are other uses cases, for example “TCP 

Incast” that can be improved using QCN. 

Basically, QCN provides congestion information to the source to avoid packet loss, but it 

doesn’t solve the congestion fairness within the entire network. For this, I propose QCN 

Weighted Flow Queue Ranking (QCN-WFQR), an algorithm based on Quantized Congestion 

Notification for dynamic workload balancing. The algorithm can be used in traditional computer 

networks or in new Software Defined Networks. It computes a series of congestion indicatives 

relative to each flow per each congested point and a series of system wide congestion 

indicatives. These indicatives can be used cooperatively (by all elements in the cluster) or 

automatically (by a system profiler or SDN controller) to increase the overall system 

performance. For exemplification, I propose two different applications for the use of these 

congestion indicatives. Former application proposes a method of choosing replicas in 

distributed and parallel file systems to achieve a less congested network. The latter application 

propose a method of distributing traffic workload in the network by migrating already 

established flows to alternate less congested paths, thus reducing the need to slow down the 

traffic at the source. 
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1.2 Thesis outline 

 Chapter 1 – the introduction; 

 Chapter 2 – provides an overview of the state-of-the-art of storage systems dealing with 

several topics, including: scaling methods, taxonomies, data organization, system 

architecture and networking; 

 Chapter 3 – presents a proposal of an infrastructure designed for eLearning systems, as case 

study; 

 Chapter 4 – presents several optimizations proposed for nodes in distributed systems based 

on hardware packet processing. A case study based on Ceph and QorIQTM processors is also 

presented; 

 Chapter 5 – deals with network convergence in data centers emphasizing different 

weaknesses of QCN protocol. It is presented a proposal for preserving QoS policies from 

unwanted traffic injections through edge ports in case of automatic QCN configuration; 

 Chapter 6 – presents a novel algorithm for dynamic load balancing in congested aware 

networks (QCN-WFQR), which propose two sets of congestion indicatives used to balance 

the traffic load and achieve a more responsive system and an increase in the overall 

performance; 

 Chapter 7 – concludes my contributions presented in this thesis. 

  

Admin
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2 STORAGE SYSTEMS: STATE-OF-THE-ART 

In general, any storage system comprises a set of devices and a collection of software 

modules for managing data units, such as blocks, objects or files.  

Distributed storages are special cases, where storage elements are distributed over a set 

of nodes within a computer network. There are cases where only storage devices are 

distributed, but to avoid the single points of failures or to satisfy different requirements 

(section 2.2), the software modules are distributed as well. 

2.1 Storages classification 

Storage systems classifications are very important, mostly because it drives the intrinsic 

characteristics of them and points out the deficiencies of existing implementations. Therefore, I 

propose a classification of storage systems based on four main characteristics (Figure 1) [PIST, 

2014/1], as follows:  

 Locality: direct attached (i.e. systems that has no network devices involved at any level) and 

networked (i.e. systems that contains network devices at least at one level); 

 
Figure 1: Storage systems classification based on four basic characteristics  

 
Figure 2: SNIA file system taxonomy 
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 Sharing capability: private system (i.e. unshared data – dedicated to only one tenant) or 

shared between multiple tenants; 

 Distribution level: refers to the data unit used for distribution: containers (i.e. groups of 

files bound to the same organizational relationship such as trees), files, chunks or segments, 

objects and blocks; 

 Semantics: refers to the sharing semantics of concurrent access (section 2.4). 

The main purpose of this classification is to include any storage system regardless of its 

data organization or architecture.  

Storage Networking Industry Association (SNIA) proposes a different taxonomy [8] that 

splits file systems in three major categories: local, shared and network (Figure 2). The local file 

systems are co-located on the same machine with client/server, shared file systems use blocks 

shared among clients and network file systems use files instead of blocks which are also shared 

among clients. The two classifications are not disjunctive, but in my opinion SNIA’s taxonomy is 

a mixture of architectural considerations and storage intrinsic characteristics. 

2.2 Requirements for distributed storages 

In the early 70’es at the beginning of computer networks, the main purpose of 

distributed storage systems was just to share small pieces of data between nodes. Later on, 

with the advent of cloud computing, HPC domains or internet applications such as Google or 

Facebook, the need for storage space increased exponentially, therefore I propose the 

following list of basic requirements based on articles published in the field: 

1) Data Sharing 

 Sharing stored data in a multi-tenant system. 

2) Storage Scalability 

 Increase or decrease storage capacity by adding or removing nodes in the system. 

3) Storage Elasticity 

 Dynamic adjustment of storage capacity from client point of view without affecting its 

data or system structure. 

4) Transparency 

Transparency is a more general term and it refers to the fact that clients are unaware of 
the system architecture and therefore there are several types of transparency: 

a. Access transparency 

 Preserving access interface regardless of system architecture: distributed system or 
directly attached. 
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b. Location transparency 

 Files do not have to contain location information. 

c. Failure transparency 

 Preserve client’s data in case of system failures. 

d. Replication transparency 

 Clients should be unaware of data replication. 

e. Migration transparency 

 Clients should be unaware of data migration.  

5) High Availability of data 

 Ensure a high degree of data availability in case of partial system failures. 

6) Fault Tolerance 

 The system continues to work properly in case of partial failure. 

7) System recovery 

  The system has to be able to recover after unexpected partial or total failures. 

8) Data Balanced Distribution 

 The system has to be able to distribute data uniformly among a large number of 

storage nodes. 

9) Workload balance 

 The system ability to balance access requests among cluster nodes in order to achieve 

certain performance (e.g. minimizes response time, avoid node overload or optimal 

resource utilization). 

10) Data Migration 

 Data migration among storage nodes and balance space utilization in case of storage 

scaling. 

11) Concurrent and Consistent Data Access 

 The system ability of multiple tenants to concurrently access a consistent view. 

12) Snapshot 

 The system ability to save and return to a specific system state. 

13) Archive 

 The system ability to provide a complete data copy of a snapshot. 



Distributed Storage Solutions And Optimizations 

17 

14) Network infrastructure performance 

 The ability of network infrastructure to meet a certain performance degree in terms of 

throughput, latency or congestion. 

15) Data Security 

 Mechanisms of data protection from unwanted actions of unauthorized tenants. 

2.3 Storage systems scaling methods 

To meet nowadays demands of storage space, which is very high reaching at petascale 

or even exascale size, the number of storage devices is very large (i.e. scale-out) within the 

cluster [PIST, 2014/1]. This can be achieved by distributing data at different file system levels 

(Figure 3). 

File systems, generically are composed by several abstraction layers (presented in Figure 

3), as following:  

 hardware layer (storage devices); 

 block or object layer (sequence of bits stored on storage devices); 

 file layer (typed data managed by the underling operating system); 

 application layer. 

 
Figure 3: Storage systems scale-out diagram 
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Depending on the layer at which the system is decoupled and computer networks are 

introduced, different types of systems are built: 

 SAN based distributed storage systems are built by decoupling the system at block I/O level, 

where protocols such as SCSI or SATA are carried out by different lossless communication 

environments, such as Fibre Channel; 

 NAS based distributed storage systems are built by decoupling the system at file level, 

where protocols such us CIFS – Common Internet File System or NFS – Network File System 

– are used to carry file requests; 

 Hybrid systems can be built by mixing these SAN and NAS types (Figure 8); 

 Furthermore, distributed and parallel file systems (e.g. GFS, Lustre or Ceph) are built by 

abstracting storage devices using data segments or objects as storage units. 

Mass-Storage systems 

Redundant Arrays of Independent Disks (RAID) are mass-storage systems that can span 

data within multiple disks from a RAID group (i.e. set of storage devices bound to a RAID type), 

Figure 4 – a. These systems are based on two main ideas: improve performance by accessing 

multiple disks in parallel (large data chunks stripped over multiple disks or small independent 

data chunks accessed in parallel) and improve high availability and fault tolerance by 

duplicating data over multiple devices. There are several RAID types (RAID0 – to – RAID6) 

differentiated by granularity of stored data and redundancy patterns. Storage systems may also 

 

(a). RAID group (b). Storage Pool (c). Raid based Storage Pool 

Figure 4: Mass storage solution (RAID based) 

 



Distributed Storage Solutions And Optimizations 

19 

combine different RAID types obtaining what is called Nested RAIDs (e.g. RAID1+0). Also, there 

are implementations of RAID types other than standard, such as: Linux MD or Hadoop RAID.  

A typical RAID group is composed of several disks (16 maximum) with LUNs (Logical Unit 

Numbers also called Volumes) configured (Figure 4 – a) and accessed with an offset (as a direct 

attached storage) called Logical Block Addressing (LBA). The storage space is expanded by 

adding new disks to the RAID group and extends related LUNs. It is worth to mention that RAID 

groups remain the only mass storage system that guarantees a specific degree of performance 

for critical applications, for example in systems such as High Performance Computing. 

Furthermore, EMC1 introduced Storage Pools – collections of logical/physical disks or 

RAIDs managed together (Figure 4 – b), used to simplify space management. To expand a 

typical Storage Pool a new disk is added and LUNs can be expanded, thus each host has an 

increased storage space. RAID based Storage Pools are constructed by combining RAIDs with 

storage pools. Usually, in a storage system multiple storage pools are configured based on their 

characteristics, such as: size, performance, latency and so on. In contrast with standard RAID 

groups, Storage Pools can expand to hundreds of devices, are more flexible and easy to 

manage. 

Fine grained management space is achieved with virtualization of storage pools into 

Virtual LUNs or Virtual Volumes (Figure 4– c) [3] to meet application’s requirements in terms of 

capacity and quality of service, where each virtual volume is usually made of different numbers 

of equal RAID LUN sizes (equal physical storage slices). The mapping between Virtual LUNs and 

RAID LUNs are made by a Virtualization Controller.  Usually when a new RAID group is added to 

the storage pool, the already stored data is not migrated (to rebalance the system) to all 

available disks, rather the new data is stored using the new RAID group and the remaining 

space from old groups.

From architectural point of view, there are three main approaches of mass-storage 

virtualization: 

 Host-based (e.g. Linux Logical Volume Management: LVM) [4]; 

 Device-based (e.g. disk arrays: RAIDS); 

 Network-based (e.g. SAN systems) [5] [6]. 

                                                      

1 EMC: corporation that provides IT storage hardware solutions. 



Distributed Storage Solutions And Optimizations 

20 

2.4 Sharing semantics 

One of the most important characteristics of the distributed storage systems is sharing 

semantics. Sharing semantics refers to the semantics of concurrent access of two or more 

tenants and it defines the level of data consistency in different situations. 

Andrew S. Tanenbaum in his book “Distributed Operating Systems” [7] proposed a 

simple and comprehensive set of four different types of file sharing semantics listed in Table 1. 

Depending on the system architecture, its purpose and required level of performance a type of 

consistency is chosen. In case of distributed systems, POSIX semantics is very difficult to 

achieve, mainly because it requires complicated synchronization mechanisms. 

2.5 Low level data organization 

2.5.1 Data organization at device level  

In the context of data organization at device level, I consider three main organizational 

types: structured (Figure 5), log-based (Figure 6) and tree-based (Figure 7). The main difference 

between structured and log-based organization is that the former organization type has distinct 

areas for inodes and data blocks, while the later stores them in continuous form (i.e. logs: 

checkpoint area points to the right version of inode mapping, while data is continuously added 

to the log) – the advantage is that the reads for both inodes and data blocks are made without 

moving the head of the device. Tree-based organization (e.g. B-tree File System: BTRFS) uses a 

copy-on-write (COW) model, where data is organized in a binary tree structure. Basically, when 

a node is modified a shadow tree is created and pointers are updated accordingly up to the root 

(and this is how snapshots are created). 

 

Semantics Description 

POSIX Semantics Every operation on a file is instantly visible to all clients. 

Session Semantics No changes are visible until the file is closed. 

Immutable Files No updates are possible. 

Transactional semantics Based on ACID properties – all or nothing property. 

Table 1: File sharing semantics taxonomy 



 

 

 

Figure 5: Device: structure based data organization 

 
Figure 6: Device: log based data organization 

 
Figure 7: Device: tree based data organization  (BTRFS leaves) 

 
Figure 8: Hybrid storage system:  SAN / NAS 
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On hard drives, also due to the fact that Linux greatly increased in popularity in the last 

decade, it mostly uses structure based organization of data: Unix File System (UFS) also called 

Berkeley Fast File System, BSD Fast File System or Fast File System. In Linux, the 

implementation of UFS is the Extended File System [2]. During time, its design has undergone 

massive changes to meet different requirements such as logging or increased storage space (i.e. 

EXT version 4). Briefly, EXT layout [2] is organized into block groups, data management units 

(i.e. group descriptors and data block bitmap), file management (i.e. inode bitmap and inode 

table) and data area (i.e. data blocks). Block groups optimize disk seeks and each of these 

groups contains information about the status of the file system called superblock. With 

following EXT revisions, the superblock become quite large, therefore only several block groups 

where chose to store it (i.e. sparse superblock).  

Following an evolutionarily line, Oracle released in 2007 a file system with a tree based 

data organization (Binary Tree File System [1]) included in Linux kernel in 2009. In the file 

system’s tree, the leaves contains an array of items (Figure 7) and the inner nodes contains 

information where to look for an item and where is the next node located. An item can be 

anything from an inode, file or directory and so on. Related to comparison with UFS, BTRFS 

scales better than UFS and also showed performance improvements.  

2.5.2 Networked storage data organization 

Generally speaking, in any distributed storage system, data is divided in different types 

of units (e.g. files, blocks or objects) distributed across the nodes of a network using different 

techniques, such as mapping tables or hash functions. As in the case of local file systems, in 

distributed file systems as well, the organization of data segments is specified in a type of 

metadata structure, distributed as any regular file or distributed in a private cluster or stored in 

a centralized way.  

Usually, a distributed storage system does not have the concept of partition, but 

sometimes there are implemented mechanisms that can be considered as similar concepts, for 

example volumes for Andrew File System or the multiple systems managed by MGS in Lustre. 

SAN and NAS are two of the most known networked file systems. In terms of 

architecture, SAN based file systems usually use storage nodes with RAID disks, while NAS 

based file systems are often used along with SAN environments, were file servers are 

constructed over NAS and data is stored in a SAN medium (i.e. hybrid file system), Figure 8. 
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2.5.3 Generalization of data organization 

Regardless of file semantics (such as hierarchical or semantic file system) or distribution 

status, any file system has two main layers (Figure 9): 

 Metadata area: specifications of data organization; 

 Data area: a flat address space of data units. 

2.5.4 Storage units 

Stored data may be distributed using different types of units (as shown in Figure 9): 

containers, files, segments, blocks or objects.  

Files are self-contained information, organized (e.g. hierarchically, semantically and so 

on) and typed (e.g. binary, directory and so on) managed and interpreted by the underlying 

operating system. Besides the organization method and type, files have also access rights (e.g. 

ACL: Access Control List) for different operations (e.g. read, write or execute) per groups of 

users or per user basis – data security. 

Data segments (i.e. chunks of data from files) are scarcely used for distribution (e.g. 

Google File System uses chunks of 64Mb as distribution unit), due to its weaknesses, such as 

lack of standardized support in the operating systems. 

 
Figure 9: Generalized data layout 
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Blocks and objects are the most used data units for distribution and is worth to 

mention, that nowadays tendencies are to use mostly objects (Object Storage Devices – OSDs 

in composition of Object Store – ObS [9]), because OSDs are more autonomous devices with 

several strength (Table 2), including: 

 OSD v1: internal space management, object manipulation standard API and object based 

security [10]; 

 OSD v2: completes the feature list with snapshot capability, object containers and recovery 

improved mechanism [11]. 

It is worth to mention that an object may represent an entire file or file fragments or 

even fragments from multiple files. The representation depends of implementation and 

requirements of the file system, such as providing multiple file fragments in parallel or 

improving distribution profile (e.g. uniform distribution). 

2.5.5 Trends towards object based storage systems 

Currently, the tendency is to use file segments to distribute data, rather the entire file or 

even groups of files, because for example, this way a higher degree of availability and a better 

fault tolerance is achieved (two of the most important requirements of distributed systems). 

Although, there are several types of data representation used for distribution, objects 

seems to gain in popularity, since researchers claim that OSDs take advantages from DAS, SAN 

and NAS architectures grouping them in a single device [12]. Basically, it addresses issues 

related to security, scalability and management, (Table 2). Therefore, security is improved by 

adding credentials to each operation, while in contrast a block device has per LUN based 

Actions Block Device Object Storage Device 

Partitions Available Available 

Space Management External Internal 

Operations 

N/A 
Create object 

Delete object 

Read block Read Object 

Write block Write Object 

N/A 
Get Attributes 

Set Attributes 

Addressing Block range Object/ byte range 

Security Per device Per object 

Recovery External mechanism Internal mechanism 

Snapshot N/A Available 

Containers N/A Collection of objects 

 Table 2: Block devices vs. Object Storage Devices 
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security. Scalability and management is improved by moving space management from 

metadata servers to storage controllers. And, one management advantage that emerges from 

OSDs characteristics is that object based storage systems simplify data layout by replacing large 

blocks lists with small objects lists and distribute the low-level block allocation problem. 

Although, it has many advantages object based distribution does not solve the fundamental 

issue of distributing data among a very large number of devices. 

2.6 Distributed storages architectures 

There are many distributed storage systems that follows different strategies with 

advantages and also with disadvantages. In this subsection I analyze the architectures of five 

storage systems, which I consider representative to cover several highly important topics, such 

as: low level organization, overall system design or sharing semantics: AFS (Andrew File 

System), GPFS (General Parallel File System), GFS (Google File System), Lustre and Ceph. The 

analysis concludes with a comparison of the characteristics of these systems, highlighting their 

advantages and disadvantages [PIST, 2014/1]. 

2.6.1 Andrew File System 

Andrew File System (AFS) [13] [14] is one of the pioneers in storage distribution field. 

The main purpose was to globally share files in a transparent way (e.g. location transparency, 

access transparency, replication transparency and so on – listed in section 2.2, 4). It has client-

server architecture and shares files through NFS protocol and therefore it can be considered a 

Networked Attached Storage. 

 
Figure 10: Andrew File System architecture 
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In terms of architecture, AFS offers a single global file namespace (“/afs”) and organizes 

data in cells and volumes. Volumes are units smaller than traditional partitions (for example can 

be a directory such as “/home”) and reside on vice partition managed by a server (Figure 10). A 

cell comprises a collection of volumes and represents an entire organization (e.g. 

“/afs/cs.pub.ro”). The distribution is achieved at volume level – clones. There are two types of 

clones: read-only copies (for workload balance) and backups (Figure 10). 

In terms of software design, there is a series of processes that runs on servers for 

system monitoring and clients interactions: maintains volume location, serves files, monitors 

volume availability, removes damaged volumes, handle client requests, different tasks related 

to volumes (e.g. balance data, backups or clones), finds and corrects volume inconsistencies. 

2.6.2 Google File System 

Google File System (GFS) [15] was built to manage and manipulate huge amount of data 

capitalizing strength of expensive and reliable servers while compensating cheap hardware 

weakness. It’s not an open source system but serves as model for open source systems like 

Hadoop (HDFS) [16]. From architecture perspective, GFS is composed by one active GFS master 

server and a few clones (for enabling failover scenarios) to manage the system metadata and 

hundreds of GFS chunk servers to store chunks of files (i.e. data segments) in a distributed 

manner. The system implements a series of mechanisms to support a huge number of clients 

that can access a consistent and shared file system in parallel, also a series of mechanisms to 

overcome faulty characteristics of commodity hardware (read/write operations are depicted in 

Figure 11 – a, b). 

GFS’s main characteristics: 

 Files are divided in big data chunks for I/O performance optimizations and distributed 

across a storage cluster using cheap commodity hardware; 

 Uses only one active server for metadata manipulations (atomic metadata mutations) to 

simplify the system design; 

 By profiling, it was observed that files are scarcely modified and appends are more often, 

therefore the system guarantees a more simplified POSIX sharing semantic model (Table 3); 

 Rebalances the data in the cluster periodically;  

 Provides logging and checkpointing for chunkservers fault-tolerance; 

 Provides snapshotting to create branch copies. 
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(a). Read flow (b). Write flow 

Figure 11: Google File System architecture 

 

Actions Writes Appends 

Serial success Defined 
Defined intercalated with inconsistent 

Concurrent success Consistent and undefined 

Failures Inconsistent 

Table 3: Google File System semantics 
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Hadoop (HDFS) is the open source implementation (by Yahoo) that follows GFS 

architectural characteristics (since GFS implementation is not open). In HDFS nomenclature the 

Name Node is equivalent with GFS Master, while Data Nodes are equivalent with GFS Chunk 

Server. 

2.6.3 General Parallel File System 

General Parallel File System (GPFS) [17] is the distributed and parallel file system 

solution from IBM. As GFS, GPFS is closed and there are many unknown mysteries about its 

architecture. GPFS supports RAID mass-storage systems over Fibre Channel (SAN), but it has 

also the ability to use LAN networks through Network Shared Disk (NSD) modules which 

enables block access to data. The choice between these two access modes depends of the 

system purpose: accessing data through a SAN is much faster, but requires more expensive 

network equipment while LAN access is less expensive, but slower.  

GPFS supports deployments of thousands of storage devices achieving a very good 

system availability degree. It supports replication, logging and recovery, thus is a fault tolerant 

system as well. GPFS distributes data by means of two types of policies: file placement policy – 

distributes data to a specific set of disks (disks pool) and file management policy – moves or 

replicates data across system disks preserving files namespace. 

 

(a). GPFS Share Disk (b). GPFS Networked I/O (c). GPFS Multi-cluster 

Figure 12: General Parallel File System architecture 
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The files namespaces can be split into small groups by means of file sets – achieving 

management at a smaller granularity. Another GPFS characteristic is that the metadata 

management is spread across all GPFS clients, thus a single point of failure is avoided and a 

better availability is achieved. It is also highly configurable, supporting three deployment types: 

share-disk, networked I/O and multi-cluster (Figure 12). 

2.6.4 Lustre File System 

Lustre [18] is an open source system that has several unique particularities. Briefly, it is 

composed by three main entities: metadata servers (for namespaces management), 

management servers (used to manage all Lustre file systems) and object storage servers (used 

to manage objects stored on targets), Figure 13. The fault tolerance is achieved by failover 

configurations (i.e. redundant systems). Each Object Storage Server (OSS) can have a failover 

configuration achieved by using several targets (Object Store Target – OST). A similar method is 

used for Metadata Servers (MDS) and Management Servers (MGS). It also distributes 

namespaces over a cluster of MDSs and MDTs: Distributed Namespace (DNE) cluster, former 

Clustered Metadata (CMD) – directories are striped across more MDTs. 

 

Figure 13: Lustre File System architecture 
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The objects are managed by keeping a map similar to the inode map (as UFS does) and 

this can be considered a drawback since it puts pressure on Storage Servers (Figure 14). It 

supports configurations using commodity storage devices, but also SAN based storage. 

2.6.5 Ceph File System 

Ceph [19] is a new distributed storage system that assembles many advantages from 

previously existing implementations. It distributes everything: namespaces, monitoring, 

security and data, therefore it is very scalable, but very complex being considered “the new 

dream distributed file system” (Figure 15). 

One of the main characteristics of Ceph is that it completely isolates metadata 

management from data storage (RADOS – Reliable, Autonomic Distributed Object Store) [20]. 

Ceph stripes files into objects similar with RAID model, to improve parallel I/O and furthermore 

RADOS distribute these objects over a cluster of OSDs using controlled hash function (CRUSH – 

Controlled Replication Under Scalable Hashing) [21]. 

 

 
Figure 14: Lustre file mapping 

 



 

 

 

 
Figure 15: Ceph file system architecture 
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2.6.5.1 Data storage: RADOS 

RADOS is a system composed of a large OSD cluster and a small cluster of monitors used 

as supervisors.  After the files are striped into objects (using RAID based model), RADOS maps 

these objects to placement groups (PGs). Each placement group has a level of replication 

attached, so it controls the degree of replication declustering. Also, the system has to track a 

huge number of objects which is more realistic to be done per group, rather than per object. 

So, based on hashing unique object ids, placement group ids are obtained. 

# RADOS messages Description 

1 
Leader monitor 

election 

 Provides consistent cluster-map to all system parties,  

 Monitors leader election based on simplified PAXOS and 

quorum for serialization of map updates [22] pp. 127. 

2 Leases 

 Grants short-term leases to active monitors to give them the 

rights to distribute copies of cluster map to all system parties, 

[22] pp. 127. 

3 
Cluster-map 

distribution 

 Responses of active monitors (which have granted a lease) to 

map queries from MSDs, clients or new added OSDs. Since an 

OSD cluster may have a very large number of devices [22] pp. 

129, the monitors don’t broadcast map updates, but actually 

the map updates are exchanged between OSDs from the same 

placement group. 

4 Heartbeat messages 
 To prevent accessing inconsistent data, timely heartbeat 

messages are exchanged between OSDs [22] pp. 129. 

5 I/O traffic 
 Objects read/write and data replication (i.e. primary-copy, 

chain and splay) [22] pp. 131. 

6 Recovery 

 Failure recovery is based on cluster-map epoch and the set of 

active OSDs in each placement group and it uses a peering 

algorithm to assure a consistent view of the placement group 

of all OSDs within [22] pp. 137. 

Table 4: RADOS main messages 
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The OSD cluster layout is described by a cluster map, containing: map revision for 

detecting unsynchronized elements in the cluster, the number of placement groups, the status 

of each OSD in the cluster and an hierarchized description of OSD (e.g. rooms, rows, racks, 

shelves and devices). By applying sets of placement policies on this map, different failure 

domains can be configured. Furthermore, a deterministic list of OSD is obtained using CRUSH 

algorithm based on placement group id and a set of placement rules. Only synchronized OSD 

are used by filtering this list by status of each OSD from cluster map. 

The consistency between replicas is assured using a simplified PAXOS algorithm 

(quorum based election of a leader monitor – it requires odd number of monitors). First, 

proposes and elects a leader monitor to serialize map updates and manage consistency (Table 4 

– 1) then, the monitor leader requests the map epoch from all monitors (while they have a 

specific time frame to respond) and joins to quorum. The monitor leader must ensure that the 

majority of monitors have the most recent map epoch. Furthermore, the monitor leader 

distributes short-term leases to active monitors enabling them to publish copies of cluster map 

to requesters (Table 4 – 2, 3).  If acknowledgements are not received or leases are not renewed, 

then a new election of a monitor leader is called. 

OSD failures detection (based on heartbeat), map synchronization (based on map 

epoch) and data consistency (based on peering) is achieved by exchanging timely messages 

between OSD in the same PG (Table 4 – 4). For data recovery, each OSD maintains a history of 

the placement groups to which it belongs and in case of inconsistency the data is updated 

through a primary OSD chosen in the replication scheme (Table 4 – 6). 

2.6.5.2 Namespace management 

The namespace management is distributed across a metadata cluster, which uses a 

technique named adaptive workload distribution (i.e. dynamic sub-tree partition to achieve a 

scalable performance). Ceph migrates or replicates pieces of files tree at directory fragment 

level, rather than at the entire directory, thus achieving better performances. The replication 

and migration decisions are taken based on popularity metric and therefore metadata high 

availability is achieved. 

Despite its advantages, there is an important drawback of distributing namespace 

management that is given by the cost of management when the number of nodes is very large. 

2.6.5.3 Decentralized data distribution 

The main purpose of decentralized data distribution algorithms is to replace the lookup 

servers. In this subsection I briefly present two such algorithms: Replication Under Scalable 

Hashing (RUSH) [23] and Controlled Replication Under Scalable Hashing (CRUSH) [21]. 
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RUSH algorithm has several flavors for data placement, such as: using prime numbers, 

support for removal and a tree-based approach [24].  It has two main principles: identifying 

which object must be moved to maintain a balanced cluster and decide upon object destination 

based on hash functions. Also, it implies that devices are replaced in groups (e.g. per shelf 

basis), rather than one-by-one. 

 RUSH (Figure 16 – a)  

Briefly, the system is divided into c sub-clusters, where each sub-cluster i has mi servers, 

and each server has Wi weight. The sub-clusters in a system are virtually arranged from the 

newest added to the oldest. The weights controls which sub-cluster is chosen and how 

many replicas are stored based on a hyper-geometric distribution (i.e. how many devices 

are chosen from each sub-cluster). 

The algorithm returns a list of L servers based on a pseudo-random hash function, the x 

object, R number of replicas of the object and the cluster description (mi number of server 

from each sub-cluster with their Wi weights and C number of sub-clusters in the system). 

The algorithm’s output is deterministic and consistent if system storage size is changed 

 CRUSH (Figure 16 – b) 

The system is described by a hierarchical cluster map of weighted devices and buckets (e.g. 

the system is composed by rooms with m cabinets and each cabinet has ni number of 

shelves with pj storage devices). Based on placement rules CRUSH decide which storage 

devices are chose from the cluster map. 

The algorithm produces a deterministic ordered list of L storage devices for object x based 

on pseudo-random hash function, cluster map and placement rules. 

  

(1) RUSH layout example (2) CRUSH layout example 

Figure 16: Decentralized data distribution (layout) 
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Furthermore, CRUSH [21] completes with the idea of controlled distribution per different 

failure domains by means of placement policies. 

2.6.5.4 Security in Ceph 

Maat [25]  is a security protocol that uses Merkle trees to define authorized users for a 

group of files and proposes few novel techniques to improve performance of petascale file 

systems and high-performance parallel computing:  extended capabilities, automatic revocation 

and secure delegation. 

Horus [26] is a proposed method of data encryption that introduces a novel idea to 

generate different regions based on encryption keys using Merkle trees, named Keyed Hashed 

Tree (KHT). KHT allows generation of keys for different ranges of blocks from a file shared by 

different clients, each with its own permissions over different regions from it. The main 

advantage of this method is that it offers multiple levels of security, but the KHT height and the 

region size at each KHT level must be pre-configured – a scalability penalty. 

2.6.6 Comparison 

The classification of the studied systems based on my proposed taxonomy is listed in 

Table 5, while below are commented the advantages and disadvantages emerged from their 

comparison: 

 Location of data in the distribution space can be handled in two ways: by using information 

maps (similar with inode map from UFS) or by decentralized distribution algorithms such as 

CRUSH or RUSH. The drawback of mapping against decentralized distribution algorithms is 

the increased pressure on some dedicated lookup servers. 

 Distributing metadata management has pros and cons: in essence, a distributed 

management comes with a better I/O performance, but a more complex architecture. 

Regarding the above systems, Ceph and GPFS handle metadata in a distributed way, while 

GFS/HDFS use only shadow servers for high availability, but the actual activities are handled 

only by one active server. 

Storage System Locality Sharing Distribution Level Semantics 

AFS 

Networked Shared 

File Session 

GFS Chunk/segment Mimic POSIX 

GPFS Block 

POSIX Lustre 
Object 

Ceph 

 Table 5: Storage systems characteristics mapping 
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 The distribution level refers to the data unit used for distribution, such as: data segments, 

files or objects. The distribution level for each file system is listed in Table 5. There is a 

global tendency towards OSD usage, due to several strength, including: better data security 

(per object), flexible size (therefore it can be adjusted to increase I/O performance), 

standard API and a local space management. In terms of studied systems, Lustre and Ceph 

uses OSDs and the future leads to OSDs for AFS (OpenAFS) and GPFS as well. 

 GPFS is sensitive to devices failures, because usually it uses a declustered RAID approach. In 

terms of RAIDS, there is also a trend to use Object RAID [27] where PanFS is leading. 

 In distributed storages is a trend to add support for commodity hardware, where failures 

are a common behavior rather than an exception. To overcome the occurring issues, the 

systems must implement different mechanisms to achieve a specific degree of fault 

tolerance and high availability. 

 The access interface is an important characteristic of storage systems, therefore the 

distributed storages may be divided in two main categories: systems that have support for 

conventional API (i.e. Berkeley socket) or using a custom API. A conventional API has the 

advantage of transparency, but a custom API has the fine tune functionality to increase 

performance. Ceph mixes the two methods and uses an enriched conventional API with 

additional features for manipulating different system characteristics. 

 Systems that uses pieces of a files to distribute data is less sensitive to failures and have a 

better degree of high availability compared to AFS, for example, which distributes entire 

files (volume cloning). 

 The file sharing semantics is handled as follows:  

o AFS: Session Semantics (weak); 

o GPFS, Lustre and Ceph: POSIX Semantics; 

o GFS/HDFS: mimic POSIX Semantics (more relaxed semantics). 

2.7 Network technologies for distributed storages 

The network infrastructure has a great influence in the performance of distributed 

storage systems [PIST, 2014/1] and is divided in two main topics: 

 Network topologies and 

 Protocol stacks 

2.7.1 The topology 

The topologies used in distributed systems are defined by graphs used to create paths 

between storage devices and edges [28]. There are intrinsic similarities between graphs used to 

connect general purpose cores in multi-core systems and distributed systems in general, since 
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they aim relatively same characteristics: a perfect interconnection topology should have 

smallest latency possible (round trip time close to zero), maximized throughput (line rate using 

any packet size), minimum capital cost and a perfect fault tolerance and high availability [29].  

In data centers (and distributed storage systems) graph diameter influences latency and 

contention (characteristic more relevant for SAN based systems). Also, a smaller node degree 

decreases the capital cost of the network’s equipment, but it increases the latency since the 

topology will have more hops, a smaller diameter lowers the latency and round trip time and 

increases the throughput, a smaller bisection width facilitates the left-to-right traffic (important 

for data migration and data distribution among storage nodes) and a high number of edges 

influences the deployment. 

Usually, in data centers are used different tree based topologies with alternatives paths, 

but there are other alternatives with characteristics suitable for different traffic profiles and 

applications purposes, such as: 

1. Complete graph: undirected graph where each pair of nodes is connected by one edge 

(Figure 17 – 1).  

2. 2D Torus (k): undirected graph in form of matrix of nodes, where each node connects 

with its nearest neighbors plus with wraparound connections (Figure 17 – 2). 

3. Fat-tree (h): tree where the edges become fatter as one moves towards the root          

(Figure 17 -3). In industry usually it is used a fat-tree with redundancy to improve 

system high-availability (Figure 17 – 3’). 

4. Hypertree (k, h): type of 3D tree of height h and degree k. It can be viewed as a 

complete binary tree of height h from bottom-up and a complete k-ary tree (k≥2) view 

from top-down (Figure 17 – 4). 

5. Hypercube (k): graph with 2k nodes and a total of k∙2k-1 edges where each node has 

exactly k neighbors and with mutually perpendicular sides (Figure 17 – 5). 

6. Cube-connected-cycles (k): a graph obtained by replacing each node of a Hypercube 
of degree d by a cycle of length k, where k ≥ d (if k = d, then CCC (d, k) CCC (k), 
Figure 17 – 6).  

 



 

 
 

 
Figure 17: Network topologies 

# Topology Nodes Edges Degree Diameter Bisection 

1 Complete graph 𝑁 𝐸(𝑛) =
𝑛 ∙ (𝑛 − 1)

2
 𝛥(𝑛) = 𝑛 − 1 𝑑(𝑛) = 1 𝑏𝑤𝑒(𝑛) = √

𝑛

2
 

2 
2D Torus (k), 

k nodes line 
𝑁(𝑘) = 𝑘2 𝐸(𝑘) = 2𝑘2 𝛥(𝑘) = 4 𝑑(𝑘) = 𝑘 𝑏𝑤𝑒(𝑘) = 2𝑘 

3 Binary fat-tree (h) 𝑁(ℎ) = 2ℎ+1 − 1 𝐸(ℎ) = 2ℎ+1 − 2 𝛥(ℎ) = 2 + 1 𝑑(𝑛) = 2ℎ, 𝑙𝑜𝑔2(𝑛) 𝑏𝑤𝑒(𝑛) = 1 

4 
Hypertree (k, h), 

 k > 2 
𝑁(𝑘, ℎ) =

𝑘ℎ+1 − 2ℎ+1

𝑘 − 2
 𝐸(𝑘, ℎ) =

2𝑘ℎ+1 − 𝑘2ℎ+1

𝑘 − 2
 𝛥(𝑘, ℎ) = 𝑘 + 1 𝑑(𝑘, ℎ) = 2ℎ 𝑏𝑤𝑒(4, ℎ) = 2

ℎ+1 

5 
Hypercube (k), 

K > 0 
𝑁(𝑘) = 2𝑘 𝐸(𝑘) = 𝑘2𝑘−1 ∆(𝑘) = 2𝑘 𝑑(𝑘) = 𝑘 𝑏𝑤𝑒(𝑘) = 2

𝑘−1 

6 
CCC(k), 

 k > 3 
𝑁(𝑘) = 𝑘 ∙ 2𝑘  𝐸(𝑘) = 𝑘2𝑘−1 + 𝑘2𝑘  𝛥(𝑘) = 3 𝑑(𝑘) = 2𝑘 + [

𝑘

2
] − 2 𝑏𝑤𝑒(𝑘) = 2

𝑘−1 

Table 6: Network topologies scaling properties 
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Analysis: 

 The complete-graph has the perfect diameter (value of 1), hypercube, cube-connected-

cycles, binary-fat-trees and hypertrees has a logarithmic diameter (it is worth to mention 

that hypertrees has the advantage of using constant speed for links at all levels, while fat-

trees must provide fatter links toward the tree root).  

 The node degree is constant for torus, binary-fat-trees and hypertrees. Nevertheless, 

hypertrees have the ability to scale also horizontally changing the k-ary dimension. The 

node degree of the hypercube grows faster by logarithmic function, regarding the number 

of nodes in the topology. 

 In terms of fault-tolerance, except for fat-trees, all other topologies offer alternative 

routing paths. Hypertrees preserve diameter in case of faulty nodes, a very important 

advantage. Cube style topologies have a better fault-tolerance, because they have many 

alternative routes between any two nodes. 

De Brujin, a directed graph with 𝑚𝑛 nodes labeled by n tuples over m alphabet, with 

𝑁(𝑚, 𝑛) = 𝑚𝑛, 𝐸(𝑚) = 𝑚2, Δ(m) = 2m , 𝑑(𝑛) = 𝑛 has also been taken into consideration. It 

has large number of nodes, few connections per node and preserves short distance. 

When designing a topology the graph is chosen depending on traffic requirements: east-

west/south-north traffic profile, low latency or high throughput and of course the balance 

between costs and performance.  

2.7.2 Protocol stack 

In terms of protocol stack used, distributed storage systems are divided into systems 

that require lossless mediums and systems that can use best effort mediums. Usually, storage 

Application
n layer 

SCSI layer (I/O requests) 

FCP 
FCP 

FCP 

iSCSI FCIP 

iFCP 

TCP 

FCoE IP 

FC Ethernet + DCB Ethernet 
 

Application layer 

NFS/CIFS/SMB/AFS… 

 

TCP 

IP 

Ethernet 
 

(a). Protocol stack for block level “networked” 

storage systems 

(b). Protocol stack for file level 

“networked” storage systems 

Table 7: Protocol stacks for storages 
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devices are controlled using SCSI (Small Computer System Interface) standards (i.e. commands, 

protocols and interfaces). Distributed storages built at block device level, caries SCSI commands 

through interconnection medium – SAN based systems. Since SCSI does not have mechanisms 

for contention or retransmission, lossless transmission environments are more appropriate. 

Regarding OSI model, the reliability problem can be solved at network layer 2 (data link) or 

layer 4 (transport). Ethernet is the most common data link protocol used, but is a best effort by 

design, while for example Fibre channel is a lossless medium. Basically, fibre channel protocol 

(FCP) runs over fibre channel infrastructure, but there is a solution where FCP frames are 

embedded into Ethernet frames: Fibre Channel over Ethernet (Table 7 – a). 

At layer 4, reliability can be handled by TCP, but with a noticeable performance penalty 

degree (Table 7 – b): 

 iFCP – protocol that runs over IP and provide functionalities similar with FCP 

 iSCSI – protocol that runs over IP and provides functionalities similar with SCSI 

 FCIP – FCP packets are encapsulated into IP  

Ethernet has been enriched with a group of protocols named DCB (Data Center Bridging) 

by IEEE group [42] for traffic control to avoid packet dropping and therefore Ethernet has 

become a lossless environment and an alternative to Fibre Channel (Table 7 – a). Also, there is a 

trend to merge general purposes networks (LANs) with storage networks – network 

convergence – where Ethernet become the solution (section 5). 

Distributed storages built at file level are less demanding and usually runs over 

TCP/IP/Ethernet stack (classic LAN) using protocols such as: NFS, CIFS or SMB (Table 7 – b). 

2.7.3 Real world considerations 

The capital cost of storage system infrastructure is one of the most important criteria 

and therefore the tradeoff between an appealing price and a good performance must be 

established when choosing an interconnection model. The switches are expensive and 

determine the way that network scales by the number of ports per device and speed. The 

speed of switch ports progressed in the last decade from 1GB/s to 100GB/s and nowadays an 

L2/3 switch has a 10GB/s port at about 1250$, 40GB/s at about 3000$ and a 100GB/s is still 

very expensive, about 12 000$ – so, faster links increases expenses. 

Other than capital cost, the choice depends also on the data center performance 

requirements, such as latency and throughput. In this case the switches ports are chosen based 

on two criteria: to optimize the transfer speed of each node and to support aggregate speed of 

a number of nodes in the data center.  
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In SAN environments, for a data segment of 512KB transferred at 25MBps, a 1Gbps port 

supports up to 2-3 RAID devices and a 10GB/s port supports up to 25 RAID devices [30].  

A fat-tree topology is expensive because of the high bandwidth needed while moving up 

in the tree. Nevertheless, there are methods to solve this issue, one of them being link 

aggregation (LAG). A butterfly topology requires fast links because the topology must 

accommodate the entire traffic and it does not have the fault tolerance property like the other 

topologies. 

Mashes and torii are not very expensive, but they needs extra connections to storage 

devices and usually are fit for storage systems built from blocks (e.g. as the ones proposed by 

IBM and HP). Hypercubes are a special case of torii, but the bandwidth scales better [30]. 

There are other graphs that can be considered to build a topologies designed for data 

centers, such as De Brujin which requires a low number of switches but the capital costs put 

pressure on the NICs.  

Also, there is a trend to combine different topologies to lower the costs and to increase 

performance in different areas. For example, in Ceph context the throughput capabilities has to 

be higher for RADOS, while for Monitors and Metadata servers the latency is more important. 

2.8 Interfacing with storage systems (case study: clouds) 

Basically, distributed storages are used as infrastructure for larger and more complex 

systems such as Clouds. In case of clouds, the infrastructure is composed by three main 

components: storages, networks and virtualization environments (Figure 18).  

 
Figure 18: Cloud components 
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In general, storage systems have three main interfaces: 

 via hypervisor support (exposing a block device to Linux guest); 

 via Linux guest driver support (e.g. Ceph’s Linux driver); 

 applications direct access via HTTP, ReST or other standard or non-standard API. 

Open Stack, one of the most successful cloud systems, has two main modules that 

provide storage to guest virtual machines and applications: Swift (object storage) and Cinder 

(block storage). Swift is a complicated component because it has many features including: high 

availability, high durability and high degree of concurrent access, while Cinder offers only block 

level access via iSCSI protocol to block devices. 

Other than these two, Ceph can be easily incorporated into Open Stack due to its 

multiple APIs: RBD (block access), ReST, librados , Ceph-FS (using FUSE or Ceph Linux driver) and 

it has also support into QEMU (Quick EMUlator) and KVM (Kernel-based Virtual Machine) and 

offers block device level access to Linux guests (Figure 19). GPFS can be used through GPFS 

Linux driver, Lustre has a lack of support, but it can be accessed as NFS through NFS server – 

hypervisor support. In the future, Hadoop will be incorporated into Open Stack for its Big Data 

support. 

 
Figure 19: Open Stack storage integration 
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CloudStack access methods are not very different from Open Stack. It has two types of 

storages: primary and secondary. Primary storage is used to expose a mount point to guest 

Linux based on hypervisor (KVM or XEN) via iSCSI, Fiber Channel or NFS: RADOS can be used as 

primary storage through RBD (RADOS Block Device) interface, Lustre via NFS server, etc. 

Secondary storage is used to store templates, OS images and snapshots. Secondary storage can 

use Swift (object based storage) from Open Stack with all its interfaces or NFS based file server. 

In essence, most cloud systems (e.g. Eucaliptus or OpenNebula) use SAN or/and NFS 

technologies to access a shared storage. Where, SAN-FS provides block storage to VMs, while 

NFSs is used as secondary storage for applications databases, backups etc. It is worth to 

mention that there is also a trend to integrate all data/storage tiers. 
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3 CASE STUDY: INFRASTRUCTURE FOR ELEARNING ENVIRONMENTS 

3.1 Motivation 

Usually, high education is expensive and therefore eLearning platforms provide a way of 

affordable education with an effective cost of investments. In the last decade, cloud computing 

research and adoption increased greatly due to its many advantages including economic 

benefits, ease of management, power saving and so on. In essence, clouds provides the means 

to organize and deliver a wide variety of software services including eLearning environments. 

Along with cloud computing, file systems solutions were improved to meet requirements 

imposed by the distribution characteristics of clouds. The distribution level of file systems, data 

management, data seek methods, network characteristics and many other features of 

distributed file systems influences the performance of eLearning environments. Therefore, I 

propose a high level architecture of cloud platforms adequate for eLearning software by 

outlining several advantages that overcome issues related to distributed eLearning using Ceph 

as a data storage environment and several domestic network topologies [PIST, 2014/2].  

Why Clouds and eLearning? 

eLearnig environments have several issues and some of them may be better 

handled by clouds systems. One of the main issues is the infrastructure. Usually, eLearning 

infrastructure requires huge investments, thus clouds being by definition an infrastructure 

provider may be used as lay foundation for eLearning applications. Clouds scales dynamically 

(by demand), and offer a collaborative environment as well [56] – an important feature for 

eLearning services. Basically, eLearning environments have huge databases of learning objects 

that can be stored in cloud’s storage systems. Therefore, the way that data is handled in cloud 

influences different aspects of eLearning mechanism including searching and content delivery 

of learning objects. There is a wide variety of storage systems implementations for clouds, 

encompassing many advantages. Other than the storage system, the way that everything is 

linked together influences eLearning content delivering performance. There are many network 

topologies suitable for clouds, including fat-tree, hyper-tree, cube and hyper-cube. Researchers 

are still looking for better ways to link everything together (section 2.7). I took into 

consideration some characteristics that influence I/O performance: scalability, latency and 

capital costs. 

3.2 Clouds storage systems and enhanced networks for eLearning environments 

Clouds aims to meet several characteristics that impose a set of main requirements to 

storage systems, including: sharing, scalability, transparency, high availability, fault tolerance, 
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concurrent and consistent data access and security (section 2.2). The design of storage systems 

may influence the delivery, maintenance and management of learning objects, while network 

architecture influences the system I/O performance.  

3.2.1 Data distribution for eLearning environments 

eLearning environments usually have tremendous database of learning objects, which 

are organized per category and therefore a hierarchical organization won’t help – an alternative 

could be semantic aware storages. There are researchers that support the idea that the 

hierarchical file systems will be replaced by semantic file systems [57], because other than 

categorization issues they also improve searching capabilities [58]. 

I propose a parallel and distributed file system architecture for a cloud storage system 

based on two layers: first layer stores learning objects in flat address space (for example RADOS 

can be used) and the second layer a semantic aware metadata for categorization and searching 

capabilities. 

Another characteristic of eLearning systems is that the learners (users) are 

geographically spread, using different network paths to access the cloud’s storage. To balance 

traffic load, the system must take into account the learners profile distribution and split the 

data cluster into distribution domains, where basically each domain is accessed from a specific 

gateway. The object distribution has to be replicated in each of these domains, thus the data 

access performance may be improved. 

There is an alternative solution based on delegation points, which is a cacheable point of 

learning objects that in the end are distributed to a group of users. There are few drawbacks for 

this method including: security delegation, local storage for cached learning objects, lease 

method and so on. Users may access the learning system from their home using just a web 

page, so even if the internet provider would have such method in place there won’t be any 

visible gain, the user could still see a big latency. The consequence of this proposal would be 

that the data has to be replicated on many storage devices – can be considered a good idea 

since the price per GB storage is usually low. 

One more improvement could be to use the network links at optimal capacity and 

balance the load on the gateways if the network equipment supports Quantized Congestion 

Notification. There is a genuine method that balances the traffic load between network 

gateways, which uses a red-black tree to sort the available gateways based on congestion 

distance [59] or QCN-WFQR (section 6). 
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3.2.2 Clouds network 

A cloud can span across a single or multiple data centers (public or private). A data 

center does not necessarily work as a cloud, thus specialized data centers have been 

developed. The design of a cloud’s network infrastructure capitalizes on the previous 

experience acquired with data centers (DCs) and adapts these designs for the new 

requirements. A data center connects servers to each other and to outside worlds the same 

way a campus network provides users with the same type of access. The current DC’s networks 

follows three layers architecture: core (provides the gateway to the outside world and high 

speed backplane connections between routers), aggregation (integrates many networking 

services such as: firewall, load balancing, tunnelling, intrusion detection/protection, security 

and usually this is the layer where l3 is connected to l2 networks) and access (usually L2 domain 

providing the necessary networking to the nodes such as compute, storage and so on). The 

main drawback is that this architecture limits the allowed topologies to those that support a 

multi-layered organization or to hybrid topologies. 

I propose a solution mostly based on fat-tree topologies with redundancy. Basically, it 

provides a 1:1 subscription but is limited in height due to the necessity of providing an uplink 

capacity equal to the sum of all the downlinks. Due to this disadvantage, it is not used in a pure 

form; usually along the way oversubscription increases. Also, this topology is better suited 

when most of the traffic is north-south but it is not recommended for use in configurations 

where east-west traffic is predominant due to the fact that distant nodes cannot communicate 

directly. In an eLearning environment most of the data transfer is south-north, therefore this 

solution is a good choice.  

In order to accommodate an eLearning environment, a network composed of 

interconnected, physical or virtual nodes needs to provide a rapid elasticity. The most 

important nodes considered for this proposal considering their elasticity characteristics are: 

 Compute: provides processing and memory resources for the eLearning environment. 

Elasticity is done through the use of virtualization both for networking (by the use of virtual 

switches) and compute (by the use of virtual machines); 

 Storage: provides access to data. Storage for compute needs is local or NAS and storage 

systems is distributed for the eLearning objects. Distributed storage systems offers intrinsic 

elasticity; 

 Switch: provides L2 packet switching and needs to have support for virtualizing network 

resources using VLAN, QinQ, VXLAN, IBM DOVE or similar technologies. The management 

plane needs access through a secure channel to the switches to make dynamic changes; 
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 Router: provides L3 routing capabilities and high throughput links. Elasticity is not usually 

provided in current Cloud implementations, but is recommended due to the limitations 

imposed on the migration of the agents; 

 Intrusion Detection/Intrusion prevention and Firewall: Uses packet inspection to 

detect/prevent intrusions. These nodes are parts of the cloud network and provides 

intrinsic protection for the environment. 

3.3 Clouds and eLearning environment: proposed architecture 

In the following section I propose a cloud architecture emphasizing different aspects 

related to storage system and network topology that may influence eLearning environments, 

from architectural and I/O performance point of view. 

The architecture is composed of three main infrastructure components: storage system, 

servers and network and two main software components: administration system and multi-

 
Figure 20: eLearning/ cloud – architecture proposal 
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agent eLearning system (Figure 20). Administration system manages server’s resources 

(creates, migrate and destroys virtual machines and virtual switches), while eLearning multi-

agent system creates, migrates and destroys agents, based on profile statistics. 

3.3.1 System administration and eLearning components 

The eLearning software agents are running on virtualized machines in the cloud 

environment. The entire system is managed by three main logic components: resource agent 

(administrates virtual resources based on profile statistics), management agent (administrates 

eLearning agents: creates, destroys and migrates agents) and profiler agent (gathers 

information about resource utilization and provides statistics). 

In the absence of an eLearning system reference design, there were identified two main 

components: learning management system (delivering lectures to learners) and learning 

content management system (development and reusability of lectures). Each system is a 

collection of software agents that can be created, migrated or destroyed based on their status 

and load. 

3.3.2 The storage system 

In terms of storage, I propose an alternative to OGSA-GFS [60]: a two layered storage 

system based on Ceph components (a flat address space and a semantic aware metadata), 

Figure 20. Basically, Ceph is composed of two main layers: metadata cluster and RADOS. 

Metadata cluster manages files organization in a hierarchical form, while RADOS is a flat 

address space that distributes, replicates and load balances objects.  

I propose a metadata cluster that implements a semantic aware namespace, instead of 

hierarchical namespace. There are several methods to implement such file organization: 

property-based, content-based or context-based [61] and several architecture directions: 

integrated, augmented and independent (native). I propose a native implementation with 

content-based semantics, because a hierarchical file organization brings no advantage and the 

content-based architecture categorizes files and improves searching. 

Using Ceph/CRUSH, I propose a data distribution based on domains and therefore I 

define a placement policy and cluster map to replicate each object three times in each domain 

for high availability and fault tolerance.   

3.3.3 The network profile 

The high throughput traffic is mostly read-only and south-north from system to learners, 

therefore it will be small amount of replicated or rebalanced data (low east-west throughput 
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demands). Nevertheless, the monitors from RADOS which manages OSDs cluster by keeping 

storage data synchronized and collect the state of each OSD should have low latency.  

A hierarchical topology facilitates south-north traffic along with a new link from 

monitors group to each OSDs group (Figure 20) to decrease the latency between monitors and 

OSDs. Also, is worth to mention that if the system grows, aggregation layers may be added, so 

in a hierarchical topology the east-west latency is growing. 

3.3.4 Real world considerations 

Storage Systems are built on elastic platforms (e.g. Data Direct Network) including 

storage devices and network equipment. Each platform has a set of elements with a set of 

features (files, blocks or objects storage devices, Infiniband connections and so on) pricing the 

platform. 

Performance analysis of storage systems depends on a wide variety of factors, therefore 

I split them into several groups as follows:  

 Physical storage profile: disks RPM, data transfer speed, disk cache size and speed, cache 

type, block size, connection type (e.g. SATA), RAID configuration etc. 

 Network profile: transfer protocol performance (Fiber Channel, Inifinband or Ethernet), TCP 

window size, retransmission packets etc. 

 Storage system profile: replication degree, replication method (e.g. RAID, software 

replication) etc. 

 Client system profile: number of CPU cores, cores speed, page size, system load etc. 

There are quite a number of storage systems alternatives, such as: Lustre, Gluster, Ceph 

and GPFS, GFS/Hadoop and so on. I proposed a solution based on Ceph, mainly on RADOS that I 

intend to use it in a semantic aware system. 

Ceph performance has been analysed [11] using IOR (Interleaved Or Random used for 

testing performance of parallel file system using scripts that emulates behaviour of parallel 

applications). For OSDs, three layouts (BTRFS, EXT4 and XFS) were tested, where BTRFS had the 

most balanced results for I/O access. If the number of OSD replicas increases, the throughput 

performance has a hyperbolic profile, as expected, and also if small chunks of data are used the 

results were poor, as expected as well. Roughly, RADOS performance was about 70% of native 

hardware [11]. 
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4 OPTIMIZATIONS OF DISTRIBUTED STORAGE SYSTEMS BASED ON 

HARDWARE ACCELERATORS 

4.1 Motivation 

Due to the advent of high speed Ethernet (40Gbps, 100Gbps or even 800Gbps), the 

hardware systems along with software architectures must adapt to newly increased traffic. The 

capacity of servers to handle such high traffic volume was exceeded. Thus, increasing port 

speed and CPU computation power along with leveraging different cache levels were the first 

technologies used to improve throughput and latency at server side. But, in the recent years 

the servers failed to meet even higher traffic demands due to many factors, such as networks 

convergence or high volume of real time traffic (e.g. voice or video) [31]. One improvement 

would be to increase the degree of parallelism (i.e. increase the number of nodes in clusters 

and split tasks at finer granularity), but this will lead to an increased complexity, power 

consumption and maintenance costs. Other improvement would be to increase performance of 

each node by offloading the CPU cores and moving specific tasks to dedicated hardware 

engines. Hardware engines have double impact: first, being dedicated modules perform their 

role faster than software which runs on general purpose cores and second, reduce significantly 

CPU utilization, thus increase the system performance and free CPU processing time. 

Intel investigations revealed several I/O bottlenecks at receiver side divided into three 

overhead categories: system overhead, TCP/IP processing and memory access [31]. To meet 

these overheads, Intel developed Accelerated High-Speed Networking technology (I/OAT) – a 

set of features to reduce the receiver side packet processing overhead (e.g. split headers, DMA 

copy engine and multi-queue usage to receive frames). Intel’s solution showed improvements 

for about 38% in CPU utilization, the number of transactions processed increased by 14% and 

throughput by 12%, [32]. 

I followed a similar idea to increase the performance of each node from a cluster by 

offloading the general purpose cores of packet processing at receiver side [PIST, 2013]. 

Offloading comes with flows classifications and multi-queues distributions and by using 

Accelerated Receive Flow Steering [33] is leveraged the parallelism of multicore systems. In 

other words, the hardware engines are instructed to classify and distribute flows considering 

the SMP characteristic of multicore systems and increase performance of parallel I/O 

applications running on the same machine. Also, by adding queues weights adjustments I 

proposed a method of reducing the latency of sensitive flows, thus making the system much 

responsive. 
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4.2 Integrated packet processing engines 

In general, any System on Chip (SoC) integrates a set of dedicated hardware modules 

along with general purpose cores into a single chip. In this thesis, I refer to a packet processing 

SoC as a chip that integrates multiple hardware engines dedicated to network specific tasks, 

usually handled by general purpose cores. And I refer to term offload (or hardware offload) to 

the migration of particular tasks from general purpose cores to dedicated engines freeing 

processing time. 

Figure 21 presents a high-level block diagram of a generic packet processing SoC, 

emphasizing several important hardware engines used further: 

1. Parser: dedicated engine for parsing frames, identifying protocols, checking packet 

integrity and identifying malformed frames; 

2. Classifier: dedicated engine for classifying and distributing frames to specified flows; 

3. Packet Manipulation: dedicated engine for frames manipulation (e.g. mangling frames 

headers to meet different protocols requirements); 

4. Scheduler: dedicated engine that implements scheduling algorithms to meet different 

frames handling policies; 

5. Memory Cells Manager: dedicated engine that handles memory allocations required by 

hardware modules; 

6. Cryptographer: dedicated engine that implements different cryptographic algorithms (e.g. 

AES, CRC and so on); 

7. TCP: dedicated engine for offloading TCP tasks (e.g. segmentation). 

 
Figure 21: Block diagram of a generic packet processing SoC 
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A packet processing SoC may have many programmable flows, therefore each 

transmitted or received frame is distributed to a specific flow, where each flow can be seen as a 

path through a graph with hardware engines as nodes and queues as edges. Also, the hardware 

engines are complicated modules architected to handle almost line rate traffic of small frames 

(e.g. 64b/frame), thus most of them have multiple processing units to handle tasks in parallel. 

4.3 Hardware packet processing 

Investigations of packet processing flows revealed that the highest consumption of 

resources is on receiver side rather than transmitter (where software implementations seem to 

be enough [32]). 

Based on SoC block diagram presented earlier (Figure 21), I consider the following main 

stages2 for each received frame (Figure 22): 

1. Stage 1: frame headers and/or preset sections from payload are passed to packet 

processing engines; 

2. Stage 2: the frame headers and/or preset sections from payload are parsed and matched 

against preconfigured protocols establishing packet integrity and identifying malformed 

frames; 

3. Stage 3: the frame is classified and dispatched to preprogrammed flows based on parse 

results (i.e. push frame to a specific queue or group of queues); 

                                                      

2Designing a generic packet processor that could handle any number of flows with any number 
of engines per flow in any order without performance penalty is practical impossible, thus 
usually boundaries are imposed by the hardware to preserve performance and meet specific 
design requirements. 

 
Figure 22: Typical stages for receiving packets 
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4. Stage 4: based on preprogrammed scheduling algorithms (e.g. weighted queues, Decreasing 

Time Algorithm, Round Robin, Shorted Job First or others) the frame is scheduled for next 

consumer (graph node: hardware engine or communication port); 

5. Stage 5: the frame is pushed to next node in the processing graph. 

4.4 Hardware accelerated cluster nodes 

Most clusters use Linux as operating system, which by default does the packet 

processing in software (usually by TCP/IP stack). By using dedicated hardware, packet 

processing tasks are moved to hardware engines and the OS environment must be adapted to 

this change. Basically, the methods of offload implementations influences the system 

performance, such as throughput and latency.  

OS is the usual solution for coexistence of different applications on the same hardware 

system. If the applications are operating systems, then virtualization (i.e. hypervisors such as 

KVM or XEN) is the solution or if groups of applications (such as independent network stacks) 

needs a specific isolation degree, then Linux containers (LXC) is the solution. 

Given the above motivations, I propose two less restrictive models as alternatives for 

coexistence of applications with high and low traffic demands, using hardware acceleration and 

 

(a). Kernel space implementation (b). User space implementation 

Figure 23: Hardware accelerated models 
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parallel processing of flows: Per Core Cluster Node and SMP Cluster Node and two 

implementation directions: in kernel and user space (Figure 23). 

Per Core Cluster Node model is characterized by the fact that each application instance 

is bound to a core, thus the scalability is limited to the number of CPU cores. The modularity is 

achieved by division of tasks at a smaller granularity by using dedicated threads (i.e. consumers) 

without being scheduled on a different core. Each consumer is bound to a specific hardware 

queue or group of queues that provides only specific frames to the consumer thread. The 

hardware engines must be instructed to classify and distribute flows to match the consumers. 

SMP Cluster Node model is similar with former model with the difference that the 

workload is distributed over a set of cores using capabilities of hardware engines for flows 

classifications. One solution would be to let hardware engines to distribute workload by 

pushing frames on cores in “round-robin” fashion (using hash based functions), or to leave the 

OS scheduler to flatten the workload by scheduling consumers among the core set and instruct 

hardware engines to consider where the specific consumers are scheduled and push frames 

accordingly.  

By configuring the hardware engines in concordance with software architecture and 

scheduler affinity, multiple instances of these models belonging to different applications in a 

converged system may coexist with an increased performance. It is obvious that SMP Cluster 

Node is befitting for high traffic volume applications with multiple consumers and also is a 

generic form that can be configured to behave as a Per Core Cluster Node as well if the core 

affinity is set to only one core.  

To leverage the parallelism of multicore systems, I propose the usage of Accelerated 

Receive Flow Steering (ARFS) [33]: the frames distributions have to consider where the specific 

consumers were scheduled to run. This requirement imposes two things: first, each possible 

core where a consumer could be scheduled must have a specific queue or group of queues 

where the hardware engine is instructed to push the frames and second, the hardware engines 

must be able to steer and push the frames accordingly. In another words, the hardware engines 

collaborate with OS scheduler for workload balance while achieving a better performance 

degree. 

Also, I propose two different implementations of these models: one uses the drivers in 

kernel-space (more efficient) and the other one uses drivers in user-space (small performance 

penalty, while assuring rapid development and flexible license policy). Figure 23 – (a) present 

the high level architecture of kernel-space implementations for both models, while Figure 23 – 

(b) depicts the user-space implementations. 
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An issue for the user-space model is the access method to a TCP/IP stack. By default 

Linux has the network stack implemented in kernel, thus in case of user-space implementation 

the applications have to deal with raw frames and lack of connection-oriented protocols. There 

are few solutions for adding TCP/IP support: one would be to use network tunneling/tap 

interfaces (thus each received frame by the user-space driver is inserted into the Linux TCP/IP 

stack through these interfaces and then the frame’s payload is received back via sockets –  the 

endpoint of an inter-process communication flow across a computer network), or  another 

solution would be to use an off-the-shelf user-space TCP/IP stack (but, this method is not 

encouraged by the Open Community, nevertheless in some cases the user-space stack can 

provide better performance than the native stack [34]). 

Another issue for the user-space model is the method of signaling the arrivals of frames. 

Linux kernel doesn’t have a standard framework to signal interrupts to user-space, therefore 

polling3 is one solution that doesn’t violates Linux directives. Basically, the consumer puts itself 

to sleep if the queue is empty, or when it is scheduled to run it checks the queue and handles 

the frames within the time quantum set by the scheduler. 

To decrease the latency of sensitive traffic, I propose a solution based on queue 

weighting. Basically, the queues associated with most sensitive flows have higher weights and 

are scheduled first, thus the sensitive flows are handled first. 

How flows sensitiveness is established depends on applications purposes, thus for 

exemplification I propose a solution for Ceph by classifying the traffic of Monitors and OSDs in 

three different classes, each associated with a different group of queues with specific weights. 

4.5 Case study: Hardware accelerated Ceph with QorIQTM 

As case study, I used QorIQTM P2041 integrated packet processor to decrease latency of 

sensitive flows and increase performance of Ceph’s nodes: OSDs, monitors and metadata 

servers. The next subsections comprise a high-level view of QorIQTM, particularities of 

accelerated Ceph nodes and micro-benchmark results. 

                                                      

3POSIX OS signals are the faster inter-process communication that could be used to alert user-
space processes, instead of polling. 

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Communication_flow
http://en.wikipedia.org/wiki/Computer_network
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4.5.1 QorIQTM packet processors 

QorIQTM combines multi-general purpose cores (of power architecture4) with various 

hardware engines providing a very flexible infrastructure (Data Path Acceleration Architecture 

– DPAA) for processing high volume of traffic at high speeds. Among multiple hardware engines 

within DPAA, I focused on following three components: Queue Manager (QMan [35], pp. 6-

1/299), Buffer Manager (BMan [35], pp. 7-1/531) and Frame Manager (FMan [35], pp. 8-1/594). 

QMan is the means by which data is passing between hardware modules, BMan role is to 

reduce overhead of software for memory management and FMan has three main functions 

(PCD): Parse fames to check packet integrity and identify protocols within frame headers, 

Classify frames by means of generated keys (KeyGen [35], pp. 8-395/1557) based on parsing 

results and Distribute frames to queues following different distribution profiles.  

Apart from standard protocols (i.e. hard-wired parser capabilities), FMan can be 

configured to parse and detect up to three proprietary protocol headers or application defined 

fields by means of Software Parser ([35], pp. 8-391/982) feature. It uses NetPDL (an XML-based 

language for describing packet headers [37]) to define non-standard fields configured by Frame 

Manager Configuration Tool. Nevertheless, the Software Parser has boundaries ([36], pp. 24) 

that reduces significantly its usability: each user defined fields has to be embedded between 

standard protocols (basically, it means that nested user defined fields are not supported), and 

each user defined field must follow a different standard protocol (meaning that multiple user 

defined protocols on top of the same standard protocol are not allowed). FMan processing flow 

of received frames starts with parser (hard-wired and software) which identifies protocols 

found in packet headers, followed by a 56bytes key generated based on parser results and a 

classification plan, and furthermore based on this key a specific queue is selected (i.e. 

distribution). 

Despite of Software Parser’s reduced functionality, the idea of an hardware engine 

capable to recognize user defined fields based on which flows classifications may be conducted 

is genuine and can be used to improve performance of network based systems. 

                                                      

4Power Architecture is a type of microprocessor architecture with RISC instruction sets 
(https://www.power.org/). 
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In DPAA context, the unit of transmitting data is a frame (detailed by a frame 

descriptor), stored in frame queues (i.e. FIFO structure of frames). Frame queues granularity 

and creation depends on software architecture and applications purposes. Furthermore, frame 

queues are stored in work queues (and QMan applies different scheduling policies: strict 

priority based or round robin) grouped in channels of 8 prioritized items (Figure 24). Also, each 

channel identifies one hardware entity (e.g. CPU core, hardware engine or Ethernet port).  

Besides hardware capabilities, Linux has its own traffic control called queueing discipline 

(qdiscs). Filters and traffic policers can be attached on ingress traffic by using Linux traffic 

control, while egress traffic is directed into FIFOs on which different scheduling mechanism can 

be applied (but, in this design I have not used any Linux queuing discipline). 

4.5.2 Accelerated Ceph’s nodes 

Combining hardware engines capabilities with software architecture, the performance 

of each node in a cluster can be increased, therefore for the same performance is required a 

lower number of nodes which leads to smaller capital costs. Also, with the advent of converged 

 

Figure 24: Ingress/Egress flow chart 
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systems, each cluster node (following models presented in Section 4.4) may perform different 

roles in the same time. 

One key for increasing performance of each node is the granularity of traffic division of 

each Ceph service in classes handled by specific consumers – following models presented in 

section 4.4. Basically, high traffic volume needs to be divided among multiple consumers, 

queues and related set of cores. 

 In RADOS context, OSDs nodes have the highest traffic volume (I/O mostly), while 

MONs need low latency traffic, since they handle OSDs failures. I propose A-OSD (as 

Accelerated OSD), A-MDS (as Accelerated MDS) and A-MON (as Accelerated Monitor). For A-

OSD I propose a SMP Cluster Node model to be able to handle high I/O traffic, and same for A-

MDS to be able to handle journals and metadata (stored by RADOS) and queries from clients. A-

MON doesn’t need high processing power, neither ports that supports high traffic volume, so in 

the context of converged systems, monitors may share the node with different other 

applications, therefore I propose a Per Core Cluster Node model. 

Accelerated nodes can be implemented using QorIQTM packet processors with FMan 

PCD capabilities and QMan scheduling features. Instructing FMan to classify and distribute 

frames according to each class particularities (e.g. see section 4.5.3 for A-RADOS classification), 

a performance increase is achieved. I propose for A-OSD and A-MSD a uniform distribution on 

queues, distributed further uniform on cores (in case where ARFS is not used), this way clients 

are distributed fair across the system rather than facilitating traffic of a single client. In case of 

ARFS usage, the queues are uniform distributed on the cores, but when a particular frame is 

pushed to a core’s queue, the hardware engine consider where the consumer was scheduled to 

run. For system traffic (i.e. system consistency messages, journaling and metadata) 

classification I propose to use user defined flows recognition facilitated by Software Parser. A-

MON has only user defined flows and therefore the only solution is the usage of Software 

Parser capabilities. 

4.5.3 Accelerated RADOS based on queue prioritization 

RADOS is composed by two distinct clusters: one of monitors and one of OSDs, where 

monitors are responsible for managing a large number of OSDs. Two important keys of data 

clusters (including RADOS) are data reliability and availability ([22], pp. 119). Usually, to make 

consistent data available to all parties, these must be handled in timely fashion. 

For the above reasons, I propose an accelerated RADOS (A-RADOS) implementation 

based on packet processing engines. By classification and prioritization of RADOS messages I 
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aim to decrease latency of sensitive operations (listed in Table 4) and improve overall cluster 

responsiveness, thus improve data availability. 

In monitor context, I consider that the most important message types are the ones that 

assure a consistent view of the system and are sensitives for cluster stability, followed by map 

distribution to monitors, responsible in its turn to distribute it further in the entire cluster. 

Therefore, I propose the following monitor traffic classes: 

 Traffic Class I: Elections and leases messages; 

 Traffic Class II: cluster-map updates distribution to Monitors; 

 Traffic Class III: cluster-map distribution to all other system parties. 

In OSDs cluster context, I consider that the messages required for system consistency 

are the most essential, followed by I/O traffic (i.e. read/writes and replication strategies) and 

storage recovery is the least sensitive operation, so I propose the following classification: 

 Traffic Class I: heartbeats and cluster-map update propagation; 

 Traffic Class II: data I/O traffic (e.g. reads/writes) and data replication; 

 Traffic Class III: OSDs recovery. 

Prioritization of traffic classes is achieved by configuring weights to flow queues, where 

each flow queue (or a group of flow queues – depending on hardware architecture) deals with a 

specific class. Thus, considering the above classifications, the first traffic classes have the 

highest weight and their flow queues will be scheduled first, while the last traffic classes have 

the lowest weight and their queues will be scheduled last, and therefore the latency of sensitive 

traffic is decreased while achieving a better system responsiveness. 

Using a QorIQ packet processor, the prioritization of three different traffic classes is 

achieved by splitting work queues in three groups and configuring weights to reflect the traffic 

prioritizations listed above. 

4.5.4 Micro-benchmark results 

I consider that the number of clients served per seconds by a MDS (Ceph’s application 

chosen as an example) reflects its performance. For testing purposes, I measured how much 

time a particular MDS request takes (in core ticks) and simulate using Per Cluster Node model, 4 

different MDS nodes that handles requests in parallel. Using this setup, I did three different 

tests along with kernel adjustments: without hardware acceleration (i.e. without frame 

classification and distribution) and using Receive Flow Steering (software implementation only) 

with and without core affinity.  
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As hardware platform I used a QorIQ P2041 machine with 4 general purpose cores and 

hardware acceleration for flow steering, flow distribution and queue management (DPAA). The 

platform supports network connections of 1Gbps and 10Gbps, but for compatibility purposes 

with lab systems I’ve used only 1Gbps connections. The topology was very simple, composed by 

one PC with 1Gbps Ethernet card as client machine and P2041 as A-MDS. 

For each test, I counted the number of handled requests per second (i.e. transactions). 

From the tests results listed in Table 8, the improvement in terms of transactions, by the test 

with RFS support and no affinity, was about 3.5% and comparable CPU utilization and with 

affinity was about 12%. 

For A-RADOS I did two kinds of tests: by running concurrent requests of all three class 

types and by running only class III. Former tests type emphasizes that the most priority class is 

handled before the other classes if hardware queues prioritization support is used, while the 

latter shows that if only class III traffic is running the number of handled requests are 

comparable (Table 9 and Table 10). 

Model 

Requests per second 

CPU 
util. 

node 
1 

node 
2 

node 
3 

node 
4 

Avg. 

no acc. 6867 6877 6860 6882 6871 25% 

RFS 7109 7117 7117 7119 7115 25% 

RFS affinity 7672 7692 7717 7725 7701 27% 

Table 8. Accelerated MDS micro-benchmark 

Model 

Requests per second 

Class I  Class II Class III Total 

no prioritization 2851 2902 2959 8712 

queue prioritization 6556  1118  348  8022 

Table 9. Accelerated RADOS micro-benchmark I 

Model 

Requests per second 

Class I  Class II Class III Total 

no prioritization 0 0 6957 6957 

queue prioritization 0 0 6858 6858 

Table 10.  Accelerated RADOS micro-benchmark II 

 



Distributed Storage Solutions And Optimizations 

61 

5 NETWORKING CHARACTERISTICS IN CONVERGED INFRASTRUCUTRE  

The main reasons of Converged Networks (also known as Unified Networks 

Infrastructure) are economic in nature, but also technological [38] [39] [40]: simplicity, cost 

saving, elasticity, requirements imposed by virtualization, better usage of servers resources, 

simplified management and so on. 

A defining characteristic of I/O protocols for storage devices (such as SCSI) is that they 

do not handle lost data in timely fashion and therefore a lossless communication environment 

is befit. Usually SANs use Fibre Channel (used by approximately 80% of data center storage 

market [40]) which by design is a low latency and lossless environmental high speed (section 

5.1). While Ethernet by design is a best effort communication environment and along with IP 

protocol it provides an end-to-end network for reliable transport protocols, such as TCP.  

A converged support for LANs and SANs imposes a set of Ethernet enhancements (i.e. 

Data Center Bridging group of protocols) to enable a lossless medium. Also, Ethernet became a 

viable solution due to its advantages against FC networks, such as supported high speeds (up to 

10Gbps, 100Gbps, 400Gbps or even new Intel’s 800Gbps, while FC supports up to 2, 4, 8, 16 or 

32Gbps just arriving) or lower capital-costs. 

Nevertheless, there are several options that can be used with vanilla Ethernet too (e.g. 

iSCSI, iFCP or FCIP), but requires reliable protocols underneath to solve contention and 

congestion issues (e.g. TCP). Basically, these approaches are at a lower costs, but bring a 

significant performance penalty due to extra encapsulation. Usually, these are used for small 

and medium business along with low cost Ethernet environments [41]. 

Fibre Channel over Ethernet (FCoE) protocol enables the transmission of FC frames over 

Ethernet and it relies exclusively on DCB [42] extensions, which today comprise the following 

protocols: 

 Priority Flow Control (PFC); 

 Enhanced Transmission Selection (ETS); 

 Data Center Bridging Exchange (DCBx); 

 Quantized Congestion Notification (QCN). 

However, these extensions can be used for any loss-sensitive application that does not 

have contention or congestion control mechanism and requires only L2 protocols. There are 

even more ingenious ideas, such us improving TCP incast communication problem (i.e. multiple 

servers simultaneously transmit TCP data to a single aggregator: TCP performance is degraded 

as consequence of retransmission timeouts as result of packet loss due to overwhelmed queues 

at network bridges level) [43]. 
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In the next subsections I provide a brief description of these extensions with more focus 

on Congestion Notification (QCN) and few improvements proposed. 

5.1 Fibre Channel 

Fibre Channel is a set of protocols developed by American National Standards Institute 

(ANSI) [55]. Basically, it aims to support fast transfer of high volume of data over an 

interconnection topology called Fibre Channel Switched Fabric (which includes characteristics 

such as: many-to-many connectivity, device lookup, security, redundancy or zooning). In Fibre 

Channel context, at the basis of links lays two different ideas of transporting data to and from 

peripherals: channels and networks. Basically, channels are high speed with low overhead 

transport medium, while networks are slower with high overhead, but very flexible.  

In terms of architecture, Fibre Channel it is split into 5 layers, as follows: 

 FC – 4 Protocol-mapping layer: SCSI, IP or FICON, etc. 

 FC – 3 Common services layer: encryption, RAID redundancy algorithms, etc.; 

 FC – 2 Network layer: main framing protocols; 

 FC – 1 Data link layer: byte encode/decode; 

 FC – 0 Physical link: phys, lnks, etc.; 

To enable different types of traffic, Fibre channel support three main service classes, 

each with different characteristics, as follows: 

 Class 1: Dedicated bandwidth, order delivery, acknowledged end-to-end 

 Class 2: Shared bandwidth, acknowledged end-to-end 

 Class 3:  Shared bandwidth, lossless transmission through a buffer credit 

Usually, class 3 is used in SAN based storage systems, because it offers a lossless 

transfer medium and this way it eliminates the time penalty of SCSI recovery. Basically, 

recovery sequences introduce large delays in case of commands loss due to congestion points. 

Lossless is provided by a buffer credit mechanism, where the receiver indicated the 

number of frames that can be transmitted without been forced to drop any of them – buffer to 

buffer flow control. Based on a similar idea, an enhancement for Ethernet was developed: 

Quantized Congestion Notification, detailed later in section 5.2.4. 

QCN together with several other protocols were designed to enable a lossless Ethernet 

(a viable alternative to Fibre Channel), section 5.2. 
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5.2 Data Center Bridging 

5.2.1 Priority Flow Control 

Ethernet flow control (IEEE 802.3x PAUSE frame [44]) was first introduced in 1997, in 

which the receiver sends PAUSE frames to inform the sender not to send anymore packets 

during pause time. But, this implies that multiple flows with different QoS requirements cannot 

coexist on the same network segment. To enable this scenario, distinct pause frames should 

control distinct communication channels independently within the same network segment (IEEE 

802.1Qbb/PFC [45]), therefore were created 8 distinct traffic classes that defines a quality of 

service prioritization scheme with 8 different priorities managed by separate queues (IEEE 

802.1p/802.1Q). 

5.2.2 Enhanced Transmission Selection 

PFC guarantees a lossless environment, but each traffic flow has different bandwidth 

requirement based on Service Level Agreement (SLA) or architectural restrictions (e.g. 

Operating System implementation), therefore 802.1Qaz ETS [46] enables flows classification 

per traffic classes (e.g. LAN traffic, I/O SAN traffic, Network management traffic such as LLDP, 

cluster management traffic such as heartbeats, multicast and so on). The main idea is that each 

flow mapped to a class shares the same assigned bandwidth and the same class characteristics 

(e.g. loss). 

ETS and PFC are built to coexist and the 8 priorities (defined by PFC) can be mapped to 

different traffic classes, where each class has assigned a bandwidth percentage at 1% 

granularity. 

5.2.3 Data Center Bridging eXchange 

In order to achieve interoperability between multiple network domains with different 

capabilities, peers exchange information about supported features and configurations (PFC, ETS 

and application priority configuration TLVs), then selects and agrees to a specific configuration 

[47]. Basically, it uses Link Layer Discovery Protocol [50] to exchange attributes embedded in 

Organizationally Specific TLVs (OUI), between partners. 

5.2.4 Quantized Congestion Notification 

Quantized Congestion Notification [48] ([49], pp. 1071) enables peer-to-peer congestion 

management by dynamically adjusting throughput due to changing bottlenecks in absence 

management of an upper layer protocol, such as TCP window sizing (i.e. dynamically determine 

how many frames to send at once without acknowledgements). 

http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Quality_of_service
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It is composed by three main components: congestion, reaction and reflection points. 

Congestion Points (CPs) samples incoming frames and notifies sources (i.e. Reaction Points) of 

the sampled frames by sending Congestion Notify Messages (CNMs) to adjust their rates when 

the queue utilization is increasing too fast or is not decreasing fast enough against a preset 

equilibrium value (Figure 26).  

Congestion Points computes feedback messages by combining the first derivative of 

queue utilization (i.e. rate excess) with the instantaneous queue utilization against a considered 

equilibrium (i.e. queue size excess): 

 

At each sampling event, the sampling probability is updated as a linear function of |𝐹𝑏|, 

with minimum probability of 1% and maximum of 10% (e.g. 100 frames/sampling reflects 1% 

probability), Figure 25. 

 

𝑭𝒃 = −(𝑸𝒐𝒇𝒇𝒔𝒆𝒕 +𝝎 ∙ 𝑸𝜹) , where 

𝑄𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑄 − 𝑄𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,  

𝑄𝛿 = 𝑄 − 𝑄𝑜𝑙𝑑  and ω is rate weight (taken to be 2 for baseline simulations). 

(1)  

 

 
Figure 25: QCN sampling probability 



 

 

 
Figure 26: Quantized Congestion Notification (QCN) – high level view 

 
Figure 27: Reaction point’s rate limiter 
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Reaction point’s rate limiters (RLs) adjust current rates (CRs) to reach at targeted rates 

(TRs) using a byte counter in phases (Figure 27), as follows: 

 First, feedback is received, RL sets TR as CR and CR is decreased with not more than half, as 

shown below: 

 

 Then, it enters in rate increase composed by three phases: Fast Recovery (FR), Active 

Increase (AI) and Hyper-Active Increase (HAI). In FR phase the reaction point tries to recover 

the lost bandwidth, while in the next phases it checks for extra bandwidth: 

 

The rate increases phases have 5 cycles each. At the end of each group of 5 cycles, if no 

Fb has been received, RL enters in next phase (where in HAI phase, the RL throughput can reach 

at line rate). In cases when CRs are very small and the BCs measured in time are very large, the 

phases are controlled by timers. The timer is similar with the BC and counts 5 cycles of Tms (e.g. 

of 10ms for a 10Gbps line rate) in FR and 
𝑇

2
ms in AI.  

Regarding both byte counter and timer, RL is in FR phase if both BC and Timer are, and 

CR is updated when at least one completes a cycle. The RL is in AI phase if at least one 

completes a group of 5 cycles and eventually the RL is in HAI if both BC and timer are (Figure 

27). 

𝑻𝑹 = 𝑪𝑹  

𝑪𝑹 = 𝑪𝑹 ∙ (𝟏 − 𝑮𝒅 ∙ |𝑭𝒃|), where 

𝐺𝑑 is chosen so that 𝐺𝑑 ∙ |𝐹𝑏𝑚𝑎𝑥| =
1

2
 and Fb has 6bit quantization, therefore 

 𝐹𝑏−𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 =
𝐹𝑏

𝐹𝑏𝑚𝑎𝑥
∙ 64, so 𝐺𝑑 = 0.0078125 

(2)  

 

𝑻𝑹 = 𝑻𝑹 + 𝑹 

𝑪𝑹 =
𝟏

𝟐
(𝑪𝑹 + 𝑻𝑹), where  

R is 0 in fast recovery, 5Mbps for active increase and i50Mbps for and hyper active 

increase (where i is the ith smaller cycle counted by BC and timer in AI) for 10Gbps 

line rate.   

(3)  
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From network architecture standpoint, all congestion aware points are grouped in 

Congestion Notification Domains (CNDs) and flows that are congestion controlled are named 

Congestion Controlled Flows (CCFs), Figure 26. 

5.3 QCN weaknesses and improvements 

Due to existence of different types of devices within a network, the coexistence of 

congestion aware and unaware segments is a challenge. According to standard, this situation is 

solved using priority regeneration tables, therefore when frames are received from congestion 

unaware segments with a priority that is congestion controlled, it is remapped to different 

priority left unused, so this implies that at least one priority to be kept for this scenario (i.e. 

alternate non-CNPV priority ([49], pp. 1071). 

The weakness is revealed when automatic configuration is enabled and alternate 

priorities are automatically chosen, and according to standard, priority chosen is the lowest 

unused in CNDs (Figure 28). This may affect QoS policies used for other traffic types and lead to 

unwanted traffic injections for that QoS domain from edge ports. 

One solution would be to check each bridge within topology and verify all QoS 

requirements and priorities. Impractical, because a topology may have a high number of 

network devices and it won’t be automatic anymore. The proposed solution contains a hybrid 

defense mode choice that allows both manual and automatic settings to use the same alternate 

priority value (Figure 28), therefore the administrator is able to choose the alternate priority 

used by automatic configuration and avoid QoS disruptions [Patent #8891376]. 

 



 

 

 

 
Figure 28: Quantized Congestion Notification – Congestion Notification Domain defense 
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Another weakness of QCN is the rate unfairness of multiple flows sharing the same 

bottleneck link. This comes from the fact that when a congestion point computes the feedbacks 

it doesn’t take into consideration the rate of the reaction points. This issue has been solved by 

two proposed algorithms: Approximate Fairness with QCN (AF-QCN [51]) and Fair Quantized 

Congestion Notification (FQCN [52]). 

5.3.1 The Fair QCN Solution 

The main idea of FQCN is that every flow has a share rate with respect to the congested 

queue and the feedback computed per flow which is proportional with the exceeded rate. 

Related to each congestion point (i.e. egress queue), at each sampling event t the 

feedback is computed as in shown is Eq. (1). At this moment t the total bytes received for each 

flow 𝑓𝑖  is denoted as 𝐵𝑖(𝑡). Also, each flow 𝑓𝑖  has a preconfigured weight 𝑤𝑖 , where if all flows 

are fair with respect to each other, the weight is 1.  

Furthermore, the fair share for each flow 𝑓𝑖  is computed proportional with weights and 

received bytes, as shown below: 

 

Then the culprits are identified by comparing the shares 𝑀𝑖(𝑡) with the actual rates 

𝐵𝑖(𝑡) and if the share is exceeded then the flow is added to the culprits list, denoted 𝑆𝐻.  

Further, the share is fine grained by considering only culprits share, as shown below:   

 

So, the fine grained shares 𝑀𝑖
𝐻(𝑡) are compared with the actual rates 𝐵𝑖(𝑡) and if the 

share is exceeded then the flow is added to the fine grained culprits list, denoted as 𝑆𝑅. 

𝑀𝑖(𝑡) =
𝑤𝑖
∑𝑤𝑖

∙∑𝐵𝑖(𝑡) (4)   

 

𝑀𝑖
𝐻(𝑡) =

𝑤𝑖
∑ 𝑤𝑖𝑆𝐻

∙∑ 𝐵𝑖(𝑡)
𝑆𝐻

 (5)   
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The actual feedback sent to each culprit is computed with respect to their shares, as 

shown below: 

 

Summarizing, the FQCN algorithm aims to things: first it identifies the overrated flows 

and second the feedbacks are individual to each source using per flow monitoring. 

In my opinion, there are few implementation drawbacks: the byte counter per flow 

must be supported by hardware, because the software implementations based on interrupts or 

polling may have problems at high rates and the flow tables can be very large, in which case the 

management is hampered. 

 

𝛹𝐹𝑏(𝑖, 𝑡) =

𝐵𝑖(𝑡)
𝑤𝑖

∑
𝐵𝑖(𝑡)
𝑤𝑖𝑆𝑅

∙ 𝛹𝐹𝑏(𝑡) 

where 𝛹𝐹𝑏(𝑡) is the feedback quantized at 64 bit. 

(6)   

 



 

 

 
Figure 29: Quantized Congestion Notification – Congestion profiling 
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6 DYNAMIC LOAD BALANCING ALGORITHM BASED ON QCN NETWORKS 

6.1 Motivation 

It is almost impossible to predict the load profile of a network at a given time or to build 

an optimal topology or a configuration to ensure a uniform distribution of congestion domains, 

therefore decision-making based on profiling may lead to better performances.  

I propose Quantized Congestion Notification – Weighted Flow Queue Ranking (QCN-

WFQR), an algorithm based on Quantized Congestion Notification protocol [PIST, 2015]. The 

main idea of the algorithm is to compute a series of congestion indicatives used by different 

entities (e.g. clients, Network Profilers or SDN controllers) to balance the traffic and use better 

the network bandwidth. The algorithm is generic, so that it can be used in old and well known 

computer networks and in the novel software defined networks paradigm. 

6.2 Alternative solutions 

In congestion aware networks (i.e. QCN based), each reaction point receives feedback 

messages from multiple congestion points and adjust rate accordingly (Figure 29). To achieve a 

better congestion profile in the network, one solution would be that each congestion source 

(i.e. reaction point) to create a data base with congestion indicatives per each congestion point 

from which it receives feedbacks, thus each reaction point in the system is associated with 

indicatives received from each congestion point (CPID: congestion point ID embedded in each 

congestion notification message): t (time of occurrence), p (priority of sampled frame), QnzFb 

(quantized value of feedback), Qoff (queue size excess) and Qδ (rate excess) [App. 

#20150023172], Figure 29. Furthermore, reaction points may use these databases for 

performance analysis, based on which system administrators can change topology 

configuration and improve the system performance. Or reaction points may use them to adapt 

and influence different aspects of the network devices and obtain a better congestion profile in 

the system. 

I chose to follow a different path, where instead of databases created by each reaction 

point, each congestion point creates profiles for each reaction point it servers. The main idea of 

the algorithm is to compute different congestion indicatives, local (by each congestion point) 

and system wide. Based on these indicatives the congestion profilers or SDN controllers are 

instructed to dynamically move flows between congestion points for a better congestion profile 

at system level. Also, targets can be instructed to choose a device that has the lowest 

contribution to system congestion. 
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6.3 QCN Weighted Flow Queue Ranking 

In general, in distributed systems, the knowledge database that reflects the system and 

network status is huge and constantly changing (e.g. new flows are added or old ones are 

removed). This database can be built based on all incomplete and limited view of the status 

from all nodes within the system. Regarding QCN-WFQR, the focus is only on congestion status 

of the computer network. The main idea is that each node keeps a local information database 

that reflects the congestion status of a portion of the network from its point of view. Further, 

all local information databases are gathered by a central entity and compute a database related 

to the entire system. Depending on purposes of the applications, system wide or local 

congestion information may be used to achieve a better usage of the network and improve the 

system performance. 

The local congestion indicatives are flow shares, queues weights and queue ranks, 

while system congestion indicatives are flow weights and reaction point (or device) weights. It 

is worth to mention that the system congestion indicatives are computed by a profiler (logically 

centralized or distributed) or by SDN controllers (depending on the network type).  

Furthermore, I propose a method of QCN-WFQR usage in distributed and parallel file 

systems, where by using system wide congestion indicatives, a particular data clone is chosen 

to achieve a better balanced traffic load within the network.  

Also, I propose a method of using QCN-WFQR for distributing traffic workload between 

multiple servers hosting the same application and migrating already established flows to 

alternate, less congested paths, thus reducing the need to slow down the traffic at the source. 

 
Figure 30: Port’s queue ranking 
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Reaction Points Flows 
Node/queue flow shares Congestion System Indicatives 

Node1/Queuei … Nodek /Queuej Flow weights RP Weights 

RP1 flow1 𝑆ℎ𝑎𝑟𝑒𝑓𝑙𝑜𝑤1/1  … 𝑆ℎ𝑎𝑟𝑒𝑓𝑙𝑜𝑤1/𝑘  𝑊𝑒𝑖𝑔ℎ𝑡𝑓𝑙𝑜𝑤1 𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝑃1 

RP2 flow2 𝑆ℎ𝑎𝑟𝑒𝑓𝑙𝑜𝑤2/1  … 𝑆ℎ𝑎𝑟𝑒𝑓𝑙𝑜𝑤2/𝑘  𝑊𝑒𝑖𝑔ℎ𝑡𝑓𝑙𝑜𝑤2 𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝑃2 

… 

RPr flown 𝑆ℎ𝑎𝑟𝑒𝑓𝑙𝑜𝑤𝑛/1 … 𝑆ℎ𝑎𝑟𝑒𝑓𝑙𝑜𝑤𝑛/𝑘  𝑊𝑒𝑖𝑔ℎ𝑡𝑓𝑙𝑜𝑤𝑛 𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝑃𝑟 

Table 11: Congestion System Indicatives 

6.3.1 Defining the topology 

A topology is defined as sets of network nodes, ports, queues and reaction points, as 

follows: 

 𝒩 = {𝑁1, 𝑁2…𝑁𝑛} set of network nodes, 

 𝒫 = {𝑃1, 𝑃2…𝑃𝑝} set of ports, 

 𝒬 = {𝑞1, 𝑞2…𝑞𝑙} set of queues, 

 ℛ = {𝑅1, 𝑅2…𝑅𝑟} set of reaction points and 

 ∀𝑁𝑘 has a sub-set 𝒫𝑁𝑘 = {𝑃𝑖|𝑃𝑖 ∈ 𝒫, 𝑃𝑖  𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑁𝑘} of ports 

 ∀𝑃𝑘 has a sub-set 𝑄𝑃𝑘 = {𝑞𝑖|𝑞𝑖 ∈ 𝒬, 𝑞𝑖 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑃𝑘} of queues 

At moment t the network profile is defined as sets of flows and feedbacks, as follows: 

 ℱ = {𝑓1, 𝑓2…𝑓𝑚} set of flows, where each queue 𝑞𝑘 controls a sub-set of flows: 

 ℱ𝑞𝑘 = {𝑓𝑖|𝑓𝑖 ∈ ℱ, 𝑓𝑖 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑏𝑦 𝑞𝑘, 𝑞𝑘 ∈ 𝒬} and each flow 𝑓𝑘 is controlled by a sub-set of 

queues: 

  𝒬𝑓𝑘 = {𝑞𝑖|𝑓𝑘 ∈ ℱ, 𝑓𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑏𝑦 𝑞𝑖, 𝑞𝑖 ∈ 𝒬, } and each reaction point 𝑅𝑘 adjusts rates of a 

sub-set of flows: 

 ℱ𝑅𝑘 = {𝑓𝑖|𝑓𝑖 ∈ ℱ, 𝑓𝑖 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑏𝑦 𝑅𝑖 , 𝑅𝑖 ∈ ℛ}, where 𝑓𝑘  rate is adjusted at moment t based 

on received feedback 𝐹𝑏𝑡
𝑞𝑖(𝑓𝑘) from 

queue 𝑞𝑖 which sampled flow 𝑓𝑘 at moment 

t. 

6.3.2 QCN-WFQR indicatives 

The QCN Weighted Flow Queue Ranking (QCN-WFQR) algorithm provides several 

congestion indicatives (per node – local) and system related, based on which decisions can be 
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taken and achieve a better balanced traffic load in a congestion aware network while having an 

overall increased performance in the system. 

6.3.2.1 Flows 

A computing node (e.g. server) in distributed systems offers services by means of flows. 

A service is identified by a service id which can be encapsulated into congestion notification 

tags ([49], pp.1096). As standard states, because QCN tags are optional, a service can be a 

portion of the frame (e.g. UDP port, IP address and so on). Also, each application must define its 

services and register them.  

In general (to meet SDN requirements), a flow can be identified by the source address, 

destination address and service id, as shown below: 

 

6.3.2.2 Ranking 

A queue rank (7) within a port is defined as the number of flows within that queue 

(assuming that each flow has exactly one reaction point and exactly one destination, no 

multicast). 

To compute the ranks, each bridge (network node) keeps a table (Figure 30) per each of 

its ports with an aging function, with all the flows that are forwarded through each queue 

within the port. The algorithm is generic and therefore each port could have any number of 

queues (depending on hardware implementation), however the IEEE 802.1p standard enables 

only 8 queues. 

A queue 𝑞𝑘 rank at moment t is computed as the number of flows within the queue, as 

follows: 

 

6.3.2.3 Flow shares 

A flow share (10, 16) is defined as a congestion measure from each topology’s node 

point of view for a specific flow related to a port’s queue (i.e. congestion point).  

 

𝑹𝒕
𝒒𝒌 = 𝑪𝑶𝑼𝑵𝑻𝒕〈𝒇𝒊〉, 𝒇𝒊 ∈ 𝓠

𝒇𝒊   (7)  
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6.3.2.3.1 Flow shares based on QCN 

The flow share has to contain information to be able to compare flows that shares the 

same congestion points and also flows with different routes and different congestion points. 

Therefore, the share is a combination of three indicatives: feedback average within a time 

frame, the frequency of feedbacks transmitted to a flow and queue rank within the time frame. 

The feedback is a measure of congestion related to the queue regardless the source rate, so I 

assume that higher rates implies higher probabilities to receive feedbacks for a flow. The rank 

of a queue reflects the number of flows affected in case of congestion (i.e. the main idea is to 

affect the smallest number of flows in case of congestion). 

I eliminated feedback tables per flow and the associated aging routine by approximating 

the feedback average using an exponential moving average function, as shown below: 

 

To reflect the frequency of transmitted feedbacks for a flow, when a feedback is sent to 

a specific reaction point for a specific flow, all the other flows within the queue recalculates 

their feedbacks averages by considering a null feedback sample, therefore flows with smaller 

rates are more likely to have a larger number of null samples than flows with higher rates, as 

shown below: 

 

Also, the initial value has a big influence to the evolution of the EMA. Therefore instead 

of starting from zero, I consider the initial value as the minimum value of the existing flows 

sampled by 𝑞𝑘 (this decision is based on simulations).  

𝐸𝑀𝐴𝑡 = 𝛼𝑡𝑌𝑡 + ( 1 − 𝛼𝑡) ∙ 𝐸𝑀𝐴𝑡−1 

 𝛼𝑡 = 1 − 𝑒
−
∆𝑡

𝑇    
(8)  

 

𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑖) =

{
 
 

 
 𝛼𝑡 ∙ 𝛹𝑡

𝑞𝑘(𝐹𝑏𝑡
𝑞𝑘) + (1 − 𝛼𝑡) ∙ 𝛹𝑡−1

𝑞𝑘 (𝐹𝑏𝑡−1
𝑞𝑘 , 𝑓𝑖), 𝑞𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑓𝑖,

(1 − 𝛼𝑡) ∙ 𝛹𝑡−1
𝑞𝑘 (𝐹𝑏𝑡−1

𝑞𝑘 , 𝑓𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      

𝑴𝑰𝑵

𝑓𝑗 ∈ ℱ𝑞𝑘
𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑗), 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒                                     

 

Where 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘) is quantized feedback at moment t relative to queue k. 

And 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑖) is quantized feedback for 𝑓𝑖  at moment t relative to queue k. 

(9)  
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So, flow share for flow 𝑓𝑖  computed by queue 𝑞𝑘 at moment t is: 

 

6.3.2.3.2  Flow shares based on FQCN (FQCN-WFQR) 

If FQCN algorithm is used, briefly presented in section 5.3.1, the feedback is computed 

by considering the bytes received in a specific time frame T. Most network devices have the 

ability to provide average throughput per queue basis, but it is needed per flow basis, which it 

may be considered a drawback since it is very hard to implement this feature at hardware level. 

Considering the above motivation, there is a possibility to approximate throughput per flow by 

using the same method of exponential moving average, as shown in Eq. (11).  

So, throughput at moment t for flow 𝑓𝑖  related to queue k is: 

 

Furthermore, to compute the bytes received in time frame T for flow 𝑓𝑖  related to queue 

k is easy: 

 

Based on the Eq. (12), the FQCN shares and FQCN fine grained shares are computed as 

follows: 

 

 

𝑺𝒉𝒂𝒓𝒆𝒕
𝒒𝒌(𝒇𝒊) = 𝜳𝒕

𝒒𝒌(𝑭𝒃𝒕
𝒒𝒌 , 𝒇𝒊) × 𝑹𝒕

𝒒𝒌 (10)  

 

𝑅𝑎𝑡𝑒𝑡
𝑞𝑘(𝑓𝑖) = 𝛼𝑡 ∙ 𝐵𝑦𝑡𝑒𝑠(𝑓𝑟𝑎𝑚𝑒 ∈ 𝑓𝑖) + (1 − 𝛼𝑡) ∙ 𝑅𝑎𝑡𝑒𝑡−1

𝑞𝑘 (𝑓𝑖) , 

Where  𝛼𝑡 = 1 − 𝑒
−
∆𝑡

𝑇   
(11)  

 

𝐵𝑡
𝑞𝑘(𝑓𝑖) = 𝑇 ∙ 𝑅𝑎𝑡𝑒𝑡

𝑞𝑘(𝑓𝑖)  (12)  

 

𝑀𝑡
𝑞𝑘(𝑓𝑖) =

𝑤𝑖
𝑞𝑘

∑𝑤𝑖
𝑞𝑘
∙∑𝐵𝑡

𝑞𝑘(𝑓𝑖) (13)  

 

𝑀𝐻𝑡
𝑞𝑘(𝑓𝑖) =

𝑤𝑖
𝑞𝑘

∑ 𝑤𝑖
𝑞𝑘

𝑆𝐻
∙∑𝐵𝑡

𝑞𝑘(𝑓𝑖) (14)  
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And the FQCN feedback for each culprit is computed as shown below: 

 

Each event time, the QCN-WFQR flow share is updated similar with Eq. (10), as shown 

below: 

 

The difference between QCN-WFQR and FQCN-WFQR is that FQCN consider the flow 

rates when computes feedback, therefore the flow share contains enough information to be 

able to compare flows that shares the same congestion points and also flows with different 

routes and different congestion points. 

6.3.2.4 Weighting 

A flow weight (17) is defined as a congestion measure from system point of view for a 

specific flow, while a reaction point weight (18) is defined as a congestion measure from 

system point of view for a specific reaction point.  

Therefore, a flow weight at moment t for flow 𝑓𝑘 is computed as the sum of flow shares 

received from all nodes (i.e. 𝒬𝑓𝑘): 

 

𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑖) =

𝐵𝑡
𝑞𝑘(𝑓𝑖)

𝑤𝑖
𝑞𝑘

∑
𝐵𝑡
𝑞𝑘(𝑓𝑖)

𝑤𝑖
𝑞𝑘𝑆𝑅

∙ 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘) 

Where 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘) is the feedback quantized at 64 bit and 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑖) is 

quantized feedback for flow 𝑓𝑖  

And 𝑆𝑅 is the fine grained culprit list, explained in section 5.3.1. 

(15)  

 

𝑺𝒉𝒂𝒓𝒆𝒕
𝒒𝒌(𝒇𝒊) = 𝜳𝒕

𝒒𝒌(𝑭𝒃𝒕
𝒒𝒌 , 𝒇𝒊) × 𝑹𝒕

𝒒𝒌 (16)  

 

𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒇𝒌) = ∑ 𝑺𝒉𝒂𝒓𝒆𝒕
𝒒𝒊(𝒇𝒌)

𝒒𝒊∈𝓠
𝒇𝒌

 
(17)  
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And a reaction point weight at moment t for 𝑅𝑘 is computed as the sum of all flow 

weights for flows whose rates are adjusted by it (i.e. ℱ𝑅𝑘): 

 

A queue weight (19) at moment t is defined as a local congestion measure related to 

queue 𝑞𝑘 and computed as sum of all feedback averages of flows controlled by the queue 

(i.e. ℱ𝑞𝑘) and its rank (𝑅𝑡
𝑞𝑘), as follows: 

 

This weight enables the comparison of queues based on which a specific flow may be 

routed or migrated achieving a better balanced traffic within the network. 

There is a special situation in weights calculus, when no congestion occurred in the 

considered time frame and feedback averages are substantially large. In this case the 

congestion indicatives do not reflect the actual network congestion profile and decisions may 

lead to multiple congestion points. To avoid these circumstances, the feedback averages are 

reset if the last event occurred outside the time frame. 

The congestion indicatives are heavily influenced by the starting rate of a reaction point. 

If the throughput of a reaction point is reset to line rate, then when it starts will congest a node 

and it may cause a substantially change of the congestion profile for a short period of time. To 

avoid this situation, the reaction point throughput must be set at minimum rate (e.g. 10Mbps 

when line rate is 1Gbps) rather than line rate and the throughput will increase gradually but 

fast without causing a burst in the network congestion profile. 

𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝑹𝒌) = ∑ 𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒇𝒊)

𝒇𝒊∈𝓕
𝑹𝒌

 
(18)  

 

𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒒𝒌) = [ ∑ 𝜳𝒕
𝒒𝒌(𝑭𝒃𝒕

𝒒𝒌 , 𝒇𝒊)

𝒇𝒊∈𝓕
𝒒𝒌

] × 𝑹𝒕
𝒒𝒌 (19)  
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6.3.3 QCN-WFQR algorithm based on standard QCN 

Local congestion indicatives calculus: flow shares, queue ranks and queue weights 
procedure Q-DO-ENQUEUE(q, p) ᵒ add received packet p to sampled queue q 

Fb ← QCN-FEEDBACK(q, p) ᵒ compute feedback Fb for received packet p 

if Fb < 0 then ᵒ if computed Fb is negative then do QCN-WFQR algorithm 
call QCN-WFQR-UPDATE-FLOW-TABLE(q, p) ᵒ update flow table is packet p belongs to new flow 
call QCN-WFQR-UPDATE-QUEUE-RANK(q) ᵒ update queue rank (size of flow table) 
call QCN-WFQR-UPDATE-INDICATIVES(q, p, Fb) ᵒ update QCN-WFQR congestion indicatives 

end if  
add (q, p) ᵒ add packet p to queue q 

end procedure  
  

procedure QCN-WFQR-UPDATE-FLOW-TABLE(q, p) ᵒ update flow table regarding packet p (if new flow) 
if flow(p) ∉ flow_table(q) then ᵒ if packet p belongs to a new flow, then add flow to table 

add (flow(p), table(q))  
end if  
call QCN-WFQR-AGE-FLOW_TABLE(q) ᵒ remove from table older flows slipped from time frame 

end procedure  
  

procedure QCN-WFQR-UPDATE-INDICATIVES(q, p, Fb) ᵒ local congestion indicatives: flow shares, q rank and weight 
c_time ← current time ᵒ current time (for EMA calculus)  

min_ema ← QCN-WFQR-GET-MIN-EMA(q) ᵒ minimum EMA  from all flows within flow table  

q_weight ← 0  

for “each entry e” ∈ flow_table(q) do ᵒ for each flow from table related to queue q 
if e.ema_old = 0 then ᵒ initialize OLD EMA with minimum if first 

e.ema_old ← min_ema  

end if  
e.ema ← EMA (p, Fb, c_time, e); ᵒ new EMA for flow related to entry e 

e.flow_share ← e.ema * rank(q)  ᵒ compute flow share for entry e 

q_weight ← q_weight + e.flow_share ᵒ update queue weight 

end for  
end procedure  

 

System related congestion indicatives calculus: flows weights and reaction points weights 
procedure QCN-WFQR-QUERY-INDICATIVES(cpid) ᵒ query each CPID for changes in flow table 

for “each flow f” ∈ CPID do ᵒ for each flow received 
call QCN-WFQR-UPDATE-SYS-TABLE(flow) ᵒ if indicatives changed update sys table 

end for  
end procedure  

  
procedure QCN-WFQR-UPDATE-SYS-TABLE(flow) ᵒ update sys table (Table 11) 

call QCN-WFQR-UPDATE-SHARE(flow) ᵒ update flow’s share 
call QCN-WFQR-UPDATE-SHARE-WEIGHT(flow) ᵒ update flow’s weight 
call QCN-WFQR-UPDATE-RP-WEIGHT(flow) ᵒ update reaction point weight 

end procedure  
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6.3.4 Algorithm analysis 

6.3.4.1 Flows shares analysis 

The main idea of flow share is that it has to reflect the reaction point rate and in the 

same time to reflect the feedback values. I assumed that the reaction point rate is reflected by 

the frequency with which the feedback is sent to a specific flow, while the distance until 

congestion is outlined by the feedback value, so I distinguish two different situations 

considering two flows (𝑓1 and 𝑓2), as follows: 

 

Basically, both flow rates and feedback values are reflected in the flow share, therefore 

former situation enables comparison of flows that shares the same queue (same congestion 

conditions) but with different rates, while the later situation enables comparison of flows 

having same rate but on different routes and different queues with different congestion 

conditions (i.e. different feedback values). 

For synthetic simulation I chose an aging window of 250ms and constant sampling rate 

of 50ms. In the first 500ms of simulation time, the first situation is emphasized by generating 

1. 
𝑅𝑎𝑡𝑒(𝑓1) > 𝑅𝑎𝑡𝑒(𝑓2)

𝐸𝑀𝐴𝐹𝑏(𝑓1) = 𝐸𝑀𝐴𝐹𝑏(𝑓2)
}
𝑖𝑚𝑝𝑙𝑖𝑒𝑠
→     𝑆ℎ𝑎𝑟𝑒(𝑓1) > 𝑆ℎ𝑎𝑟𝑒(𝑓2)  

2. 
𝑅𝑎𝑡𝑒(𝑓1) = 𝑅𝑎𝑡𝑒(𝑓2)

𝐸𝑀𝐴𝐹𝑏(𝑓1) > 𝐸𝑀𝐴𝐹𝑏(𝑓2)
}
𝑖𝑚𝑝𝑙𝑖𝑒𝑠
→     𝑆ℎ𝑎𝑟𝑒(𝑓1) > 𝑆ℎ𝑎𝑟𝑒(𝑓2)  

 

 

Figure 31: Flow share synthetic tests 
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feedbacks of the same value, but one flow receives twice as many feedbacks than the other so, 

the rate difference is reflected by the flow share as is shown in Figure 31. 

Then, for the next 200ms first flow stops and its flow share is aging, while the flow share 

for the second flow grows. Furthermore, starting from 700ms second situation is demonstrated 

by sending a feedback value of 16 and 4 respectively at every 50ms. In Figure 31 it can be seen 

that the flow share of first flow is growing, while flow share for second flow is decreasing thus 

the feedback values are reflected. In conclusion the flow share responds for both rate and 

feedback variation. 

6.3.4.2 Congestion indicatives analysis 

At a particular moment a flow cannot have more than one congestion point, because a 

congestion point implies the smallest throughput within a flow path. But, if a different point is 

congested due to profile traffic changes, then the throughput must decrease even more, 

therefore the old congestion point will be freed (the distance until congestion grows). 

In terms of flow comparison, I distinguish three different situations as follows: 

1. Solitary congestion islands: the compared flows shares the same queue (congest the same 

point); 

2. Disconnected congestion islands: the compared flows congest different queues (different 

congestion points); 

3. Hybrid congestion islands: the compared flows are in solitary congestion island, but 

occasionally different flows may cause other congestion points and move flows into 

disconnect congestion islands or vice-versa (within measuring time frame T). 

In case of first situation, the flow with the lowest throughput will have the lowest flow 

share and the flow weight will have only one component. In case of second situation, the 

compared flows will have different shares according to all three parameters (rate, queue ranks 

and feedback values) related to their congestion points. The last situation is a composition of 

the first two and the congestion indicatives are sums. 

6.3.4.3 QCN-WFQR simulator 

For simulations was used an open-source simulator: NS-3 (a discrete-event network 

simulator) [53]. The QCN-WFQR implementation has the following main objects: reaction point, 

congestion point and profiler or controller in case of SDN (Figure 32). 
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Figure 32: NS3-QCN-WFQR high-level view 

Congestion Node Reaction  Point 

 Queue Len. 150KB  Byte Counter threshold  150KB 

 Queue Eq.  33KB  Timer threshold  10ms 

 ω  2  R-AI  0.5Mbps 

 Share age window  2000ms  R-HAI  5Mbps 

 Table age window  250ms  MIN Rate  1Mbps 

 RTT around 50us, Link rate at 1Gbps 

Table 12: QCN-WFQR parameters 

The simulation sequence starts at the application side, where the frames are enqueued 

in a huge backlog queue (thus, the starvation is avoided). The rate limiter relying on current 

rates moves the frames from the backlog to the TX queue and further the TX queue is 

dequeued based on link rate. The CR is modified by the BC and Timer according to received 

feedbacks and QCN parameters. Furthermore, CP samples the outgoing queue and computes 

feedbacks, based on which local congestion indicatives are computed. The profiler and the SDN 

controller interrogates the topology nodes and compute different system congestion 

indicatives. 

Support for a centralized profiler/controller that simulates a “statistics service” was 

added to NS-3. The feedback messages paths were left unmodified to avoid overloading the 

profiler/controller (i.e. it is not aware of the feedbacks and decisions to limit the rate are taken 

by the switches themselves). In SDN context this may be considered a small deviation from the 

standard definition of a centralized control plane but, given the high rate of feedbacks 

generated by a congested port, it is an acceptable trade off. 
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6.3.4.4 QCN-WFQR simulations analysis 

6.3.4.4.1 Flows contributions to system congestion profile 

This first test aims to emphasize the flows contributions to system congestion profile: 

flow shares, flow weights and reaction point weights. In another words, reaction points with 

low flows rates has lower weights, therefore tenants can cooperate and decide upon different 

services locations and achieve a fair congestion profile and a better system performance (see 

example from section 6.3.5.1). 

For simulation, a binary tree topology was used with three congestion controlled nodes 

(Figure 33 – a). Each child node has a device with a reaction point and two flows each, while the 

parent node has a device with a server (as target). Reaction points inject traffic as UDP clients, 

while the target consumes it as UDP server. From QCN stand point, each congestion controlled 

node has a transmission queue used for feedback calculus, using parameters listed in Table 12. 

From QCN-WFQR stand point, flow share calculus uses a window of 2 seconds, but the flow 

table has an age function of 250ms, so if a flow doesn’t get any feedback for 250ms its share is 

reset (Table 12). 

The simulation starts with RP1 flows and five seconds later the second device begins to 

inject traffic. The congestion profile is heavily influenced by the fact that flows 1 and 2 have 

higher throughput capabilities, therefore they have a higher probability to receive feedbacks 

(rates are displayed in Figure 33 – b). 

In the first five seconds, flows from RP1 transmit at a much higher rates, while CP3’s 

queue usage is kept around equilibrium (Figure 33 – c). After that, flows from the second device 

start injecting traffic and CP3’s queue is pushing rate limiters throughput lower (and flow 1 and 

2 rate decreases significantly). The other congestion points never get congested, because CP3 

push the throughput low enough and their queues stays below equilibrium the entire 

simulation time. And since only CP3 gets congested, flows weights are the same as flows shares 

reported by CP3 (Figure 33 – d, e). Also, as it can be seen from Figure 33 – (b) and (e), flow 

weights follows relatively same profile as their rates. 

From device weights stand point, RP1 flows (flow1&2) has higher throughput capabilities, 

then it has a higher probability to receive feedbacks, so RP1 weight is higher than RP2 weight 

(Figure 33 – f). 
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(a) Simulation topology  

(b) Flows rates variation 

 
(c) Congestion points queue variation 

 
(d) CP3 local flow shares variation 

 
(e) Flow weights variation 

 
(f) Reaction points (devices) weights variation 

Figure 33: QCN-WFQR (NS3): simulation results for variation of flow related indicatives 
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(a)  Simulation topology 

 
(b) Flow rates variations 

 
(c) CP3, CP4 queues weight variation 

Figure 34: QCN-WFQR (NS3): simulation results for variation of queue related indicatives 
 

6.3.4.4.2 Queues weights variations 

The second simulation aims to emphasize that flows rates variations reflects queues 

weights variations, thus migration decisions may be taken to balance traffic and achieve an 

uniformed congestion profile among system congestion points (see example from section 

6.3.5.2). 

For simulation, a tree based topology was used with alternative paths, so each of the 

four device’s flows has two alternative paths. In the first five seconds of simulation time, the 

congestion point CP3 forwards and samples three flows (flow 1, 2 and 3), while congestion point 

CP4 forwards and samples one flow (flow 4). It can be seen from the Figure 34 – (c) that the 

CP3’s weight queue is significantly higher compared to CP4’s weight queue, which controls only 

one flow. 
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Figure 35: Elections in distributed systems with homogenous nodes 

Furthermore, flow 1 is moved from CP3 to CP4 by the profiler/controller, which chooses 

an alternative path based on queues weights. The Figure 34 – (c) shows that the weight queues 

for the two congestion point converge, also the rates for all four flows converge as well 

(depicted in Figure 34 – b) achieving fair rates and a better balanced network load. 

6.3.5 QCN-WFQR applications 

6.3.5.1 Elections in distributed systems with homogenous nodes 

In a distributed system (or cloud) with multiple classes of services, where each class has 

many homogenous nodes, I propose a method of chosing a particular service based in QCN-

WFQR algorithm. The method aims to maximize bandwidth usage, while minimize congestion in 

the network and improve overall system response time (Figure 35). 

If the number of clients varies and their needs are unknown, then the network 

congestion pattern is basically nondeterministic. When a particular service is required, I 

propose that the choice of a node to be based on congestion indicatives provided by QCN-

WFQR system profiler. 

For exemplification, in distributed and parallel file systems, a file is divided in data 

chunks (or objects) replicated on multiple storage devices, so a data segment can be 

transferred from any replica. Most distributed file systems uses a static distribution (e.g. CRUSH 

– Controlled Replica Under Scalable Hashing), but with advent of converged networks a static 
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distribution may not be the best choice. Therefore, using QCN-WFQR the replica may be chosen 

dynamically and improve system responsiveness by trying to avoid network bottlenecks. In this 

case is worth to mention that the reaction points are the storage devices. 

The heart of this method is that the local congestion indicatives communicated to 

system profiler and the congestion indicatives communicated to the client must reflect the 

current system congestion status. So, if the information is communicated too often, then the 

system profiler may be overwhelmed or if it is too seldom, then the information will not reflect 

the current congestion status of the system. This means that the algorithm is very sensitive to 

wild congestion profile variations, so I propose to use larger data chunks. 

Besides the communication of congestion indicatives, the performance and 

implementation of the system profiler (i.e. distributed implementation but logically centralized 

or completely centralized) greatly influence the system behavior. Plus, the profiler must have a 

very low latency connection with each congestion point and each client, so that the congestion 

indicatives to be exchanged in timely fashion. 

I consider the following ‘election’ main steps (Figure 35):  

 Step-1: QCN standard flow (feedbacks from congestion aware network – CPs towards 

services nodes – RPs).  CPs computes local congestion indicatives (i.e. flows shares, queues 

ranks and queue weights). 

 Step-2: The system profiler registers received local congestion indicatives and furthermore 

it computes the system congestion indicatives. 

 Step-3: The client asks a subset of congestion indicatives from system profiler. 

 Step-4: The client choose a service location based on received congestion indicatives 

(basically, the entity with the smallest indicative). 

6.3.5.2 Dynamically balanced flows in computer networks 

The algorithm performance is directly influenced by the latency with which the Network 

Profiler or SDN controller gets the relevant congestion indicatives, decides and move flows 

while achieving a better balanced traffic within the system topology. 

The profiler/controller design follows either a centralized or distributed model [54]. 

Each method has its own pros and cons. For example, a centralized design has scaling 

limitation, bigger bottleneck probability, single point of failure, but it has a simpler complexity 

(basically it follows a multi-threaded design over SMP systems) and it has strong semantic 

consistency, while a decentralized design scales up easy and meet performance requirements, 

handle better data plane resilience and scalability, fault tolerant, but it has a weak consistency 

semantics (and it is worth to mention that a strong consistency implies complicated 
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implementation of synchronization algorithms) and it has much more complex implementation 

[54]. 

How congestion indicatives are communicated is strategic to relevance of the decisions 

based on QCN-WFQR algorithm. Basically, it has to either transmit information at short intervals 

overloading the controller or to filter and condense the information at the source before 

transmitting it to the controller. 
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7 CONCLUSIONS AND FUTURE WORK 

This thesis begins with a general analysis of the following distributed storage systems: 

AFS, GFS, GPFS, Lustre and Ceph, studding different aspects such as taxonomies, architecture 

details and network characteristics. The analysis is followed by a proposal for eLearning 

infrastructures, as a case study. Afterwards, several optimizations to distributed storage 

systems are proposed and a novel algorithm for dynamic load balancing in congested aware 

networks: QCN-WFQR. 

7.1 The original contributions of the thesis 

Contributions to the analysis of distributed storage systems (chapter 2) 

I proposed a simple and comprehensive taxonomy for storage systems considering four 

important characteristics: locality, sharing, distribution level and semantics (section 2.1). For 

characterization of distributed storage systems I proposed a relevant set of requirements based 

upon existing documentation in the field (section 2.2). Also, I highlighted the scale-out methods 

at different layers of file systems, thus building different types of storage systems, such as SAN 

or NAS (section 2.3). And to emphasize the similarities between distributed and centralized 

storage systems I proposed a generalized layout (section 2.5.3). 

The analysis of distributed storage systems and related contributions were published in 

[PIST, 2014/1]. 

Contributions to the infrastructure for eLearning environments (chapter 3) 

In this chapter I proposed a parallel and distributed file system adapted for eLearning 

environments, in turn hosted by cloud systems. The proposed storage system can be 

considered an alternative solution to OGSA-GFS. It has two main components: a flat address 

space based on RADOS (Ceph's object store) and a module for managing the semantic aware 

metadata. I proposed a native implementation of the semantic aware metadata with content-

based semantics to improve the searches of data in the system. In terms of network, I proposed 

a hierarchical topology that facilitates south-north throughput with links added to decrease the 

latency between RADOS’s nodes.  

These contributions were published in [PIST, 2014/2]. 

Optimizations based on packet processing engines (chapter 4) 

The main contribution in this chapter is the proposal of several solutions to optimize 

traffic intensive clusters using integrated systems of multi-general purpose cores with packet 
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processing engines (section 4.2 and 4.3). While Ceph addresses different optimizations at 

system level, my contributions focus on improving each node performance which in the end 

reflects the overall system performance (section 4.5). 

First, the performance of each node is improved by classifying and distributing requests 

among cores, facilitating the parallelization of traffic consumers. Furthermore, the OS scheduler 

decisions are leveraged by using Accelerated Receive Flow Steering mechanisms (section 4.4). 

Therefore, I proposed two models and two different implementations for each model: one in 

kernel targeting efficiency and one in user-space facilitating a faster development and flexible 

license policy. As case study, I created a model using QorIQTM platforms (section 4.5.1) for 

Ceph’s nodes. Each model for each node type is designed based on related flow types and 

traffic volume (section 4.5.2). 

Second, the latency of sensitive operations is decreased and the overall cluster 

responsiveness and availability is improved by adjusting the weights of hardware queues. 

Accelerated RADOS (A-RADOS) divides the traffic of monitors and OSDs in three different 

classes with different priorities based on importance related to Ceph (section 4.5.3). 

Performance measurements that showed improved number of transactions per second 

and the results of the RADOS’s messages processed based on priorities were presented in 

section 4.5.4. Besides the presented improvements there are inherent advantages of using 

multi-core integrated systems such as low power consumption and appealing price per 

performance. 

The proposed optimizations based on packet processing engines and the micro-

benchmark results were published in [PIST, 2013]. 

Solutions for issues occurred in converged infrastructure for data centers (chapter 5) 

A group of protocols were added to Ethernet in context of converged infrastructure for 

data centers (i.e. collapsing tiers and unification of general purpose networks with networks for 

distributed storage systems): PFC, ETS, DCBx and QCN (section 5.2). The main focus was on 

QCN, which has several weaknesses, such as unwanted traffic injections for QoS domains from 

edge ports and rate unfairness of flows that shares the same bottleneck (section 5.2). 

I was part of a team that proposed a patented solution for automatic configurations of 

QCN parameters through LLDP in a hybrid network, where segments with and without QCN 

coexists considering different QoS requirements. The solution implies a new hybrid defense 

mode choice that allows both manual and automatic settings to use the same alternate priority 

value, thus the injection of unwanted traffic for a specific QoS domain is avoided (section 5.3).  

The patent is public and can be inspected at [Patent #8891376]. 
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Proposed algorithm for dynamic load balancing: QCN-WFQR (chapter 6) 

QCN protocol alleviate congestion in the network, but it does not address the 

congestion problem as a whole, where a uniform distribution of congestion domains will lead to 

a better utilization of bandwidth. Therefore, I proposed a partial solution that tries to solve this 

issue. The proposal was based on the choice of the gateway with the biggest distance until 

congestion and later on, it led to a more general solution that was patented, where the 

congestion sources (i.e. reaction points) are building databases for each congested point. This 

database can be used for performance analysis or can be used to influence different aspects of 

the network devices (section 6.2). 

I have followed a different path and I proposed a novel and more complete algorithm 

(Quantized Congestion Notification – Weighted Flow Queue Ranking) that tries to solve this 

problem. The algorithm QCN-WFQR computes multiple congestion indicatives that are 

measures of the network load generated by flows in different points in the network, based on 

which different cooperative or automatic decisions may be taken to balance the workload and 

achieve a less congested network (section 6.3.2). 

The algorithm is capable to compute the local contribution of each flow in different 

network points (𝑺𝒉𝒂𝒓𝒆𝒕
𝒒𝒌(𝒇𝒊)) and also the system wide contribution of each flow 

(𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒇𝒌)). Besides flow contribution, the system is also capable to compute the 

contribution of each congestion source (𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝑹𝒌)) to the network load. Based on these 

congestion indicatives any component within the system can determine the best appropriate 

service (congestion source/reaction point) location in order to cooperatively balance the 

workload in the network (sections 6.3.1, 6.3.2 and 6.3.3). Furthermore, I present the analysis of 

flows shares and the system wide congestion geometry (i.e. congestion islands) related to each 

flow (sections 6.3.4.1 and 6.3.4.2). It is worth to mention, that the QCN-WFQR algorithm makes 

use of the exponential moving average to store flows shares in order to minimize the memory 

usage on network nodes (section 6.3.2.1). 

Along with the congestion indicatives listed above, the algorithm is capable to compute 

the importance of each queue (𝑹𝒕
𝒒𝒌) related to the congestion in the system in terms of the 

number of handled flows and the congestion degree of each queue (𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒒𝒌)) related to 

all handled flows (the definition of a topology is detailed in sections 6.3.1 and 6.3.2). Using 

these congestion indicatives, a network can be reprogrammed to optimally balance the 

workload between different congestion points. 

For simulations purpose I implemented QCN-WFQR in NS3 (an open source discrete-

event network simulator), where besides algorithm modules, I implemented also the following 

QCN modules: rate limiter, reaction point and congestion point (section 6.3.4.3). I did two 



Distributed Storage Solutions And Optimizations 

93 

different simulations aiming flows contributions to the congestion profile and variations of 

queues weights using tree based topologies (section 6.3.4.4). The former simulation revealed 

that the traffic of congestion sources is reflected in the congestion indicatives of flows and 

reaction points (section 6.3.4.4.1), while the later simulation revealed the reflection in the 

congestion indicatives of queues (section 6.3.4.4.2).  

I proposed two applications of QCN-WFQR: elections of replicas in distributed storage 

systems based on congestion indicatives in order to achieve a better balanced congestion 

profile while achieving a much responsive system and a dynamically load balancer, more 

appropriate for SDN networks. 

The patented solution can be inspected at [App. #20150023172], while the QCN-WFQR 

algorithm with the simulations results were published in [PIST, 2015]. 

7.2 Future work 

Until now, nodes were optimized only at ingress side, therefore now I am searching for 

optimization methods at egress side as well. Besides classifications and distributions of flows to 

achieve better performances, the usage of other hardware engines is taken into consideration, 

such as cryptographer or TCP engines. Also, because only micro-benchmarks were done, all 

optimizations will be included into a wider system and tests will be conducted to see how the 

performance improvements at each node are reflected in a wider system with a larger number 

of nodes. 

The QCN-WFQR algorithm has a sound approach with promising impact in the 

networking field, especially in Software Defined Networking. Therefore now the research 

focuses on implementation of different algorithms, such as Dijkstra’s algorithm, using different 

congestion indicatives as path costs proposed in the present thesis. Since the distributed 

systems has several characteristics related to scaling methods, investigations are directed 

towards implementation of logically decentralized controllers with QCN-WFQR support and the 

relevance of decisions based on latency and architectures of network topologies. 

The QCN-WFQR algorithm can be used to select locations of different services in more 

complex systems (such as clouds) and improve responsiveness, stability and I/O performance of 

the systems. Therefore, analyzing the relevance of QCN-WFQR is required for different traffic 

profiles (such as bursts and streaming) to determine the services for which this algorithm is 

adequate.  
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10 ACRONYMS AND DEFINITIONS 

DAS 
Direct Attached Storage: refers to a storage system directly attached to the 

machine accessing the data. 

SAN 
Storage Area Network: refers to a dedicated network that provides block level 

access to storage systems. 

NAS 
Network Attached Storage: refers to a storage system that provides file level 

access through a computer network. 

SCSI 

Small Computer System Interface: a set of interface standards for 

communication with peripheral hardware, such as: printers, storage devices and 

so on. 

SAS 
Serial Attached SCSI: a new serial protocol that moves data to and from storage 

devices. 

sATA 
Serial ATA: a computer bus interface that connects host bus adapters to mass 

storage devices. 

Cloud 

Computing 

Complex system for hosting service based applications in a networked system 

invisible for clients. 

HPC 
High Performance Computing: high speed computing system (nanoseconds 

based calculus). 

Data block 
Smallest data structure of an uninterpreted sequence of bytes or bits, having a 

well-defined length, managed by a storage device unit. 

Data file 
Self-contained information organized in a sequence of bytes and metadata 

managed by the overlying Operating System. 

Data object 
A data structure composed by a sequence of bytes or bits of flexible size and a 

variable amount of metadata that describes it. 

inode 
Index node: metadata information about a stored element in file systems 

implemented in *nix operating systems. 

FC Fibre Channel: high speed network  technology used to connect storage devices 

http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Bit
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FCP 
Fibre Channel Protocol: transport protocol predominantly used for SCSI 

commands over FC networks. 

RAID 

RAID–Redundant Array of Independent Disks: a system of multiple storage 

devices combined into a single logical unit for redundancy and performance 

improvement. 

LUN 
Logical Unit Number: a logical number used to identify the device addressed 

through SCSI protocol. 

LBA 
Logical Block Addressing: a method of locating data blocks, typically a linear 

scheme, on computer storage devices.  

POSIX 
Portable Operating System Interface: a set of standard operating system 

interfaces based on UNIX OS. 

OSD 
Object Storage Device: device that implements the standard (i.e. an extension 

to SCSI) in which data is organized and accessed as objects. 

COW 
Copy on write: optimization strategy that provides pointers to resources to 

callers, until the callers change or copy it. 

LAN 
Local Area Network: computer network that interconnects nodes in a limited 

area. 

IP 
Internet Protocol: communication protocol where a node is identified by an IP 

address. 

TCP Transmission Control Protocol: reliable transport protocol. 

FCoE 
Fibre Channel over Ethernet: network technology that encapsulated Fibre 

Channel frames over Ethernet medium. 

FCIP Fibre Channel over IP: protocol that encapsulates FC frames over IP protocol. 

iFCP 
Internet Fibre Channel Protocol: protocol that runs over IP and provide 

functionalities similar with FCP 

iSCSI 
Internet Small Computer System Interface: – protocol that runs over IP and 

provides functionalities similar with SCSI 

SoC 
System on Chip: a hardware system that integrates multiple computer 

components into a single chip. 
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DCB 
Data Center Bridging: a set of Ethernet enhancements for data center 

infrastructure. 

PFC Priority Flow Control (IEEE 802.1Qbb) 

ETS Enhanced Transmission Selection (IEEE 802.1Qaz) 

QCN Quantized Congestion Notification (IEEE 802.1Qau) 

DCBx Data Center Bridging eXchange 

LLDP 
Link Layer Discovery Protocol: link layer protocol used for advertising nodes 

capabilities within a computer network. 

TLV 
Type, Length, Value: protocol for advertising optional information between 

nodes within a computer network. 

CCF Congested Controlled Flow 

CND Congestion Notification Domain 

SLA Service Level Agreement 

 

 




