

University POLITEHNICA of Bucharest
Faculty of Automatic Control and Computer Science

Summary of the PhD Thesis

Optimizări ṣi soluṭii de stocare distribuită

Distributed Storage Solutions and Optimizations

Autor: Ing. Sorin-Andrei Piṣtirică

COMISIE DOCTORAT
Preşedinte Prof. Dr. Ing. Adina Magda Florea Universitatea POLITEHNICA din București

Coordonator ṣtiinṭific Prof. Dr. Ing. Florica Moldoveanu Universitatea POLITEHNICA din București

Referent Prof. Dr. Ing. Nicolae Ţăpuṣ Universitatea POLITEHNICA din București

Referent Prof. PhD. Eng. Alexandru Soceanu Munich University of Applied Sciences

Referent Prof. Dr. Ing. Ṣtefan Pentiuc Universitatea „Ştefan cel Mare” din Suceava

Bucureṣti, 2015

TABLE OF CONTENTS

1 INTRODUCTION ... 4

1.1 SCIENTIFIC PUBLICATIONS IN CONNECTION WITH THIS THESIS ... 6

2 STORAGE SYSTEMS: STATE-OF-THE-ART .. 7

2.1 STORAGES CLASSIFICATION ... 7

2.2 REQUIREMENTS FOR DISTRIBUTED STORAGES ... 7

2.3 STORAGE SYSTEMS SCALING METHODS ... 7

2.4 SHARING SEMANTICS .. 8

2.5 LOW LEVEL DATA ORGANIZATION ... 8

2.5.1 Data organization at device level... 8

2.5.2 Networked storage data organization ... 8

2.5.3 Generalization of data organization .. 9

2.5.4 Trends towards object based storage systems .. 9

2.6 DISTRIBUTED STORAGES ARCHITECTURES ... 9

2.6.1 Ceph File System .. 10
2.6.1.1 Decentralized data distribution ... 10

2.6.2 Comparison .. 11

2.7 NETWORK TECHNOLOGIES FOR DISTRIBUTED STORAGES ... 12

2.7.1 The topology .. 12

2.7.2 Protocol stack ... 12

3 CASE STUDY: INFRASTRUCTURE FOR ELEARNING ENVIRONMENTS 14

3.1 MOTIVATION .. 14

3.2 CLOUDS STORAGE AND NETWORK ENHANCED FOR ELEARNING ENVIRONMENTS .. 14

3.2.1 Data distribution for eLearning environments ... 14

3.2.2 Clouds network .. 15

3.3 CLOUDS AND ELEARNING ENVIRONMENT: PROPOSED ARCHITECTURE .. 16

3.3.1 The storage system .. 16

3.3.2 The network profile .. 16

4 OPTIMIZATIONS OF DISTRIBUTED STORAGE SYSTEMS BASED ON HARDWARE ENGINES17

4.1 MOTIVATION .. 17

4.2 INTEGRATED PACKET PROCESSING ENGINES .. 17

4.3 HARDWARE ACCELERATED CLUSTER NODES .. 17

4.4 CASE STUDY: HARDWARE ACCELERATED CEPH WITH QORIQTM ... 19

4.4.1 QorIQTM packet processors... 19

4.4.2 Accelerated Ceph’s nodes .. 19

4.4.3 Accelerated RADOS .. 20

4.4.4 Micro-benchmark results ... 21

5 NETWORKING CHARACTERISTICS IN CONVERGED INFRASTRUCUTRE 22

5.1 QUANTIZED CONGESTION NOTIFICATION .. 22

5.2 QCN WEAKNESSES AND IMPROVEMENTS .. 23

5.2.1 The Fair QCN Solution .. 24

6 QCN BASED DYNAMICALLY LOAD BALANCING ALGORITHM ... 25

6.1 MOTIVATION .. 25

6.2 ALTERNATIVE SOLUTIONS ... 25

6.3 QCN WEIGHTED FLOW QUEUE RANKING ... 25

6.3.1 QCN-WFQR indicatives ... 26
6.3.1.1 Flows.. 26
6.3.1.2 Ranking .. 26
6.3.1.3 Flow shares .. 26
6.3.1.4 Weighting .. 28

6.3.2 QCN-WFQR algorithm based on standard QCN ... 28

6.3.3 Algorithm analysis ... 29
6.3.3.1 Flows shares analysis ... 29
6.3.3.2 Congestion indicatives analysis ... 29
6.3.3.3 QCN-WFQR simulator .. 30
6.3.3.4 QCN-WFQR simulation analysis ... 30

6.3.4 QCN-WFQR applications .. 31
6.3.4.1 Elections in distributed systems with homogenous nodes .. 31
6.3.4.2 Dynamically balanced flows in computer networks .. 32

7 CONCLUSIONS ... 33

7.1 THE ORIGINAL CONTRIBUTIONS OF THE THESIS .. 33

7.2 FUTURE WORK ... 35

8 AUTHOR’S PUBLICATIONS ... 36

8.1 PATENTS .. 36

8.2 ARTICLES .. 36

9 BIBLIOGRAPHY .. 37

Distributed Storage Solutions And Optimizations

4

1 INTRODUCTION

During the last ten years internet traffic volume grew more than 300 times and the pressure
on technologies used for network infrastructure increased significantly. Besides internet, there are
systems such as clouds or data centers, where the pressure on I/O intensive systems, like storage
systems, influenced the evolution of network infrastructure concerning the capital costs without
performance penalty and pushed the design of the software towards distribution.

Considering the above, I studied various features of storage systems and propose an
infrastructure for eLearning technologies. Since storage systems are very I/O intensive, I propose a
solution for increasing their performances based on dedicated hardware for packet processing.
Furthermore, considering the trend of converged networks emerged from the need to ease the
management and reduce the capital costs, I propose several improvements to Quantized Congestion
Notification protocol as well as an algorithm for dynamic balancing of traffic flows: Quantized
Congestion Notification – Weighted Flow Queue Ranking.

In context of distributed storage systems, the scaling-out methods based on file system layers
are very important. Each layer requires different type of network, thus generates different types of
distributed storage systems. It is also important to see how they are characterized based on
classifications and what are the main deficiencies of the existing implementations. Therefore, I
propose a simple, yet comprehensive classification based on four main characteristics: locality,
sharing, distribution level and semantics of concurrent access. In terms of low level organization of
data there are several ways, but all follow the same constituent elements, so I propose a suitable
generalized data layout regardless the distribution status of the system. Within proposed layout, data
is distributed in different units (i.e. files, objects, blocks or data segments) analyzed further, with an
increasing trend towards objects, due to autonomous characteristic of object devices. Afterwards, I
studied five different architectures of distributed storage systems (Andrew File System, Google File
system, General Parallel File System, Lustre File System and Ceph) with more focus on Ceph’s
particularities, used later as case study and performance measurements for the optimizations
proposals. Afterwards, I studied the way that everything is linked together and using graph theory I
present several key characteristics that influence properties such as throughput, capital cost, fault
tolerance or high availability, followed by studies of protocol stacks used to identify different
alternatives suited for converged networks.

I propose several enhancements to solve issues related to system overheads due to
processing of flows at multi-gigabit rates. The enhancements are based on integrated hardware
systems of dedicated packet processors with general purpose cores. Besides system overhead issues,
another challenge is the enhancement of the network hardware performance to make optimal use of
the available network bandwidth. These problems are overcome by combining multi-core processors
with parallel processing and multi-function network hardware capabilities. Thus, I propose a generic
hardware packet processor emphasizing its components along with processing stages for each frame.
I also designed two alternatives for coexistence of different applications with different traffic
demands: Per Core Cluster Node and SMP Cluster Node. Using Ceph as case study, I propose two
different optimizations: accelerations methods of each node using the proposed models listed above
(i.e. A-MDS, A-MON and A-OSD) and a method of decreasing latency of sensitive flows based on
queue weighting (A-RADOS). The proposed solutions are supported by several micro-benchmark
results based on P2041 QorIQTM as integrated packet processor.

Furthermore, in the context of network convergence in data centers, I/O protocols (such as
SCSI) do not have contention or retransmission support and they require a lossless transmission

Distributed Storage Solutions And Optimizations

5

environment, such as Fibre Channel – a high speed, low latency and lossless network by design.
Ethernet by design is a best effort communication environment and with IP protocol it provides an
end-to-end network for reliable transport protocols, such as TCP. In absence of reliable protocols,
Ethernet has been enriched with a set of protocols which enabled a lossless medium: Priority Flow
Control (PFC), Enhanced Transmission Selection (ETS), Data Center Bridging Capabilities exchange
(DCBx) and Quantized Congestion Notification (QCN). Despite the main purpose of these
enhancements, there are other uses cases, for example “TCP Incast” that can be improved using QCN.

Basically, QCN provides congestion information to the source to avoid packet loss, but it
doesn’t solve the congestion fairness within the entire network. For this, I propose QCN Weighted
Flow Queue Ranking (QCN-WFQR), an algorithm based on Quantized Congestion Notification for
dynamic workload balancing. The algorithm can be used in traditional computer networks or in new
Software Defined Networks. It computes a series of congestion indicatives relative to each flow per
each congested point and a series of system wide congestion indicatives. These indicatives can be
used cooperatively (by all elements in the cluster) or automatically (by a system profiler or SDN
controller) to increase the overall system performance. For exemplification, I propose two different
applications for the use of these congestion indicatives. Former application proposes a method of
choosing replicas in distributed and parallel file systems to achieve a less congested network. The
latter application propose a method of distributing traffic workload in the network by migrating
already established flows to alternate less congested paths, thus reducing the need to slow down the
traffic at the source.

Distributed Storage Solutions And Optimizations

6

1.1 Scientific publications in connection with this thesis

Patents

[App. #20150023172]. Sorin A. Pistirica, Dan A. Calavrezo, Casimer M. DeCusatis, Keshav G. Kamble,
“Congestion Profiling of Computer Network Devices”, Patent Pending,
USPTO: http://patents.justia.com/patent/20150023172, Jul 16 – 2013

[Patent #8891376]. Sorin A. Pistirica, Dan A. Calavrezo, Keshav G. Kamble, Mihail-Liviu Manolachi,
“Quantized Congestion Notification—defense mode choice extension for the alternate
priority of congestion points”,
USPTO: http://patents.justia.com/patent/8891376, Oct 07 – 2013

Articles

[PIST, 2013] Pistirica Sorin Andrei, Caraman Mihai Claudiu, Moldoveanu Florica, Moldoveanu Alin,
Asavei Victor, ”Hardware acceleration in CEPH Distributed File System”, ISPDC: IEEE
12th International Symposium on Parallel and Distributed Computing, Bucharest, June
2013, pp. 209-215, IEEE Indexed

[PIST, 2014/1] Pistirica Sorin Andrei, Victor Asavei, Horia Geanta , Florica Moldoveanu , Alin
Moldoveanu , Catalin Negru , Mariana Mocanu, “Evolution Towards Distributed Storage
in a Nutshell”, HPCC: The 16th IEEE International Conference on High Performance
Computing and Communications, August 2014, Paris, pp. 1267-1274, IEEE Indexed

[PIST, 2014/2] Pistirica Sorin Andrei, Asavei Victor, Egner Alexandru, Poncea Ovidiu Mihai, "Impact of
Distributed File Systems and Computer Network Technologies in eLearning
environments“, eLSE: Proceedings of the 10th International Scientific Conference
"eLearning and Software for Education", Bucharest, April 2014, Volume 1, pp. 85-92, ISI
Indexed

[PIST, 2015] Pistirica Sorin Andrei, Poncea Ovidiu, Caraman Mihai, “QCN based dynamically load
balancing: QCN Weighted Flow Queue Ranking”, CSCS: The 20th International
Conference on Control Systems and Computer Science, Bucharest, May 2015, Volume
1, pp. 197-205, ISI Indexed

http://patents.justia.com/patent/20150023172
http://patents.justia.com/patent/8891376
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Victor,%20Asavei.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Horia,%20Geanta.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Florica,%20Moldoveanu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Alin,%20Moldoveanu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Alin,%20Moldoveanu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Catalin,%20Negru.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mariana,%20Mocanu.QT.&newsearch=true

Distributed Storage Solutions And Optimizations

7

2 STORAGE SYSTEMS: STATE-OF-THE-ART

In general, any storage system comprises a set of devices and a collection of software
modules for managing data units, such as blocks, objects or files. Distributed storages are special
cases, where storage elements are distributed over a set of nodes within a computer network.

2.1 Storages classification

Storage systems classifications are very important, mostly because it drives the intrinsic
characteristics of them and points out the deficiencies of existing implementations. Therefore, I
propose a classification of storage systems based on four main characteristics [PIST, 2014/1].

 Locality;

 Sharing capability;

 Distribution level: data units used for

distribution;

 Semantics: sharing semantics of concurrent

access.

2.2 Requirements for distributed storages

In the early 70’es at the beginning of computer networks, the main purpose of distributed
storage systems was just to share small pieces of data between nodes. Later on, with the advent of
cloud computing, HPC domains or internet applications such as Google or Facebook, the need for
storage space increased exponentially, therefore I propose the following list of basic requirements
based on articles published in the field: data sharing, storage scalability, storage elasticity,
transparency (access, location, failure, replication, migration), high availability, fault tolerance,
system recovery, data balanced distribution, workload balance, data migration, concurrent and
consistent data access, snapshot, archive, network infrastructure performance and data security.

2.3 Storage systems scaling methods

To meet nowadays demands of storage space, which is very high reaching at petascale or even
exascale size, the number of storage devices is very large (i.e. scale-out) within the cluster [PIST,
2014/1]. This can be achieved by distribute data at different file system levels:

 hardware layer (storage devices);

 block or object layer (sequence of bits

stored on storage devices);

 file layer (typed data managed by the

underling operating system);

 application layer.

Depending on the layer at which the system is decoupled and computer networks are
introduced, different types of systems are built:

 SAN based distributed storage systems – at block I/O level (e.g. SCSI over Fibre Channel);

 NAS based distributed storage system – at file level (e.g CIFS or NFS are used to carry requests);

Distributed Storage Solutions And Optimizations

8

 Hybrid systems can be built by mixing these SAN and NAS types;

 Furthermore, distributed and parallel file systems (e.g. GFS, Lustre or Ceph) are built by
abstracting storage devices.

Mass-storage systems

Mass-storage systems are built by using Redundant Arrays of Independent Disks (RAID). These
systems are based on two main ideas: to improve performance by accessing multiple disks in parallel
and to improve high availability and fault tolerance by duplicating data over multiple devices. EMC1
introduced Storage Pools and RAID based Storage Pools – collections of logical/physical disks or
RAIDs managed together, used to simplify space management. Fine grained management space is
achieved with virtualization of storage pools into Virtual LUNs or Virtual Volumes, where the
mapping between Virtual LUNs and RAID LUNs are made by a Virtualization Controller.

From architectural point of view there are three main approaches of mass-storage
virtualization: host-based (e.g. Linux Logical Volume Management: LVM) [4], device-based (e.g. disk
arrays: RAIDS) and network-based (e.g. SAN systems) [5] [6].

2.4 Sharing semantics

One of the most important characteristics of the distributed storage systems is sharing
semantics (i.e. semantics of concurrent access of two or more tenants). Andrew S. Tanenbaum in his
book “Distributed Operating Systems” [7] proposed a simple and comprehensive set of four different
types of file sharing semantics: POSIX, session, immutable files and transactional. Among them, the
POSIX semantics is the hardest model to implement, because it requires complicated synchronization
mechanisms.

2.5 Low level data organization

2.5.1 Data organization at device level

In the context of data organization at device level, I consider three main organizational types:
structured, log-based and tree-based. Briefly, the main difference between structured and log-based
organization is that the former type has distinct areas for inodes and data blocks, while the later
stores them in continuous form. Tree-based organization (e.g. B-tree File System: BTRFS) uses a copy-
on-write (COW) model, where data is organized in a binary tree structure. Oracle released in 2007 a
file system that uses this type or organization (Binary Tree File System [1]), included in Linux kernel in
2009. Comparing with UFS, BTRFS scales better and also showed performance improvements.

2.5.2 Networked storage data organization

Generally speaking, in any distributed storage system, data is divided in different types of
units (e.g. files, blocks or objects) distributed across the nodes of a network using different
techniques, such as mapping tables or hash functions. As in the case of local file systems, in
distributed file systems as well, the organization of data segments is specified in a type of metadata
structure, distributed as any regular file or distributed in a private cluster or stored in a centralized
way.

Usually, a distributed storage system does not have the concept of partition, but sometimes
there are implemented mechanisms that can be considered as similar concepts, for example volumes
for Andrew File System or the multiple systems managed by MGS in Lustre.

1 EMC: corporation that provides IT storage hardware solutions.

Distributed Storage Solutions And Optimizations

9

SAN and NAS are two of the most known networked file systems. In terms of architecture,
SAN based file systems usually use storage nodes with RAID disks, while NAS based file systems are
often used along with SAN environments, were file servers are constructed over NAS and data is
stored in a SAN medium (i.e. hybrid file system).

2.5.3 Generalization of data organization

Regardless of data semantics or distribution status, any file system has two main layers, as
shown below:

 Metadata area: specifications of

storage organization;

 Data area: a flat address space of

data units.

2.5.4 Trends towards object based storage systems

Stored data may be distributed using different types of units (as shown above): containers,
files, segments, blocks or objects. Currently, the tendency is to use file segments to distribute data,
rather the entire file, because for example, this way a higher degree of availability and a better fault
tolerance is achieved.

Although there are several types of data representation used for distribution, objects seems
to gain in popularity, since many researchers claim that OSDs take advantages from DAS, SAN and
NAS architectures grouping them into a single device [12]. Basically, it addresses issues related to
security, scalability and management. First, security is improved by adding credentials to each
operation, while in contrast a block device has per LUN based security. Second, scalability and
management is improved by moving space management from metadata servers to storage
controllers. And third, one management advantage that emerges from OSDs characteristics is that
object based storage systems simplify data layout by replacing large blocks lists with small objects
lists and distribute the low-level block allocation problem. Although, it has many advantages object
based distribution does not solve the fundamental issue of distributing data among a very large
number of devices.

2.6 Distributed storages architectures

Among many distributed storage systems with different architectures, I have chosen to study
five representative systems to cover an important set of topics: low level organization, overall system
design and sharing semantics: AFS (Andrew File System) [13] [14], GPFS (General Parallel File System)
[17], GFS (Google File System) [15] (and the open source version Hadoop (HDFS) [16]), Lustre [18]
and Ceph [19], [PIST, 2014/1]. The main focus was on Ceph, being used also as case study for my
optimizations proposals.

Distributed Storage Solutions And Optimizations

10

2.6.1 Ceph File System

Ceph [19] is a new distributed storage system that assembles many advantages from
previously existing implementations. It distributes everything: namespaces, monitoring, security and
data, therefore it is very scalable, but very complex being considered “the new dream distributed file
system”. One of the main characteristics of Ceph is that it completely isolates metadata management
from data storage (RADOS – Reliable, Autonomic Distributed Object Store) [20]. Ceph stripes files into
objects similar with RAID model, to improve parallel I/O and furthermore RADOS distribute these
objects over a cluster of OSDs using controlled hash function (CRUSH – Controlled Replication Under
Scalable Hashing) [21].

RADOS is a system composed of a large OSD cluster and a small cluster of monitors used as
supervisors. Briefly, files are striped into objects, further mapped to placement groups (used to
control the degree of replication declustering). The OSD cluster layout is described by a cluster map.
By applying sets of placement policies on this map, different failure domains can be configured.
Furthermore, a deterministic list of OSD is obtained using CRUSH algorithm based on placement
group id and a set of placement rules. The main messages exchanged (used for case study presented
in section 4.4) are listed in the following table:

The namespace management is distributed across a metadata cluster, which uses a technique
named adaptive workload distribution (i.e. dynamic sub-tree partition to achieve a scalable
performance). Ceph migrates or replicates pieces of files tree at directory fragment level based on
popularity degree, which becomes costly when the number of nodes is very large.

2.6.1.1 Decentralized data distribution

The main purpose of decentralized data distribution algorithms is to replace the lookup
servers. In this subsection I briefly present two such algorithms: Replication Under Scalable Hashing
(RUSH) [23] and Controlled Replication Under Scalable Hashing (CRUSH) [21].

RADOS messages Description

1
Leader monitor
election

 Provides consistent cluster-map to all system parties,

 Monitors leader election based on simplified PAXOS and quorum for
serialization of map updates [22] pp. 127.

2 Leases
 Grants short-term leases to active monitors to give them the rights to

distribute copies of cluster map to all system parties, [22] pp. 127.

3
Cluster-map
distribution

 Responses of active monitors (which have granted a lease) to map
queries from MSDs, clients or new added OSDs. Since an OSD cluster
may have a very large number of devices [22] pp. 129, the monitors
don’t broadcast map updates, but actually the map updates are
exchanged between OSDs from the same placement group.

4 Heartbeat messages
 To prevent accessing inconsistent data, timely heartbeat messages are

exchanged between OSDs [22] pp. 129.

5 I/O traffic
 Objects read/write and data replication (i.e. primary-copy, chain and

splay) [22] pp. 131.

6 Recovery

 Failure recovery is based on cluster-map epoch and the set of active
OSDs in each placement group and it uses a peering algorithm to
assure a consistent view of the placement group of all OSDs within
[22] pp. 137.

Distributed Storage Solutions And Optimizations

11

RUSH algorithm has several flavors for data placement, such as: using prime numbers, support
for removal and a tree-based approach [24]. It has two main principles: identifying which object must
be moved to maintain a balanced cluster and decide the object destination based on hash functions.
Also it implies that devices are replaced in groups (e.g. per shelf basis), rather than one-by-one.

CRUSH [21] introduce the idea of controlled distribution per different failure domains by
means of placement policies. Basically, it produces a deterministic ordered list of storage devices for
an object based on pseudo-random hash function, cluster map and placement rules.

2.6.2 Comparison

 Location of data in the distribution space can be handled in two ways: by using information maps

(similar with inode map from UFS) or by decentralized distribution algorithms such as CRUSH or

RUSH. The drawback of mapping against decentralized distribution algorithms is the increased

pressure on some dedicated lookup servers.

 Distributing metadata management has pros and cons: in essence, a distributed management

comes with a better I/O performance, but a more complex architecture. Regarding the above

systems, Ceph and GPFS handle metadata in a distributed way, while GFS/HDFS use only shadow

servers for high availability, but the actual activities are handled only by one active server.

 The distribution level refers to the data unit used for distribution, such as: data segments, files or

objects. There is a global tendency towards OSD usage, due to several strength, including: better

data security (per object), flexible size (therefore it can be adjusted to increase I/O performance),

standard API and a local space management. In terms of studied systems, Lustre and Ceph uses

OSDs and the future leads to OSDs for AFS (OpenAFS) and GPFS as well.

 GPFS is sensitive to devices failures, because usually it uses a declustered RAID approach. In terms

of RAIDS, there is also a trend to use Object RAID [27] where PanFS is leading.

 In distributed storages is a trend to add support for commodity hardware, where failures are a

common behavior rather than an exception. To overcome the occurring issues, the systems must

implement different mechanisms to achieve a specific degree of fault tolerance and high

availability.

 The access interface is an important characteristic of storage systems, therefore the distributed

storages may be divided in two main categories: systems that have support for conventional API

(i.e. Berkeley socket) or using a custom API. A conventional API has the advantage of

transparency, but a custom API has the fine tune functionality to increase performance. Ceph

mixes the two methods and uses an enriched conventional API with additional features for

manipulating different system characteristics.

 Systems that uses pieces of a files to distribute data is less sensitive to failures and have a better

degree of high availability compared to AFS, for example, which distributes entire files (volume

cloning).

 The file sharing semantics is handled as follows:

o AFS: Session Semantics (weak);

o GPFS, Lustre and Ceph: POSIX Semantics;

Distributed Storage Solutions And Optimizations

12

o GFS/HDFS: mimic POSIX Semantics (more relaxed semantics).

2.7 Network technologies for distributed storages

The network infrastructure has a great influence in the performance of distributed storage
systems [PIST, 2014/1] and is divided in two main topics: network topologies and protocol stacks.

2.7.1 The topology

The topologies used in distributed systems are defined by graphs used to create paths
between storage devices and edges [28]. There are intrinsic similarities between graphs used to
connect general purpose cores in multi-core systems and distributed systems in general, since they
aim relatively same characteristics: a perfect interconnection topology should have smallest latency
possible (round trip time close to zero), maximized throughput (line rate using any packet size),
minimum capital cost and a perfect fault tolerance and high availability [29]. In data centers (and
distributed storage systems) graph diameter influences latency and contention (characteristic more
relevant for SAN based systems). Also, a smaller node degree decreases the capital cost of the
network’s equipment, but it increases the latency since the topology will have more hops, a smaller
diameter lowers the latency and round trip time and increases the throughput, a smaller bisection
width facilitates the left-to-right traffic (important for data migration and data distribution among
storage nodes) and a high number of edges influences the deployment.

Analysis of topologies:

 The complete-graph has the perfect diameter (value of 1), hypercube, cube-connected-cycles,
binary-fat-trees and hypertrees has a logarithmic diameter (it is worth to mention that hypertrees
has the advantage of using constant speed for links at all levels, while fat-trees must provide
fatter links toward the tree root).

 The node degree is constant for torus, binary-fat-trees and hypertrees. Nevertheless, hypertrees
have the ability to scale also horizontally changing the k-ary dimension. The node degree of the
hypercube grows faster by logarithmic function, regarding the number of nodes in the topology.

 In terms of fault-tolerance, except for fat-trees, all other topologies offer alternative routing
paths. Hypertrees preserve diameter in case of faulty nodes, a very important advantage. Cube
style topologies have a better fault-tolerance, because they have many alternative routes
between any two nodes.

When designing a topology, the chosen graph depends on traffic requirements: east-
west/south-north traffic profile, low latency or high throughput and of course the balance between
costs and performance.

2.7.2 Protocol stack

In terms of protocol stack used, distributed storages are divided into systems that require
lossless mediums and systems that can use best effort mediums. Regarding OSI model, the reliability
problem can be solved at network layer 2 (data link) or layer 4 (transport).

Ethernet is the most common data link protocol used, but is a best effort by design, while for
example Fibre channel is a lossless medium. Basically, fibre channel protocol (FCP) runs over fibre
channel infrastructure, but there is a solution where FCP frames are embedded into Ethernet frames:
Fibre Channel over Ethernet. At layer 4, reliability can be handled by TCP, but with a relatively
performance penalty degree: iFCP, iSCSI, FCIP.

Distributed Storage Solutions And Optimizations

13

Ethernet has been enriched with a group of protocols named DCB (Data Center Bridging) by
IEEE group, [42] for traffic control to avoid packet dropping and therefore Ethernet has become a
lossless environment and an alternative to Fibre Channel.

Distributed storages built at file level are less demanding and usually run over TCP/IP/Ethernet
stack (classic LAN) using protocols such as: NFS, CIFS or SMB.

Distributed Storage Solutions And Optimizations

14

3 CASE STUDY: INFRASTRUCTURE FOR ELEARNING ENVIRONMENTS

3.1 Motivation

Usually, high education is expensive, therefore eLearning platforms provide a way of
affordable education with an effective cost of investments. In the last decade, cloud computing
research and adoption increased greatly due to its many advantages including economic benefits,
ease of management, power saving and so on. In essence, it provides the means to organize and
deliver a wide variety of software services including eLearning environments. Along with cloud
computing, file systems solutions were improved to meet requirements imposed by the distribution
characteristics of clouds. The distribution level of file systems, data management, data seek methods
and many other features of distributed file systems, influence performance of eLearning
environments. Also, clouds are constructed over computer networks topologies. Further, I propose a
high level architecture of cloud platforms adequate for eLearning software by outlining several
advantages that overcome issues related to distributed eLearning using Ceph as a data storage
environment and several domestic network topologies [PIST, 2014/2].

Why Clouds and eLearning?

eLearnig environments have several issues and some of them may be better handled by
clouds systems. One of the main issues is the infrastructure. Usually, eLearning infrastructure
requires huge investments, thus clouds being by definition an infrastructure provider may be used as
lay foundation for eLearning applications. Clouds scale dynamically (by demand), and offer a
collaborative environment as well [56] – an important feature for eLearning services. Basically,
eLearning environments have huge databases of learning objects that can be stored in cloud’s storage
systems. Therefore, the way that data is handled in cloud influences different aspects of eLearning
mechanism including searching and content delivery of learning objects. There is a wide variety of
storage systems implementations for clouds, encompassing many advantages. Other than the storage
system, the way that everything is linked together influences eLearning content delivering
performance. There are many network topologies suitable for clouds, including fat-tree, hyper-tree,
cube and hyper-cube. I took into consideration some characteristics that influence I/O performance:
scalability, latency and costs.

3.2 Clouds storage and network enhanced for eLearning environments

Clouds aims to meet several characteristics that impose a set of main requirements to storage
systems, including: sharing, scalability, transparency, high availability, fault tolerance, concurrent and
consistent data access and security (section 2.2). The design of storage systems may influence the
delivery, maintenance and management of learning objects, while network architecture influences
the system I/O performance.

3.2.1 Data distribution for eLearning environments

eLearning environments usually have tremendous database of learning objects, which are
organized per category and therefore a hierarchical organization won’t help – an alternative could be
semantic aware storages. There are researchers that support the idea that the hierarchical file
systems will be replaced by semantic file systems [57], because other than categorization issues they
also improve searching capabilities [58].

I propose a parallel and distributed file system architecture for a cloud storage system based
on two layers: first layer stores learning objects in flat address space (for example RADOS can be
used) and the second layer a semantic aware metadata for categorization and searching capabilities.

Distributed Storage Solutions And Optimizations

15

Another characteristic of eLearning systems is that the learners (users) are geographically
spread, using different network paths to access the cloud’s storage. To balance traffic load, the
system must take into account the learners profile distribution and split the data cluster into
distribution domains, where basically each domain is accessed from a specific gateway. The object
distribution has to be replicated in each of these domains, thus the data access performance may be
improved.

There is an alternative solution based on delegation points, which is a cacheable point of
learning objects that in the end are distributed to a group of users. There are few drawbacks for this
method including: security delegation, local storage for cached learning objects, lease method and so
on. Users may access the learning system from their home using just a web page, so even if the
internet provider would have such method in place there won’t be any visible gain, the user could still
see a big latency. The consequence of this proposal would be that the data has to be replicated on
many storage devices – can be considered a good idea since the price per GB storage is usually low.

One more improvement could be to use the network links at optimal capacity and balance the
load on the gateways if the network equipment supports Quantized Congestion Notification. There is
a genuine method that balances the traffic load between network gateways, which uses a red-black
tree to sort the available gateways based on congestion distance [59] or QCN-WFQR (section 6).

3.2.2 Clouds network

A cloud can span across a single or multiple data centers (public or private). The current data
center networking follows three layers architecture: core, aggregation and access. The main
drawback is that this architecture limits the allowed topologies to those that support a multi layered
organization

I propose a solution mostly based on fat-tree topology with redundancy. Basically, it provides
a 1:1 subscription but is limited in height due to the necessity of providing an uplink capacity equal to
the sum of all the downlinks. Due to this disadvantage, it is not used in a pure form; usually along the
way oversubscription increases. Also, this topology is better suited when most of the traffic is north-
south but it is not recommended for use in configurations where east-west traffic is predominant due
to the fact that distant nodes cannot communicate directly. In an eLearning environment most of the
data transfer is south-north, therefore this solution is a good choice.

Distributed Storage Solutions And Optimizations

16

3.3 Clouds and eLearning environment: proposed architecture

I propose a cloud architecture emphasizing different aspects related to storage system and
network topology that may influence eLearning environments, from architectural and I/O
performance point of view.

The architecture is composed of three main

infrastructure components: Storage System,

Servers and Network and two main software

components: Administration System and

Multi-agent eLearning System:

Administration System manages server

resources (creates, migrate and destroys

virtual machines and virtual switches) and

eLearning agents creates, migrate and

destroys agents, based on profile statistics.

3.3.1 The storage system

In terms of storage, I propose an alternative to OGSA-GFS [60]: a two layered storage system
based on Ceph components: (a flat address space (RADOS) and a semantic aware metadata. There
are several methods to implement such file organization: property-based, content-based or context-
based 0 and several architecture directions: integrated, augmented and independent (native). I
propose a native implementation with content-based semantics, because a hierarchical file
organization brings no advantage and the content-based architecture categorizes files and improves
searching.

Using Ceph/CRUSH, I propose a data distribution based on domains and therefore I define a
placement policy and cluster map to replicate each object three times in each domain for high
availability and fault tolerance.

3.3.2 The network profile

Read only and high throughput traffic is mostly south-north from system to learners,
therefore it will be small amount of replicated or rebalanced data (low east-west throughput
demands). Nevertheless, the monitors from RADOS which manages OSDs cluster by keeping storage
data synchronized and collect the state of each OSD should have low latency.

A hierarchical topology facilitates south-north high throughput traffic along with a new link
from monitors group to each OSDs group to decrease the latency between monitors and OSDs. Also,
is worth to mention that if the system grows, aggregation layers may be added, so in a hierarchical
topology the east-west latency is growing.

Distributed Storage Solutions And Optimizations

17

4 OPTIMIZATIONS OF DISTRIBUTED STORAGE SYSTEMS BASED ON HARDWARE
ENGINES

4.1 Motivation

Due to the advent of high speed Ethernet (40Gbps, 100Gbps or even 800Gbps), the hardware
systems along with software architectures must adapt to newly increased traffic. The capacity of
servers to handle such high traffic volume was exceeded. Thus, increasing port speed and CPU
computation power along with leveraging different cache levels were the first technologies used to
improve throughput and latency at server side. But, in the recent years the servers failed to meet
even higher traffic demands due to many factors, such as networks convergence or high volume of
real time traffic (e.g. voice or video) [31]. One improvement would be to increase the degree of
parallelism (i.e. increase the number of nodes in clusters and split tasks at finer granularity), but this
will lead to an increased complexity, power consumption and maintenance costs. Other improvement
would be to increase performance of each node by offloading the CPU cores and moving specific
tasks to dedicated hardware engines. Hardware engines have double impact: first, being dedicated
modules perform their role faster than software which runs on general purpose cores and second,
reduce significantly CPU utilization, thus increase the system performance and free CPU processing
time.

Intel investigations revealed several I/O bottlenecks at receiver side divided into three
overhead categories: system overhead, TCP/IP processing and memory access [31]. To meet these
overheads, Intel developed Accelerated High-Speed Networking technology (I/OAT) – a set of features
to reduce the receiver side packet processing overhead (e.g. split headers, DMA copy engine and
multi-queue usage to receive frames). Intel’s solution showed improvements for about 38% in CPU
utilization, the number of transactions processed increased by 14% and throughput by 12%, [32].

I followed a similar idea to increase the performance of each node from a cluster by offloading
the general purpose cores of packet processing at receiver side [PIST, 2013]. Offloading comes with
flows classifications and multi-queues distributions and by using Accelerated Receive Flow Steering
[33] is leveraged the parallelism of multicore systems. In other words, the hardware engines are
instructed to classify and distribute flows considering the SMP characteristic of multicore systems and
increase performance of parallel I/O applications running on the same machine. Also, by adding
queues weights adjustments I proposed a method of reducing the latency of sensitive flows, thus
making the system much responsive.

4.2 Integrated packet processing engines

In general, any System on Chip (SoC) integrates a set of dedicated hardware modules along
with general purpose cores into a single chip. In this thesis, I refer to a packet processing SoC as a
chip that integrates multiple hardware engines dedicated to network specific tasks, usually handled
by general purpose cores. And I refer to term offload (or hardware offload) to the migration of
particular tasks from general purpose cores to dedicated engines freeing processing time.

A packet processing SoC may have many programmable flows, therefore each transmitted or
received frame is distributed to a specific flow, where each flow can be seen as a path through a
graph with hardware engines as nodes and queues as edges.

4.3 Hardware accelerated cluster nodes

OS is the usual solution for coexistence of different applications on the same hardware
system. If the applications are operating systems, then virtualization (i.e. hypervisors such as KVM or

Distributed Storage Solutions And Optimizations

18

XEN) is the solution or if groups of applications (such as independent network stacks) needs a specific
isolation degree, then Linux containers (LXC) is the solution.

Given the above motivations, I propose two less restrictive models as alternatives for
coexistence of applications with high and low traffic demands, using hardware acceleration and
parallel processing of flows: Per Core Cluster Node and SMP Cluster Node and two implementation
directions: in kernel and user space.

(a). Kernel space implementation (b). User space implementation

Per Core Cluster Node model is characterized by the fact that each application instance is
bound to a core, thus the scalability is limited to the number of CPU cores. The modularity is achieved
by division of tasks at a smaller granularity by using dedicated threads (i.e. consumers) without being
scheduled on a different core. Each consumer is bound to a specific hardware queue or group of
queues that provides only specific frames to the consumer thread. The hardware engines must be
instructed to classify and distribute flows to match the consumers.

SMP Cluster Node model is similar with former model with the difference that the workload is
distributed over a set of cores using capabilities of hardware engines for flows classifications. One
solution would be to let hardware engines to distribute workload by pushing frames on cores in
“round-robin” fashion (using hash based functions), or to leave the OS scheduler to flatten the
workload by scheduling consumers among the core set and instruct hardware engines to consider
where the specific consumers are scheduled and push frames accordingly.

By configuring the hardware engines in concordance with software architecture and scheduler
affinity, multiple instances of these models belonging to different applications in a converged system
may coexist with an increased performance. It is obvious that SMP Cluster Node is befitting for high
traffic volume applications with multiple consumers and also is a generic form that can be configured
to behave as a Per Core Cluster Node as well if the core affinity is set to only one core.

To leverage the parallelism of multicore systems, I propose the usage of Accelerated Receive
Flow Steering (ARFS) [33]: the frames distributions have to consider where the specific consumers
were scheduled to run. This requirement imposes two things: first, each possible core where a
consumer could be scheduled must have a specific queue or group of queues where the hardware
engine is instructed to push the frames and second, the hardware engines must be able to steer and
push the frames accordingly. In another words, the hardware engines collaborate with OS scheduler
for workload balance while achieving a better performance degree.

Distributed Storage Solutions And Optimizations

19

Also, I propose two different implementations of these models: one uses the drivers in kernel-
space (more efficient) and the other one uses drivers in user-space (small performance penalty, while
assuring rapid development and flexible license policy).

An issue for the user-space model is the access method to a TCP/IP stack. By default Linux has
the network stack implemented in kernel, thus in case of user-space implementation the applications
have to deal with raw frames and lack of connection-oriented protocols. There are few solutions for
adding TCP/IP support, such as: network tunneling/tap interfaces or off-the-shelf user-space TCP/IP
stack [34]. Another issue for the user-space model is the method of signaling the arrival of frames
with few solutions: polling or process signals.

To decrease the latency of sensitive traffic, I propose a solution based on queue weighting:
the queues associated with most sensitive flows have higher weights and are scheduled first, thus the
sensitive flows are handled first. How flows sensitiveness is established depends on applications
purposes, thus for exemplification I propose a solution for Ceph by classifying Monitors and OSDs
traffic in three different classes, each associated with a different group of queues with specific
weights.

4.4 Case study: Hardware accelerated Ceph with QorIQTM

As case study, I have used QorIQTM P2041 packet processor to decrease latency of sensitive
flows and increase performance of Ceph’s nodes: OSDs, monitors and metadata servers.

4.4.1 QorIQTM packet processors

QorIQ combines multi-general purpose cores with various hardware engines providing a very
flexible infrastructure (Data Path Acceleration Architecture – DPAA) for processing high volume of
network traffic at high speeds. Among multiple hardware engines within DPAA, I have focused on
following three components: Queue Manager (QMan [35], pp. 6-1/299), Buffer Manager (BMan [35],
pp. 7-1/531) and Frame Manager (FMan [35], pp. 8-1/594). QMan is the means by which data is
passing between hardware modules, BMan role is to reduce overhead of software for memory
management and FMan has three main functions (PCD): Parse fames to check packet integrity and
identify protocols within frame headers, Classify frames by means of keys generated (KeyGen [35],
pp. 8-395/1557) based on parsing results and Distribute frames to queues following different
distribution profiles.

Apart from standard protocols (i.e. hard-wired Parser capabilities), FMan can be configured to
parse and detect up to three proprietary protocol headers or application defined fields by means of
Software Parser ([35], pp. 8-391/982) feature. It uses NetPDL (an XML-based language for describing
packet headers [37]) to define non-standard fields configured by Frame Manager Configuration Tool.

In DPAA context, the unit of transmitting data is a frame (detailed by a frame descriptor),
stored in frame queues. Frame queues granularity and creation depends on software architecture and
applications purposes. Furthermore, frame queues are stored in work queues grouped in channels of
8 prioritized items, where each channel identifies one hardware entity.

4.4.2 Accelerated Ceph’s nodes

Combining hardware engines capabilities with software architecture, the performance of each
node in a cluster can be increased, therefore for the same performance is required a lower number of
nodes which leads to smaller capital costs. Also, with the advent of converged systems, each cluster
node (following models presented in Section 4.3) may perform different roles in the same time.

One key for increasing performance of each node is the granularity of traffic division of each
Ceph service in classes handled by specific consumers – following models presented in section 4.3.

Distributed Storage Solutions And Optimizations

20

Basically, high traffic volume needs to be divided among multiple consumers, queues and related set
of cores.

 In RADOS context, OSDs nodes have the highest traffic volume (I/O mostly), while MONs need
low latency traffic, since they handle OSDs failures. I propose A-OSD (as Accelerated OSD), A-MDS (as
Accelerated MDS) and A-MON (as Accelerated Monitor). For A-OSD I propose a SMP Cluster Node
model to be able to handle high I/O traffic, and same for A-MDS to be able to handle journals and
metadata (stored by RADOS) and queries from clients. A-MON doesn’t need high processing power,
neither ports that supports high traffic volume, so in the context of converged systems, monitors may
share the node with different other applications, therefore I propose a Per Core Cluster Node model.

Accelerated nodes can be implemented using QorIQTM packet processors with FMan PCD
capabilities and QMan scheduling features. Instructing FMan to classify and distribute frames
according to each class particularities (e.g. see A-RADOS classification), a performance increase is
achieved. I propose for A-OSD and A-MSD a uniform distribution on queues, distributed further
uniform on cores (in case where ARFS is not used), this way clients are distributed fair across the
system rather than facilitating traffic of a single client. In case of ARFS usage, the queues are uniform
distributed on the cores, but when a particular frame is pushed to a core’s queue, the hardware
engine consider where the consumer was scheduled to run. For system traffic (i.e. system consistency
messages, journaling and metadata) classification I propose to use user defined flows recognition
facilitated by Software Parser. A-MON has only user defined flows and therefore the only solution is
the usage of Software Parser capabilities.

4.4.3 Accelerated RADOS

RADOS is composed by two distinct clusters: one of monitors and one of OSDs, where
monitors are responsible for managing a large number of OSDs. Two important keys of data clusters
(including RADOS) are data reliability and availability ([22], pp. 119). Usually, to make consistent data
available to all parties, these must be handled in timely fashion.

For the above reasons, I propose an accelerated RADOS (A-RADOS) implementation based on
packet processing engines. By classification and prioritization of RADOS messages I aim to decrease
latency of sensitive operations (section 2.6.1) and improve overall cluster responsiveness, thus
improve data availability.

In monitor context, I consider that the most important message types are the ones that assure
a consistent view of the system and are sensitives for cluster stability, followed by map distribution to
monitors, responsible in its turn to distribute it further in the whole cluster: Elections and leases
messages (class 1), cluster-map updates distribution to Monitors (class 2), cluster-map distribution to
all other system parties (class 3).

In OSDs cluster context, I consider that the messages required for system consistency are the
most essential, followed by I/O traffic (i.e. read/writes and replication strategies) and storage
recovery is the least sensitive operation, so I propose the following classification: heartbeats and
cluster-map update propagation (class 1), data I/O traffic (e.g. reads/writes) and data replication
(class 2), OSDs recovery (class 3).

Prioritization of traffic classes is achieved by configuring weights to flow queues, where each
flow queue deals with a specific class. Thus, considering the above classifications, the first traffic
classes have the highest weight and their flow queues will be scheduled first, while the last traffic
classes have the lowest weight and their queues will be scheduled last, and therefore the latency of
sensitive traffic is decreased while achieving a better system responsiveness.

Distributed Storage Solutions And Optimizations

21

Using a QorIQ packet processor, the prioritization of three different traffic classes is achieved
by splitting work queues in three groups and configuring weights to reflect the traffic prioritizations
listed above.

4.4.4 Micro-benchmark results

I consider that the number of clients served per seconds by a MDS reflects its performance.
For testing purposes, I have measured how much time a particular MDS request takes (in core ticks)
and simulate using Per Cluster Node model, 4 different nodes that handles requests in parallel. Using
this setup, I did three different tests along with kernel adjustments: without hardware acceleration
(i.e. without frame classification and distribution) and using Receive Flow Steering (software
implementation only) with and without core affinity.

As hardware platform I have used a QorIQ P2041 machine with 4 general purpose cores and
hardware acceleration for flow steering, flow distribution and queue management (DPAA). The
platform supports network connections of 1Gbps and 10Gbps, but for compatibility purposes with lab
systems I’ve used only 1Gbps connections. The topology was very simple, composed by one PC with
1Gbps Ethernet card as client machine and P2041 as A-MDS.

For each test, I have counted the
number of handled requests per second (i.e.
transactions). From the tests results listed in,
the improvement in terms of transactions was
improved by the test with RFS support and no
affinity with about 3.5% and comparable CPU
utilization and with affinity the number of
transactions was improved with about 12%:

Model

Requests per second
CPU

util.
node

1
node

2
node

3
node

4
Avg.

no acc. 6867 6877 6860 6882
687

1 25%

RFS 7109 7117 7117 7119
711

5 25%

RFS

affinity 7672 7692 7717 7725
770

1 27%

For A-RADOS I did two kinds of tests (results shown below): by running concurrent requests of
all three class types and by running only class III. Former tests type emphasizes that the most priority
class is handled before the other classes if hardware queues prioritization support is used, while the
latter shows that if only class III traffic is running the number of handled requests are comparable.

Model
Requests per second

Class I Class II Class III Total

No

prioritization
2851 2902 2959 8712

Queue

prioritization
6556 1118 348 8022

Model
Requests per second

Class I Class II Class III Total

No

prioritization
0 0 6957 6957

Queue

prioritization
0 0 6858 6858

Distributed Storage Solutions And Optimizations

22

5 NETWORKING CHARACTERISTICS IN CONVERGED INFRASTRUCUTRE

The main reasons of Converged Networks (also known as Unified Networks Infrastructure)
are economic in nature, but also technological [38], [39], [40]: simplicity, cost saving, elasticity,
requirements imposed by virtualization, better usage of servers resources, simplified management
and so on.

A defining characteristic of I/O protocols for storage devices (such as SCSI) is that they do not
handle lost data in timely fashion and therefore a lossless communication environment is befit.
Usually SANs use Fibre Channel (used by approximately 80% of data center storage market [40])
which by design is a low latency and lossless environmental high speed. While Ethernet by design is a
best effort communication environment and along with IP protocol it provides an end-to-end
network for reliable transport protocols, such as TCP.

A converged support for LANs and SANs imposes a set of Ethernet enhancements (i.e. Data
Center Bridging group of protocols) to enable a lossless medium. Also, Ethernet became a viable
solution due to its advantages against FC networks, such as supported high speeds (up to 10Gbps,
100Gbps, 400Gbps or even new Intel’s 800Gbps, while FC supports up to 2, 4, 8, 16 or 32Gbps just
arriving) or lower capital-costs.

Nevertheless, there are several options that can be used with vanilla Ethernet too (e.g. iSCSI,
iFCP or FCIP), but reliable protocols underneath to solve contention and congestion issues (e.g. TCP)
are required. Basically, these approaches are at a lower cost, but bring a significant performance
penalty due to extra encapsulation. Usually, these are used for small and medium business along with
low cost Ethernet environments [41].

Fibre Channel over Ethernet (FCoE) protocol enables the transmission of FC frames over
Ethernet and it relies exclusively on DCB [42] extensions, which today comprise the following
protocols: Priority Flow Control (PFC), Enhanced Transmission Selection (ETS), Data Center Bridging
Exchange (DCBx), Quantized Congestion Notification (QCN).

However, these extensions can be used for any loss-sensitive application that does not have
contention or congestion control mechanism and requires only L2 protocols. There are even more
ingenious ideas, such us improving TCP incast communication problem (i.e. multiple servers
simultaneously transmit TCP data to a single aggregator: TCP performance is degraded as
consequence of retransmission timeouts as result of packet loss due to overwhelmed queues at
network bridges level) [43].

The main focus was on QCN (a viable alternative to Fibre Channel), used further for QCN-
WFQR algorithm.

5.1 Quantized Congestion Notification

Quantized Congestion Notification [48] ([49], pp. 1071) enables peer-to-peer congestion
management by dynamically adjusting throughput due to changing bottlenecks in absence
management of an upper layer protocol.

It is composed by three main components: congestion, reaction and reflection points. Congestion
Points (CPs) samples incoming frames and notifies sources to adjust their rates in order to keep its
queue to an equilibrium value:

𝑭𝒃 = −(𝑸𝒐𝒇𝒇𝒔𝒆𝒕 +𝝎 ∙ 𝑸𝜹) , where

𝑄𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑄 − 𝑄𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,

𝑄𝛿 = 𝑄 − 𝑄𝑜𝑙𝑑 and ω is rate weight (taken to be 2 for baseline simulations).

(1)

Distributed Storage Solutions And Optimizations

23

Reaction point’s rate limiters (RLs) adjust current rates (CRs) to reach at targeted rates (TRs)
using a byte counter in phases, as follows:

 RP receives feedback, RL sets TR as CR and CR is decreased with not more than half:

 RP enters in rate increase composed by three phases: Fast Recovery (FR), Active Increase (AI) and

Hyper-Active Increase (HAI). In FR phase the reaction point tries to recover the lost bandwidth,
while in the next phases it checks for extra bandwidth:

The rate increases phases have 5 cycles each. At the end of each group of 5 cycles, if no Fb has

been received, RL enters in next phase (where in HAI phase, the RL throughput can reach at line rate).
In cases when CRs are very small and the BC measured in time is very large, the phases are controlled
by a timer. The timer is similar with the BC and counts 5 cycles of Tms (e.g. of 10ms for a 10Gbps line

rate) in FR and
𝑇

2
ms in AI.

Regarding both byte counter and timer, RL is in FR phase if both BC and timer are and CR is
updated when at least one completes a cycle. The RL is in AI phase if at least one completes a group
of 5 cycles and eventually the RL is in HAI if both BC and timer are.

5.2 QCN weaknesses and improvements

Due to existence of different types of devices within a network, the coexistence of congestion
aware and unaware segments is a challenge. According to standard, this situation is solved using
priority regeneration tables, therefore when frames are received from congestion unaware segments
with a priority that is congestion controlled, it is remapped to different priority left unused, so this
implies that at least one priority to be kept for this scenario (i.e. alternate non-CNPV priority ([49], pp.
1071).

The weakness is revealed when automatic configuration is enabled and alternate priorities are
automatically chosen, and according to standard, priority chosen is the lowest unused in CNDs. This
may affect QoS policies used for other traffic types and lead to unwanted traffic injections for that
QoS domain from edge ports.

One solution would be to check each bridge within topology and verify all QoS requirements
and priorities. Impractical, because a topology may have high number of network devices and it won’t
be automatic anymore. The proposed solution contains a hybrid defense mode choice that allows
both manual and automatic settings to use the same alternate priority value, therefore the
administrator is able to choose the alternate priority used by automatic configuration and avoid QoS
disruptions [Patent #8891376].

Another weakness of QCN is the rate unfairness of multiple flows sharing the same bottleneck
link. This comes from the fact that when a congestion point computes the feedbacks it doesn’t take
into consideration the rate of the reaction points. This issue has been solved by two proposed

𝑻𝑹 = 𝑪𝑹

𝑪𝑹 = 𝑪𝑹 ∙ (𝟏 − 𝑮𝒅 ∙ |𝑭𝒃|), where
(2)

𝑻𝑹 = 𝑻𝑹 + 𝑹

𝑪𝑹 =
𝟏

𝟐
(𝑪𝑹 + 𝑻𝑹), where

R is 0 in fast recovery, 5Mbps for active increase and i50Mbps for and hyper active
increase (where i is the ith smaller cycle counted by BC and timer in AI) for 10Gbps line
rate.

(3)

Distributed Storage Solutions And Optimizations

24

algorithms: Approximate Fairness with QCN (AF-QCN [51]) and Fair Quantized Congestion Notification
(FQCN [52]).

5.2.1 The Fair QCN Solution

The main idea of FQCN is that every flow has a share rate with respect to the congested queue
and the feedback computed per flow which is proportional with the exceeded rate. Basically, the
FQCN algorithm aims to things: first it identifies the overrated flows and second the feedbacks are
individual to each source using per flow monitoring.

In my opinion, there are few implementation drawbacks: first, the byte counter per flow must
be supported by hardware, because the software implementations base on interrupts or polling may
have problems at high rates and second, the flow tables can be very large, in which case the
management is hampered.

Distributed Storage Solutions And Optimizations

25

6 QCN BASED DYNAMICALLY LOAD BALANCING ALGORITHM

6.1 Motivation

It is almost impossible to predict the network load profile at a given time or to build an
optimal topology or configuration to ensure perfect congestion domains, therefore decision-making
based on profiling may lead to better performances.

I propose QCN Weighted Flow Queue Ranking (QCN-WFQR), an algorithm based on
Quantized Congestion Notification protocol [PIST, 2015]. The main idea of the algorithm is to
compute a series of congestion indicatives used by different entities (e.g. clients, Network Profilers or
SDN controllers) to balance the traffic and serve better the purposes of applications. The algorithm is
generic, so that it can be used in old and well known computer networks and in the novel software
defined networks paradigm.

6.2 Alternative solutions

In congestion aware networks (i.e. QCN based), each reaction point receives feedback
messages from multiple congestion points and adjust rate accordingly. To achieve a better congestion
profile in the network, one solution would be that each congestion source (i.e. reaction point) to
create a data base with congestion indicatives per each congestion point from which it receives
feedbacks, thus each reaction point in the system is associated with indicatives received from each
congestion point (CPID: congestion point ID embedded in each congestion notification message): t
(time of occurrence), p (priority of sampled frame), QnzFb (quantized value of feedback), Qoff (queue
size excess) and Qδ (rate excess) [App. #20150023172]. Furthermore, reaction points may use these
databases for performance analysis, based on which system administrators can change topology
configuration and improve the system performance. Or reaction points may use them to adapt and
influence different aspects of the network devices and obtain a better congestion profile in the
system.

I chose to follow a different path, where instead of databases created by each reaction point,
each congestion point creates profiles for each reaction point it servers. The main idea of the
algorithm is to compute different congestion indicatives, local (by each congestion point) and system
wide. Based on these indicatives the congestion profilers or SDN controllers are instructed to
dynamically move flows between congestion points for a better congestion profile at system level.
Also, targets can be instructed to choose a device that has the lowest contribution to system
congestion.

6.3 QCN Weighted Flow Queue Ranking

The main idea is that each node keeps a local information database that reflects the
congestion status of a portion of the network from its point of view. Further, all local information
databases are gathered by a central entity and compute a database related to the entire system.
Depending on purposes of the applications, system wide or local congestion information may be used
to achieve a better usage of the network and improve the system performance.

The local congestion indicatives are flow shares, queues weights and queue ranks, while
system congestion indicatives are flow weights and reaction point (or device) weights.

Furthermore, I propose a method of QCN-WFQR usage in distributed and parallel file systems,
where by using system wide congestion indicatives, a particular data clone is chosen to achieve a
better balanced traffic load within the network.

Distributed Storage Solutions And Optimizations

26

Also, I propose a method of using QCN-WFQR for distributing traffic workload between
multiple servers hosting the same application and migrating already established flows to alternate,
less congested paths, thus reducing the need to slow down the traffic at the source.

6.3.1 QCN-WFQR indicatives

6.3.1.1 Flows

A computing node (e.g. server) in distributed systems offers services by means of flows. A
service is identified by a service id which can be encapsulated into congestion notification tags ([49],
pp.1096).

6.3.1.2 Ranking

A queue rank (4) within a port is defined as the number of flows within that queue (no
multicast support):

6.3.1.3 Flow shares

A flow share (Eq. 6, 12) is defined as a congestion measure from each topology’s node point
of view for a specific flow related to a port’s queue (i.e. congestion point).

6.3.1.3.1 Flow shares based on standard QCN

The flow share has to contain information to be able to compare flows that shares the same
congestion points and also flows with different routes and different congestion points. Therefore, the
share is a combination of three indicatives: feedback average within a time frame, the frequency of
feedbacks transmitted to a flow and queue rank within the same time frame. The feedback is a
measure of congestion related to the queue regardless the rate of source, so I assume that higher
rates imply higher probabilities of receiving feedbacks for a flow. The rank of a queue reflects the
number of flows affected in case of congestion (i.e. the main idea is to affect the smallest number of
flows in case of congestion).

To reflect the frequency of transmitted feedbacks for a flow, when a feedback is sent to a
specific reaction point for a specific flow, all the other flows within the queue recalculates their
feedbacks averages by considering a null feedback sample, therefore flows with smaller rates are
more likely to have a larger number of null samples than flows with higher rates and for
implementation purposes I have used exponential moving average function.

𝑹𝒕
𝒒𝒌 = 𝑪𝑶𝑼𝑵𝑻𝒕〈𝒇𝒊〉, 𝒇𝒊 ∈ 𝓠

𝒇𝒊 (4)

𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑖) =

{

 𝛼𝑡 ∙ 𝛹𝑡

𝑞𝑘(𝐹𝑏𝑡
𝑞𝑘) + (1 − 𝛼𝑡) ∙ 𝛹𝑡−1

𝑞𝑘 (𝐹𝑏𝑡−1
𝑞𝑘 , 𝑓𝑖), 𝑞𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑓𝑖,

(1 − 𝛼𝑡) ∙ 𝛹𝑡−1
𝑞𝑘 (𝐹𝑏𝑡−1

𝑞𝑘 , 𝑓𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑴𝑰𝑵

𝑓𝑗 ∈ ℱ𝑞𝑘
𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑗), 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

Where 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘) is quantized feedback at moment t relative to queue k.

And 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑖) is quantized feedback for 𝑓𝑖 at moment t relative to queue k.

(5)

Distributed Storage Solutions And Optimizations

27

So, flow share for flow 𝑓𝑖 computed by queue 𝑞𝑘 at moment t is:

6.3.1.3.2 Flow shares based on FQCN

If FQCN algorithm is used, the feedback is computed by considering the bytes received in a
specific time frame T. Most network devices have the ability to provide average throughput per
queue basis, but it is needed per flow basis, which it may be considered a drawback since it is very
hard to implement this feature at hardware level. Considering the above motivation, there is a
possibility to approximate throughput per flow by using the same method of exponential moving
average, as shown below (throughput at moment t for flow 𝑓𝑖 related to queue k is):

Furthermore, to compute the bytes received in time frame T for flow 𝑓𝑖 related to queue k is

easy:

The FQCN shares and FQCN fine grained shares are computed as follows:

And the FQCN feedback for each culprit is computed as shown below:

Each event time, the QCN-WFQR flow share is updated, as shown below:

The difference between QCN-WFQR based on standard QCN and QCN-WFQR based on FQCN

is that FQCN consider the flow rates when computes feedback, therefore the flow share contains
enough information to be able to compare flows that shares the same congestion points and also
flows with different routes and different congestion points.

𝑺𝒉𝒂𝒓𝒆𝒕
𝒒𝒌(𝒇𝒊) = 𝜳𝒕

𝒒𝒌(𝑭𝒃𝒕
𝒒𝒌 , 𝒇𝒊) × 𝑹𝒕

𝒒𝒌 (6)

𝑅𝑎𝑡𝑒𝑡
𝑞𝑘(𝑓𝑖) = 𝛼𝑡 ∙ 𝐵𝑦𝑡𝑒𝑠(𝑓𝑟𝑎𝑚𝑒 ∈ 𝑓𝑖) + (1 − 𝛼𝑡) ∙ 𝑅𝑎𝑡𝑒𝑡−1

𝑞𝑘 (𝑓𝑖) ,

Where 𝛼𝑡 = 1 − 𝑒−
∆𝑡

𝑇
(7)

𝐵𝑡
𝑞𝑘(𝑓𝑖) = 𝑇 ∙ 𝑅𝑎𝑡𝑒𝑡

𝑞𝑘(𝑓𝑖) (8)

𝑀𝑡
𝑞𝑘(𝑓𝑖) =

𝑤𝑖
𝑞𝑘

∑𝑤𝑖
𝑞𝑘
∙∑𝐵𝑡

𝑞𝑘(𝑓𝑖) (9)

𝑀𝐻𝑡
𝑞𝑘(𝑓𝑖) =

𝑤𝑖
𝑞𝑘

∑ 𝑤𝑖
𝑞𝑘

𝑆𝐻
∙∑𝐵𝑡

𝑞𝑘(𝑓𝑖) (10)

𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑖) =

𝐵𝑡
𝑞𝑘(𝑓𝑖)

𝑤𝑖
𝑞𝑘

∑
𝐵𝑡
𝑞𝑘(𝑓𝑖)

𝑤𝑖
𝑞𝑘𝑆𝑅

∙ 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘)

Where 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘) is the feedback quantized at 64 bit and 𝛹𝑡
𝑞𝑘(𝐹𝑏𝑡

𝑞𝑘 , 𝑓𝑖) is quantized

feedback for flow 𝑓𝑖 and 𝑆𝑅 is the fine grained culprit list

(11)

𝑺𝒉𝒂𝒓𝒆𝒕
𝒒𝒌(𝒇𝒊) = 𝜳𝒕

𝒒𝒌(𝑭𝒃𝒕
𝒒𝒌 , 𝒇𝒊) × 𝑹𝒕

𝒒𝒌 (12)

Distributed Storage Solutions And Optimizations

28

6.3.1.4 Weighting

A flow weight (13) is defined as a congestion measure from system point of view for a specific
flow, while a reaction point weight (14) is defined as a congestion measure from system point of view
for a specific reaction point. Therefore, a flow weight at moment t for flow 𝑓𝑘 is computed as the sum

of flow shares received from all nodes (i.e. 𝒬𝑓𝑘):

And a reaction point weight at moment t for 𝑅𝑘 is computed as the sum of all flow weights for

flows whose rates are adjusted by it (i.e. ℱ𝑅𝑘):

A queue weight (15) at moment t is defined as a local congestion measure related to queue

𝑞𝑘 and computed as sum of all feedback averages of flows controlled by the queue (i.e. ℱ𝑞𝑘) and its

rank (𝑅𝑡
𝑞𝑘), as follows:

This weight enables the comparison of queues based on which a specific flow may be routed

or migrated achieving a better balanced traffic within the network.

6.3.2 QCN-WFQR algorithm based on standard QCN

𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒇𝒌) = ∑ 𝑺𝒉𝒂𝒓𝒆𝒕
𝒒𝒊(𝒇𝒌)

𝒒𝒊∈𝓠
𝒇𝒌

(13)

𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝑹𝒌) = ∑ 𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒇𝒊)

𝒇𝒊∈𝓕
𝑹𝒌

 (14)

𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒒𝒌) = [∑ 𝜳𝒕
𝒒𝒌(𝑭𝒃𝒕

𝒒𝒌 , 𝒇𝒊)

𝒇𝒊∈𝓕
𝒒𝒌

] × 𝑹𝒕
𝒒𝒌 (15)

Local congestion indicatives calculus: flow shares, queue ranks and queue weights
procedure Q-DO-ENQUEUE(q, p) ᵒ add received packet p to sampled queue q

Fb ← QCN-FEEDBACK(q, p) ᵒ compute feedback Fb for received packet p

if Fb < 0 then ᵒ if computed Fb is negative then do QCN-WFQR algorithm
call QCN-WFQR-UPDATE-FLOW-TABLE(q, p) ᵒ update flow table is packet p belongs to new flow
call QCN-WFQR-UPDATE-QUEUE-RANK(q) ᵒ update queue rank (size of flow table)
call QCN-WFQR-UPDATE-INDICATIVES(q, p, Fb) ᵒ update QCN-WFQR congestion indicatives

end if
add (q, p) ᵒ add packet p to queue q

end procedure

procedure QCN-WFQR-UPDATE-FLOW-TABLE(q, p) ᵒ update flow table regarding packet p (if new flow)
if flow(p) ∉ flow_table(q) then ᵒ if packet p belongs to a new flow, then add flow to table

add (flow(p), table(q))
end if
call QCN-WFQR-AGE-FLOW_TABLE(q) ᵒ remove from table older flows slipped from time frame

end procedure

Distributed Storage Solutions And Optimizations

29

6.3.3 Algorithm analysis

6.3.3.1 Flows shares analysis

The main idea of flow share is that it has to reflect the reaction point rate and in the same
time to reflect the feedback values. I assumed that the reaction point rate is reflected by the
frequency with which the feedback is sent to a specific flow, while the distance until congestion is
outlined by the feedback. Basically, the former situation enables comparison of flows that shares the
same queue but with different rates, while the later situation enables comparison of flows having
same rate but on different routes and different queues with different congestion conditions (i.e.
different feedback values). Based on synthetic simulations was shown that the flow share responds
for both rate and feedback variation.

6.3.3.2 Congestion indicatives analysis

At a particular moment a flow cannot have more than one congestion point, because a
congestion point implies the smallest throughput within a flow path. But, if a different point is
congested due to profile traffic changes, then the throughput must decrease even more, therefore
the old congestion point will be released.

In terms of flow comparison, I distinguish three different situations as follows:

1. Solitary congestion islands: the compared flows shares the same queue (congest the same point);
2. Disconnected congestion islands: the compared flows congest different queues (different

congestion points);

procedure QCN-WFQR-UPDATE-INDICATIVES(q, p, Fb) ᵒ local congestion indicatives: flow shares, q rank and weight
c_time ← current time ᵒ current time (for EMA calculus)

min_ema ← QCN-WFQR-GET-MIN-EMA(q) ᵒ minimum EMA from all flows within flow table

q_weight ← 0
for “each entry e” ∈ flow_table(q) do ᵒ for each flow from table related to queue q

if e.ema_old = 0 then ᵒ initialize OLD EMA with minimum if first
e.ema_old ← min_ema

end if
e.ema ← EMA (p, Fb, c_time, e); ᵒ new EMA for flow related to entry e

e.flow_share ← e.ema * rank(q) ᵒ compute flow share for entry e

q_weight ← q_weight + e.flow_share ᵒ update queue weight

end for
end procedure

System related congestion indicatives calculus: flows weights and reaction points weights
procedure QCN-WFQR-QUERY-INDICATIVES(cpid) ᵒ query each CPID for changes in flow table

for “each flow f” ∈ CPID do ᵒ for each flow received
call QCN-WFQR-UPDATE-SYS-TABLE(flow) ᵒ if indicatives changed update sys table

end for
end procedure

procedure QCN-WFQR-UPDATE-SYS-TABLE(flow) ᵒ update sys table

call QCN-WFQR-UPDATE-SHARE(flow) ᵒ update flow’s share
call QCN-WFQR-UPDATE-SHARE-WEIGHT(flow) ᵒ update flow’s weight
call QCN-WFQR-UPDATE-RP-WEIGHT(flow) ᵒ update reaction point weight

end procedure

Distributed Storage Solutions And Optimizations

30

3. Hybrid congestion islands: the compared flows are in solitary congestion island, but occasionally
different flows may cause other congestion points and move flows into disconnect congestion
islands or vice-versa.

6.3.3.3 QCN-WFQR simulator

For simulations was used an open-source simulator: NS-3 (a discrete-event network
simulator), [53]. The simulator of QCN-WFQR implementation has the following main objects:
reaction point, congestion point and profiler or controller in case of SDN.

6.3.3.4 QCN-WFQR simulation analysis

6.3.3.4.1 Flows contributions to system congestion profile

This first test aims to emphasize the flows contributions to system congestion profile: flow
shares, flow weights and reaction point weights. In another words, reaction points with low flow
rates implies lower weights, therefore tenants can cooperate and decide upon different services
locations and achieve a fair congestion profile and a better system performance.

For simulation purposes I have used a binary tree topology with three congestion controlled
nodes. Each child node has a device with a reaction point and two flows each, while the parent node
has a device with a server (as target). From QCN stand point, each congestion controlled node has a
transmission queue used for feedback calculus. From QCN-WFQR stand point, flow share calculus
uses a window of 2 seconds, but the flow table has an age function of 250ms.

It can be seen from the simulations results, shown below, that the CP3‘s local share variation,
the flow weights and reaction points weights follows the flows rates profile:

(a) Simulation topology

(b) CPs queue variation

(c) Flows rates variation

(d) CP3 flow shares variation

(e) Flow weights variation

(f) Reaction points (devices)

weights variation

QCN-WFQR (NS3): simulation results for variation of flow related indicatives

Distributed Storage Solutions And Optimizations

31

6.3.3.4.2 Queues weights variations

The second simulation aims to emphasize that flows rates variations reflects queues weights
variations, thus migration decisions may be taken to balance traffic and achieve a fair congestion
profile among system congestion points.

Same as for the former simulation, a tree based topology was used with alternative paths, so
each of the four device’s flows has 2 alternative paths. In the first 5 seconds of simulation time, the
congestion point 3 forwards and samples 3 flows (flow 1, 2 and 3), while congestion point 4 forwards
and samples one flow (flow 4). It can be seen from the results depicted below that the CP3’s weight
queue is significantly higher compared to CP4, which servers only 1 flow and also, from device
weights stand point, RP1 flows (flow1&2) has higher throughput capabilities, then it has a higher
probability to receive feedbacks, so RP1 weight is higher than RP2 weight:

6.3.4 QCN-WFQR applications

6.3.4.1 Elections in distributed systems with homogenous nodes

In general, considering a distributed system (or cloud) with multiple classes of services, where
each class has many homogenous nodes. By using QCN-WFQR, I propose an election method to
maximize bandwidth usage while minimize congestion in the network and improve overall system
response time.

If the number of clients varies and their needs are unknown, then the network congestion
pattern is basically nondeterministic. When a particular service is required, I propose that the choice
of a node to be based on congestion indicatives provided by QCN-WFQR system profiler.

For exemplification, in distributed and parallel file systems, a file is divided in data chunks (or
objects) replicated on multiple storage devices, so a data segment can be transferred from any
replica. Most distributed file systems uses a static distribution (e.g. CRUSH – Controlled Replica Under
Scalable Hashing), but with advent of converged networks a static distribution may not be the best
choice. Therefore, using QCN-WFQR the replica may be chosen dynamically and improve system
responsiveness by trying to avoid network bottlenecks. In this case is worth to mention that the
reaction points are the storage devices.

The heart of this method is that the local congestion indicatives communicated to system
profiler and the congestion indicatives communicated to the client must reflect the current system
congestion status. So, if the information is communicated too often, then the system profiler may be
overwhelmed or if it is too seldom, then the information will not reflect the current congestion status

(a) Simulation topology

(b) Flow rates variations

(c) CP3, CP4 queues weight variation

QCN-WFQR (NS3): simulation results for variation of queue related indicatives

Distributed Storage Solutions And Optimizations

32

of the system. This means that the algorithm is very sensitive to wild congestion profile variations, so
I propose to use larger data chunks.

Besides congestion indicatives communication, the performance and implementation of the
system profiler greatly influence the system behavior: distributed implementation and logically
centralized or completely centralized implementation. Plus, the profiler must have a very low latency
connection with each congestion point and each client, so that the congestion indicatives to be
exchanged in timely fashion.

6.3.4.2 Dynamically balanced flows in computer networks

The algorithm performance is directly influenced by the latency with which the Network
Profiler or SDN controller gets the relevant congestion indicatives, decides and move flows while
achieving a better balanced traffic within the system topology.

First, the profiler/controller design follows either a centralized or distributed model [54]. Each
method has its own pros and cons. For example, a centralized design has scaling limitation, bigger
bottleneck probability, single point of failure, but it has a simpler complexity (basically it follows a
multi-threaded design over SMP systems) and it has strong semantic consistency, while a
decentralized design scales up easy and meet performance requirements, handle better data plane
resilience and scalability, fault tolerant, but it has a weak consistency semantics (and it is worth to
mention that a strong consistency implies complicated implementation of synchronization
algorithms) and it has much more complex implementation [54].

Second, how congestion indicatives are communicated is strategic to relevance of the
decisions based on QCN-WFQR algorithm. Basically, it has to either transmit information at short
intervals overloading the controller or to filter and condense the information at the source before
transmitting it to the controller.

Distributed Storage Solutions And Optimizations

33

7 CONCLUSIONS

This thesis begins with a general analysis of the following distributed storage systems: AFS,
GFS, GPFS, Lustre and Ceph, studding different aspects such as taxonomies, architecture details and
network characteristics. The analysis is followed by a proposal for eLearning infrastructures, as a case
study. Afterwards, several optimizations to distributed storage systems are proposed and a novel
algorithm for dynamic load balancing in congested aware networks: QCN-WFQR.

7.1 The original contributions of the thesis

Contributions to the analysis of distributed storage systems (chapter 2)

I proposed a simple and comprehensive taxonomy for storage systems considering four
important characteristics: locality, sharing, distribution level and semantics (section 2.1). For
characterization of distributed storage systems I proposed a relevant set of requirements based upon
existing documentation in the field (section 2.2). Also, I highlighted the scale-out methods at different
layers of file systems, thus building different types of storage systems, such as SAN or NAS (section
2.3). And to emphasize the similarities between distributed and centralized storage systems I
proposed a generalized layout (section 2.5.3).

The analysis of distributed storages and related contributions were published in [PIST,
2014/1].

Contributions to the infrastructure for eLearning environments (chapter 3)

In this chapter I proposed a parallel and distributed file system adapted for eLearning
environments, in turn hosted by cloud systems. The proposed storage system can be considered an
alternative solution to OGSA-GFS. It has two main components: a flat address space based on RADOS
(Ceph's object store) and a module for managing the semantic aware metadata. I proposed a native
implementation of the semantic aware metadata with content-based semantics to improve the
searches of data in the system. In terms of network, I proposed a hierarchical topology that facilitates
south-north throughput with links added to decrease the latency between RADOS’s nodes.

These contributions were published in [PIST, 2014/2].

Optimizations based on packet processing engines (chapter 4)

The main contribution in this chapter is the proposal of several solutions to optimize traffic
intensive clusters using integrated systems of multi-general purpose cores with packet processing
engines (section 4.2 and 4.3). While Ceph addresses different optimizations at system level, my
contributions focus on improving each node performance which in the end reflects the overall system
performance (section 4.4).

First, the performance of each node is improved by classifying and distributing requests
among cores, facilitating the parallelization of traffic consumers. Furthermore, the OS scheduler
decisions are leveraged by using Accelerated Receive Flow Steering mechanisms (section 4.3).
Therefore, I proposed two models and two different implementations for each model: one in kernel
targeting efficiency and one in user-space facilitating a faster development and flexible license policy.
As case study, I created a model using QorIQTM platforms (section 4.4.1) for Ceph’s nodes. Each model
for each node type is designed based on related flow types and traffic volume (section 4.4.2).

Second, the latency of sensitive operations is decreased and the overall cluster responsiveness
and availability is improved by adjusting the weights of hardware queues. Accelerated RADOS (A-
RADOS) divides the traffic of monitors and OSDs in three different classes with different priorities
based on importance related to Ceph (section 4.4.3).

Distributed Storage Solutions And Optimizations

34

Performance measurements that showed improved number of transactions per second and
the results of the RADOS’s messages processed based on priorities were presented in section 4.4.4.
Besides the presented improvements there are inherent advantages of using multi-core integrated
systems such as low power consumption and appealing price per performance.

The proposed optimizations based on packet processing engines and the micro-benchmark
results were published in [PIST, 2013].

Solutions for issues occurred in converged infrastructure for data centers (chapter 5)

A group of protocols were added to Ethernet in context of converged infrastructure for data
centers (i.e. collapsing tiers and unification of general purpose networks with networks for
distributed storage systems): PFC, ETS, DCBx and QCN. The main focus was on QCN, which has several
weaknesses, such as unwanted traffic injections for QoS domains from edge ports and rate unfairness
of flows that shares the same bottleneck.

I was part of a team that proposed a patented solution for automatic configurations of QCN
parameters through LLDP in a hybrid network, where segments with and without QCN coexists
considering different QoS requirements. The solution implies a new hybrid defense mode choice that
allows both manual and automatic settings to use the same alternate priority value, thus the injection
of unwanted traffic for a specific QoS domain is avoided (section 5.2).

The patent is public and can be inspected at [Patent #8891376].

Algorithm for dynamic load balancing: QCN-WFQR (chapter 6)

QCN protocol alleviate congestion in the network, but it does not address the congestion
problem as a whole, where a uniform distribution of congestion domains will lead to a better
utilization of bandwidth. Therefore, I proposed a partial solution that tries to solve this issue. The
proposal was based on the choice of the gateway with the biggest distance until congestion and later
on, it led to a more general solution that was patented, where the congestion sources (i.e. reaction
points) are building databases for each congested point. This database can be used for performance
analysis or can be used to influence different aspects of the network devices (section 6.2).

I have followed a different path and I proposed a novel and more complete algorithm
(Quantized Congestion Notification – Weighted Flow Queue Ranking) that tries to solve this
problem. The algorithm QCN-WFQR computes multiple congestion indicatives that are measures of
the network load generated by flows in different points in the network, based on which different
cooperative or automatic decisions may be taken to balance the workload and achieve a less
congested network (section 6.3.1).

The algorithm is capable to compute the local contribution of each flow in different network

points (𝑺𝒉𝒂𝒓𝒆𝒕
𝒒𝒌(𝒇𝒊)) and also the system wide contribution of each flow (𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒇𝒌)). Besides

flow contribution, the system is also capable to compute the contribution of each congestion source
(𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝑹𝒌)) to the network load. Based on these congestion indicatives any component within
the system can determine the best appropriate service (congestion source/reaction point) location in
order to cooperatively balance the workload in the network. Furthermore, I present the analysis of
flows shares and the system wide congestion geometry (i.e. congestion islands) related to each flow
(sections 6.3.3.1 and 6.3.3.2). It is worth to mention, that the QCN-WFQR algorithm makes use of the
exponential moving average to store flows shares in order to minimize the memory usage on network
nodes (section 6.3.1.1).

Along with the congestion indicatives listed above, the algorithm is capable to compute the

importance of each queue (𝑹𝒕
𝒒𝒌) related to the congestion in the system in terms of the number of

Distributed Storage Solutions And Optimizations

35

handled flows and the congestion degree of each queue (𝑾𝒆𝒊𝒈𝒉𝒕𝒕(𝒒𝒌)) related to all handled flows.
Using these congestion indicatives, a network can be reprogrammed to optimally balance the
workload between different congestion points.

For simulations purpose I implemented QCN-WFQR in NS3 (an open source discrete-event
network simulator), where besides algorithm modules, I implemented also the following QCN
modules: rate limiter, reaction point and congestion point (section 6.3.3.3). I did two different
simulations aiming flows contributions to the congestion profile and variations of queues weights
using tree based topologies (section 6.3.3.4). The former simulation revealed that the traffic of
congestion sources is reflected in the congestion indicatives of flows and reaction points (section
6.3.3.4.1), while the later simulation revealed the reflection in the congestion indicatives of queues
(section 6.3.3.4.2).

I proposed two applications of QCN-WFQR: elections of replicas in distributed storage systems
based on congestion indicatives in order to achieve a better balanced congestion profile while
achieving a much responsive system and a dynamically load balancer, more appropriate for SDN
networks.

The patented solution can be inspected at [App. #20150023172], while the QCN-WFQR
algorithm with the simulations results were published in [PIST, 2015].

7.2 Future work

Since, researches to optimize nodes were conducted only at ingress side, now researches are
focused on egress side. The QCN-WFQR algorithm has a sound approach with promising impact in the
networking field, especially in Software Defined Networking. Therefore, now the research focuses on
implementation of different algorithms, such as Dijkstra’s algorithm, using different congestion
indicatives as path costs proposed in the present thesis. Since the distributed systems has several
characteristics related to scaling methods, investigations are directed towards implementation of
logically decentralized controllers with QCN-WFQR support and the relevance of decisions based on
latency and architectures of network topologies.

Distributed Storage Solutions And Optimizations

36

8 AUTHOR’S PUBLICATIONS

8.1 Patents

[App. #20150023172]. Sorin A. Pistirica, Dan A. Calavrezo, Casimer M. DeCusatis, Keshav G. Kamble,
“Congestion Profiling of Computer Network Devices”, Patent Pending,
USPTO: http://patents.justia.com/patent/20150023172, Jul 16 – 2013

[Patent #8891376]. Sorin A. Pistirica, Dan A. Calavrezo, Keshav G. Kamble, Mihail-Liviu Manolachi,
“Quantized Congestion Notification—defense mode choice extension for the
alternate priority of congestion points”,
USPTO: http://patents.justia.com/patent/8891376, Oct 07 – 2013

8.2 Articles

[PIST, 2013] Pistirica Sorin Andrei, Caraman Mihai Claudiu, Moldoveanu Florica, Moldoveanu Alin,
Asavei Victor, ”Hardware acceleration in CEPH Distributed File System”, ISPDC: IEEE
12th International Symposium on Parallel and Distributed Computing, Bucharest, June
2013, pp. 209-215, IEEE Indexed

[PIST, 2014/1] Pistirica Sorin Andrei, Victor Asavei, Horia Geanta , Florica Moldoveanu , Alin
Moldoveanu , Catalin Negru , Mariana Mocanu, “Evolution Towards Distributed
Storage in a Nutshell”, HPCC: The 16th IEEE International Conference on High
Performance Computing and Communications, August 2014, Paris, pp. 1267-1274,
IEEE Indexed

[PIST, 2014/2] Pistirica Sorin Andrei, Asavei Victor, Egner Alexandru, Poncea Ovidiu Mihai, "Impact of
Distributed File Systems and Computer Network Technologies in eLearning
environments“, eLSE: Proceedings of the 10th International Scientific Conference
"eLearning and Software for Education", Bucharest, April 2014, Volume 1, pp. 85-92,
ISI Indexed

[PIST, 2015] Pistirica Sorin Andrei, Poncea Ovidiu, Caraman Mihai, “QCN based dynamically load
balancing: QCN Weighted Flow Queue Ranking”, CSCS: The 20th International
Conference on Control Systems and Computer Science, Bucharest, May 2015, Volume
1, pp. 197-205, ISI Indexed

[ASAV, 2014] Asavei Victor, Moldoveanu Alin, Moldoveanu Florica, Pistirica Sorin Andrei,
“Lightweight 3D MMO Framework with High GPU Offloading”, ICSTCC: 18th
International Conference On System Theory, Control and Computing, October 2014,
Sinaia, pp. 708-714, ISI Indexed

[SIMI, 2015] Simion Andrei, Asavei Victor, Pistirica Sorin Andrei, Poncea Ovidiu, "Practical GPU and
voxel-based indirect illumination for real time computer games", CSCS: The 20th
International Conference on Control Systems and Computer Science, May 2015,
Bucharest, Volume 1, pp. 379-384, ISI Indexed

[GRAD, 2015] Alexandru Grădinaru, Alin Moldoveanu, Victor Asavei, Sorin Andrei Pistirica, "Case
Study - OpenSimulator for 3D MMO Education", eLSE: Proceedings of the 11th
International Scientific Conference "eLearning and Software for Education",
Bucharest, April 2015, ISI indexed

[ASAV, 2015] Victor Asavei, Alexandru Gradinaru, Alin Moldoveanu, Sorin Andrei Pistirica, Ovidiu
Poncea, Alexandru Butean, “Massively Multiplayer Online virtual spaces-
classification, technologies and trends”, U.P.B. Sci. Bull., 2015, (in press, accepted
for publication)

http://patents.justia.com/patent/20150023172
http://patents.justia.com/patent/8891376
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Victor,%20Asavei.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Horia,%20Geanta.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Florica,%20Moldoveanu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Alin,%20Moldoveanu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Alin,%20Moldoveanu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Catalin,%20Negru.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mariana,%20Mocanu.QT.&newsearch=true

Distributed Storage Solutions And Optimizations

37

9 BIBLIOGRAPHY
[1] B-tree File system, https://btrfs.wiki.kernel.org/index.php/Btrfs_design

[2] Extended File System, http://e2fsprogs.sourceforge.net/ext2intro.html

[3] EMC Storage Pool Deep Dive: Design Considerations & Caveats, http://vjswami.com/2011/03/05/emc-storage-pool-deep-dive-design-
considerations-caveats/, 2011

[4] Linux Volume Management, http://tldp.org/HOWTO/LVM-HOWTO/

[5] G.C.Foxy, K.A.Hawick, A.B.White, "Characteristics of HPC Scientific and Engineering Applications", January 1996

[6] Chang-Soo Kim, Gyoung-Bae Kim, Bum-Joo Shin, "Volume Management in SAN Environment", Parallel and Distributed Systems ICPADS, 2001, pp.
500-505

[7] Andrew S. Tanenbaum, “Distributed Operating Systems”, August 25th 1994 by Prentice Hall

[8] Christian Bandulet, “The Evolution of File Systems”, http://www.snia-
europe.org/objects_store/Christian_Bandulet_SNIATutorial%20Basics_EvolutionFileSystems.pdf, Storage Networking Industry Association, 2012

[9] Michael Factor, Kalman Meth, Dalit Naor, Julian Satran, Ohad Rodeh, “Object Storage: The Future Building Block for Storage Systems”, Local to
Global Data Interoperability - Challenges and Technologies. IEEE Computer Society. pp. 119–123, 2005

[10] Information Technology - SCSI Object Based Storage Device Commands (OSD), Revision 3, 1 October 2000

[11] Information Technology - SCSI Object Based Storage Device Commands -2 (OSD-2), Revision 4, 24 July 2008

[12] J. Satran A., Teperman, “Object Store Based SAN File Systems”, International Symposium of Santa Caterina on Challenges in the Internet and
Interdisciplinary Research, 2004

[13] OpenAFS, Open source implementation of the Andrew Distributed File System, http://www.openafs.org/

[14] ARLA, Free AFS implementation from KTH, http://www.stacken.kth.se/project/arla/html/arla.html

[15] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung, The Google File System‖, 19th ACM Symposium on Operating Systems principles, pp. 29-
43, December 2003

[16] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, “The Hadoop Distributed File System”, 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies, pp. 1-10

[17] Frank Schmuck and Roger Haskin, “GPFS: A Shared-Disk File System for Large Computing Clusters”, Proceedings of the Conference on File and
Storage Technologies, pp. 231–244, January 2002

[18] Peter J. Braam et al, The Lustre Storage Architecture, available at www.lustre.org, 2004.

[19] Sage A. Weil, Scott A. Brandt, Ethan L. Miller and Darrell D. E. Long, ―Ceph: A Scalable, High-performance Distributed File System‖, 7th Conference
on Operating Systems Design and Implementation, November 2006

[20] Sage A. Weil, Andrew W. Leung, Scott A. Brandt and Carlos Maltzahn, ―RADOS: A Scalable, Reliable Storage Service for Petabyte-scale Storage
Clusters, Petascale Data Storage Workshop, November 2007

[21] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Carlos Maltzahn, "CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data",
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, 2006

[22] Sage A. Weil, Reliable, Scalable and High-Performance Distributed Storage, PhD thesis, 2007

[23] Honicky, R.J. ,Miller, E.L., “RUSH: Balanced, Decentralized Distribution for Replicated Data in Scalable Storage Clusters”, Proceedings of the 20th
IEEE - 11th NASA Goddard Conference on Mass Storage Systems and Technologies, 2003, pages 146–156

[24] R. J. Honicky, Ethan L. Miller, "Replication Under Scalable Hashing: A Family of Algorithms for Scalable Decentralized Data Distribution",
Proceedings of the 18th International Parallel and Distributed Processing Symposium, 2004

[25] Andrew W. Leung, Ethan L. Miller, Stephanie Jones, “Scalable Security for Petascale Parallel File Systems”, Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, 2007

[26] Yan Li, Nakul Sanjay Dhotre, Yasuhiro Ohara, Thomas M. Kroeger, Ethan L. Miller, Darrell D. E. Long, “Horus: Fine-Grained Encryption-Based
Security for Large-Scale Storage”, Proceedings of the sixth workshop on Parallel Data Storage, 2013, pp. 19-24

[27] PanFS, Object RAID, https://www.panasas.com/products/panfs/object-raid

[28] Goodman, J.R.,Sequin," Hypertree: A Multiprocessor Interconnection Topology", IEEE Transactions on Computers, 1981, pp. 923-933

[29] Direct interconnection networks, http://pages.cs.wisc.edu/~tvrdik/5/html/Section5.html

[30] Andy D. Hospodor, Ethan L. Miller, “Interconnection Architectures for Petabyte-Scale High-Performance Storage Systems”, 12th NASA Goddard
Conference on Mass Storage Systems and Technologies, April 2004

[31] White Paper, Accelerating High-Speed Networking with Intel® I/O Acceleration Technology

[32] Karthikeyan Vaidyanathan, Dhabaleswar K. Panda, “Benefits of I/O Acceleration Technology (I/OAT) in Clusters”, International Symposium on
Performance Analysis of Systems & Software, pp. 220-229, 2007

[33] Scaling in the Linux Networking Stack,
https://github.com/torvalds/linux/blob/master/Documentation/networking/scaling.txt, December 2011

[34] Luigi Rizzo, “netmap: a novel framework for fast packet I/O”, Proceedings of the 2012 USENIX Annual Technical Conference, pp. 101-112, June
2012

[35] Freescale Semiconductor, Inc., ―QorIQ Data Path Acceleration Architecture (DPAA) Reference Manual‖, 2011

[36] Freescale Semiconductor, Inc., ―Frame Manager Configuration Tool Example Configuration and Policy, 2013

[37] Fulvio Risso, and Mario Baldi, NetPDL: An Extensible XML-based Language for Packet Header Description, Computer Networks (COMPUT NETW),
vol. 50, no. 5, pp. 688-706, 2006

[38] Sangam Racherla, Silvio Erdenberger, Harish Rajagopal, Kai Ruth, "IBM Red Book, Storage and Network Convergence Using FCoE and iSCSI",
International Technical Support Organization: Storage and Network Convergence Using FCoE and iSCSI, January 2014

[39] White Paper, Emulex, Top-5 Reasons for Deploying Network Convergence, 2009

https://btrfs.wiki.kernel.org/index.php/Btrfs_design
http://e2fsprogs.sourceforge.net/ext2intro.html
http://tldp.org/HOWTO/LVM-HOWTO/
http://www.snia-europe.org/objects_store/Christian_Bandulet_SNIATutorial%20Basics_EvolutionFileSystems.pdf
http://www.snia-europe.org/objects_store/Christian_Bandulet_SNIATutorial%20Basics_EvolutionFileSystems.pdf
http://www.openafs.org/
http://www.stacken.kth.se/project/arla/html/arla.html
https://www.panasas.com/products/panfs/object-raid
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Computers
http://pages.cs.wisc.edu/~tvrdik/5/html/Section5.html

Distributed Storage Solutions And Optimizations

38

[40] White Paper, Forrester Consulting, "Benefits Of SAN/LAN Convergence. Evaluating Interest In And Readiness For Unified Fabric", 2009

[41] White Paper, “Fabric convergence with lossless Ethernet and Fibre Channel over Ethernet”, 2008

[42] White Paper, Ethernet Alliance, Data Center Bridging, 2010

[43] Devkota P., Reddy A.L.N., "Performance of Quantized Congestion Notification in TCP Incast Scenarios of Data Centers", Modeling, Analysis &
Simulation of Computer and Telecommunication Systems, 2010

[44] IEEE Standard 802.3x PAUSE, 1997

[45] 802.1Qbb PFC – Priority-based Flow Control, 802.1Qbb Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks Amendment
17, 2010

[46] 802.1Qaz ETS – Enhanced Transmissions Protocol, 802.1az Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks
Amendment 18,2011

[47] Manoj Wadekar (Qlogic), et al, DCB Capability Exchange Protocol Base Specification Rev 1.01

[48] 802.1Qau QCN – Quantized Congestion Notification, , 802.1Qau Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks
Amendment 13,2010

[49] IEEE Standard for Local and metropolitan area networks—Media Access Control (MAC) Bridges and Virtual Bridge Local Area Networks, 31 August
2011

[50] 802.1AB Station and Media Access Control Connectivity Discovery, IEEE Standard for Local and metropolitan area networks, 2009

[51] Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Panz and Balaji Prabhakar, AF-QCN: Approximate Fairness with Quantized Congestion
Notification for Multi-tenanted Data Centers, Proceedings of the 18th IEEE Symposium on High Performance Interconnects, pp. 58-65, 2010

[52] Yan Zhang, Nirwan Ansari, Fair Quantized Congestion Notification in Data Center Networks, IEEE Transactions on Communications, pp. 4690 - 4699,
28 November 2013

[53] Discrete Network Simulator, http://www.nsnam.org/

[54] Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo, Christian Esteve Rothenberg, Siamak Azodolmolky and Steve Uhlig, Software-Defined
Networking: A Comprehensive Survey, Proceedings of the IEEE Vol. 103, No. 1, January 2015

[55] Fibre Channel Backbone – 5 (FC-BB-5), INCITS working draft proposed American National Standard for Information Technology, Rev. 2.0, June 4,
2009

[56] Shudayfat Eman Ahmad, Moldoveanu Alin, Moldoveanu Florica, Gradinaru Alexandru. Virtual Reality-based Biology Learning Module, 9th
International Conference eLearning and Software for Education. Carol I Natl Defence Univ Publishing House, vol. 2, ISSN 2066-026X, pp. 621 --626,
April 2013

[57] Venu Vasudevan, Paul Pazandak, Semantic File System Survey, http://www.objs.com/survey/OFSExt.htm, 1996

[58] Margo Seltzer, Nicholas Murphy, “Hierarchical File Systems are Dead”, USENIX HOTOS, May 2009

[59] Ip.com, IPCOM000230977D, A Method and System for Storage Server Selection based on a Network Congestion Status, September 20, 2013

[60] SungHo Chin, JongHyuk Lee, HwaMin Lee, DaeWon Lee, HeonChang Yu, Pillwoo Lee, “OGSA-GFS : A OGSA based Grid File System”, Proceedings of
the First International Conference on Semantics, Knowledge, and Grid (SKG 2005), 2006

OGSA-DAI (Open Grid Services Architecture-Data Access and IntegrationHung Ba Ngo, Christian Bac, Frederique Silber-Chaussumier, Thang Quyet Le,
“Towards Ontology-based Semantic File Systems”, 2007 IEEE International Conference on Research, Innovation and Vision for the Future, pp. 8-13

http://www.nsnam.org/

