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1. INTRODUCTION 

1.1. Motivation 

Emergence is one of the most intriguing phenomena exhibited by complex systems. It consists 

in the appearance of system-level features that do not characterize the elements composing the 

considered system. Therefore, these new features are sometimes described as unexpected or 

surprising. An emergent phenomenon occurs when the system components are governed by 

simple rules, but the macroscopic behavior resulting from their interaction is complex. In 

many cases it is very difficult or even impossible to predict this behavior by analyzing the 

system components. Often, the concept of emergence is summarized by the phrase ―the whole 

is greater than the sum of its parts‖. Emergence is exhibited by decentralized systems having 

no global control structure, where the observed behavior is a consequence of the local 

interactions between independent entities, generically called agents. 

A classic example of emergence is offered by a colony of social insects, such as ants, termites 

or bees. Such a colony can be seen as a highly adaptive macro-organism, although each 

individual is an unintelligent insect, which uses only simple rules to respond to stimuli in the 

environment. Some species of termites are able to build mounds reaching a height of several 

meters. Due to a complicated system of tunnels and chambers that provides passive cooling, 

the temperature inside these mounds remains almost constant, regardless of the outside 

temperature. Architects and engineers have taken inspiration from this model in order to 

design buildings that regulate the temperature and humidity using only natural means [4]. 

However, a termite mound is not designed by architects and the building process is not 

coordinated by engineers. Each termite acts according to a simple algorithm, but at the colony 

level the result is simply amazing. 

Emergent phenomena can be observed in a large variety of systems. Examples include the 

formation of ripple patterns in a sand dune, the occurrence of traffic jams, the price setting in 

a decentralized market, the growth of a snowflake or the formation of a hurricane. However, 

the most striking instances of emergence can be found in biological systems: a living cell 

emerges from the interaction of its constituent molecules; the immune system, which is able 

to protect the organism against diseases, emerges from the combined action of several types 

of lymphocytes; brain cells self-organize into a complex neural network, which produces 

intelligence and even consciousness. 

All matter in our universe is composed of elementary particles. Therefore, even the most 

complex phenomena are ultimately the result of the interaction of a few types of elementary 

particles. How is this possible? How can these elementary particles self-organize into 

increasingly higher structures? How can life emerge from inanimate matter? How can goal-

directed behavior emerge from particles that have no goals? And how can intelligence and 

consciousness emerge from particles that possess no intelligence?  

While these questions are significant enough to justify the study of emergence, there is 

another driving force behind the research presented in this thesis: the problem of engineering 

emergent behavior. Due to the growing number of decentralized, agent-based applications, 
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this represents an important issue, for which no generally accepted methodology is currently 

available. Traditional software engineering does not take advantage of the emergent behavior 

exhibited by agent-based applications. Most agent-oriented methodologies regard emergent 

phenomena as undesired and try to suppress the ―unexpected‖ behavior by constraining the 

actions of individual agents. Of course, it would be preferable to design applications that 

make use of the emergent behavior instead of avoiding it, but this is a difficult task, taking 

into consideration the apparent unpredictability of emergent phenomena.  

In the last years, researchers have taken inspiration from nature in order to design algorithms 

that produce certain desired emergent behavior. Many natural systems are able to adapt to 

dynamical environments and can perform efficiently certain tasks for which no feasible 

conventional algorithms are known. It is therefore tempting to mimic such natural systems in 

order to obtain a similar behavior. An example is offered by Ant Colony Optimization [45], 

which is a heuristic method inspired by ant foraging. In their way back from a food source, 

ants deposit small amounts of chemicals called pheromones. These pheromones can be sensed 

by other foragers, which are more likely to follow the trails having a stronger concentration of 

pheromones. This simple foraging strategy leads eventually to the discovery of the shortest 

path between the nest and the food source. In other words, the shortest path emerges from the 

interaction between ants and their environment. Ant Colony Optimization is inspired by this 

emergent phenomenon and it has been initially used to solve the traveling salesman problem. 

Since then, it has been successfully applied to many other combinatorial optimization 

problems and it has been also adapted for continuous optimization problems. One notable 

application of this method is to dynamic network routing problems [37]. These are difficult 

real-world problems, because the traffic load, the network topology and other characteristics 

of the network vary in time. 

Although nature is a powerful source of inspiration, it is not always possible to find a natural 

system that exhibits a particular emergent behavior. Moreover, it is not sufficient to identify 

an appropriate natural system, but it is also necessary to understand its working, in order to 

mimic it. Therefore, an important question is how to design an agent-based system that 

exhibits a desired emergent behavior, when no source of inspiration can be found in nature. In 

this thesis, we explore both theoretical and practical approaches to tackle this problem.  

We are mainly interested in engineering complex, adaptive behavior, similar to that exhibited 

by living organisms, because it is very difficult to obtain such behavior using traditional 

software engineering techniques. A main hypothesis that guides our research is that in order 

to engineer such behavior, it is preferable to focus on heterogeneous systems with simple 

agents than to consider homogenous systems with complex agents. 

1.2. Original contributions 

There are three main contributions of this thesis: 

 A mathematical formalism of emergence in agent-based systems. Emergent 

phenomena are often described as unexpected, surprising or hard to predict. Therefore, 

many definitions of emergence involve a certain degree of subjectivity. Other 

definitions give a rigorous description of the properties characterizing emergent 

phenomena, but they may not capture all aspects of emergence, or they may require 

very complex computations in order to decide whether or not a certain behavior is 

emergent. We take a different view on emergence, which allows us to provide a 

definition that is both objective and suitable for practical purposes. Our formalism is 

based on the idea that a definition of emergent phenomena should only be concerned 
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with how these phenomena arise and it should not address the properties of the 

emergent phenomena.  

 MetFrEm – a meta-framework for the study of emergence. In order to study 

emergent phenomena in a rigorous manner, we introduce a meta-framework called 

MetFrEm, which allows the modeling of various algorithmic frameworks comprising 

a population of interacting agents. MetFrEm favors the modeling of highly 

heterogeneous decentralized systems with agents that follow simple rules. 

 The Consultant-Guided Search (CGS) metaheuristic. We propose a swarm 

intelligence metaheuristic that makes use of the emergent behavior exhibited by a 

population of interacting virtual persons. We apply this metaheuristic to several 

classes of combinatorial optimization problems and report the experimental results, 

which show that CGS is able to achieve state-of-the-art performance: 

 the Traveling Salesman Problem (TSP) - Our experiments with and without 

local search show that CGS clearly outperforms the two best performing Ant 

Colony Optimization algorithms for the TSP: Ant Colony System [43] and 

MAX-MIN Ant System [106]. 

 the Quadratic Assignment Problem (QAP) - Our CGS algorithm for the QAP is 

significantly better than MAX-MIN Ant System [104], which is currently the 

best Ant Colony Optmization algorithm for this class of problems. 

 the Generalized Traveling Salesman Problem (GTSP) - Computational results 

show that there is no statistical significant difference between our algorithm 

and the memetic algorithm of Gutin and Karapetyan [55], which is currently 

the best published heuristic for the GTSP. 

In addition, the work presented in this thesis has led to the creation of three open source 

software packages, which are of practical importance for the research community: 

 AgSysLib (http://agsyslib.sourceforge.net/). AgSysLib is a software tool for agent-

based problem solving. It assists users in all aspects related to the design, 

implementation, debugging and tuning of agent-based algorithms. AgSysLib is both a 

framework and a library and it features a component-based architecture, which permits 

to build algorithms in a modular way and facilitates the experimentation and analysis 

of different variants of an algorithm. 

 SwarmTSP (http://swarmtsp.sourceforge.net/). SwarmTSP is a Java library of swarm 

intelligence algorithms for the Traveling Salesman Problem (TSP) and for the 

Generalized Traveling Salesman Problem (GTSP). It implements all Consultant-

Guided Search algorithms for the TSP and GTSP proposed in this thesis, as well as 

several Ant Colony Optimization algorithms: Ant System, Ant Colony System, MAX-

MIN Ant System, Elitist Ant System, Rank-Based Ant System and Best-Worst Ant 

System. 

 SwarmQAP (http://swarmqap.sourceforge.net/). SwarmQAP is a Java library of 

swarm intelligence algorithms for the Quadratic Assignment Problem (QAP). It 

implements all Consultant-Guided Search algorithms for the QAP proposed in this 

thesis, as well as the MAX-MIN Ant System algorithm. 

1.3. Scientific publications in connection with this thesis 

Iordache, S. Consultant-Guided Search - A New Metaheuristic for Combinatorial 

Optimization Problems. In: GECCO 2010: Proceedings of the 12th Genetic and Evolutionary 

Computation Conference, Portland, Oregon, USA, ACM Press, 2010, pp. 225-232 [65] 

(nominated for best paper award). 

http://agsyslib.sourceforge.net/
http://swarmtsp.sourceforge.net/
http://swarmqap.sourceforge.net/
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Iordache, S. Consultant-Guided Search Algorithms with Local Search for the Traveling 

Salesman Problem. In: 11th International Conference Parallel Problem Solving from Nature - 

PPSN XI. LNCS 6239, Krakow, Poland, Springer, 2010, pp. 81-90 [63]. 

Iordache, S. Consultant-Guided Search Algorithms for the Quadratic Assignment Problem. 

In: Hybrid Metaheuristics - 7th International Workshop, HM 2010. LNCS 6373, Vienna, 

Austria. Springer, 2010, pp. 148-159 [61]. 

Iordache, S., Moldoveanu, F. AgSysLib - A Software Tool for Agent-Based Problem Solving. 

In: Scientific Bulletin of "Politehnica" University of Bucharest, C Series (Electrical 

Engineering), vol. 73, issue 2, ISSN 1454-234x, 2011 [66]. 

Iordache, S. A Framework for the Study of the Emergence of Rules in Multiagent Systems, In: 

Katalinic, B. (Ed.), Proceedings of the 20th International DAAAM Symposium, Vienna, 

Austria, ISSN 1726-9679, 2009, pp. 1285-1286 [60]. 

Iordache, S., Pop, P.C. An Efficient Algorithm for the Generalized Traveling Salesman 

Problem. In: A. Quesada-Arencibia et al. (Eds.), Proceedings of the 13-th International 

Conference on Computer Aided Systems Theory (EUROCAST 2011), Las Palmas de Gran 

Canaria, Spain, ISBN: 978-84-693-9560-8, 2011, pp. 264-266 [67]. 

Iordache, S. Consultant-Guided Search combined with local search for the traveling 

salesman problem. In: GECCO 2010 companion: Proceedings of the 12th annual conference 

companion on Genetic and evolutionary computation. ACM Press, 2010, pp. 2087-2088 [64]. 

Iordache, S. Consultant-Guided Search algorithms for the quadratic assignment problem. In: 

GECCO 2010 companion: Proceedings of the 12th annual conference companion on Genetic 

and evolutionary computation. ACM Press, 2010, pp. 2089-2090 [62].  

Pop, P.C., Iordache, S. A Hybrid Heuristic Approach for Solving the Generalized Traveling 

Salesman Problem. In: GECCO 2011: Proceedings of the Genetic and Evolutionary 

Computation Conference, Dublin, Ireland, ACM Press, 2011 (accepted) [91]. 

1.4. Thesis outline 

Chapter 2 outlines the main concepts and techniques relevant to the content of this thesis. 

After a short introduction of agent-based systems, we present different aspects of the notion 

of emergence and we discuss several emergent phenomena exhibited by cellular automata. 

Then, we introduce Ant Colony Optimization, as an example of a problem solving technique 

that makes use of emergent behavior. 

In Chapter 3, we develop a mathematical formalism for the study of emergence, which puts 

emergence in an agent-oriented context, consistent with the frame imposed by the problem of 

engineering emergent behavior. 

In Chapter 4, we propose a meta-framework for the study of emergence, called MetFrEm, 

which can be used to describe various algorithmic frameworks comprising a population of 

interacting agents. The design goals of our meta-framework reflect the main objectives and 

hypotheses of this thesis. After an intuitive description of the concepts and structure of 

MetFrEm, we provide a formal description of this meta-framework. Then, we illustrate by 

means of a few case studies how various systems can be modeled in MetFrEm. 

In Chapter 5, we introduce Consultant-Guided Search, a new metaheuristic for combinatorial 

optimization problems, inspired by the possibility to view the interactions in MetFrEm from 
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the perspective of clients that receive advice from consultants. We apply this metaheuristic to 

a few classes of problems (the traveling salesman problem, the quadratic assignment problem 

and the generalized traveling salesman problem) and we compare the results with those 

obtained by state-of-the-art algorithms. 

Appendix A describes AgSysLib, a software tool that we have developed in order to assist in 

agent-based problem solving. We identify the difficulties encountered during the design, 

implementation, debugging and tuning of a new agent-based algorithm and we show how this 

tool helps in overcoming them. AgSysLib is both a library and a framework and it has played 

a major role in the development of the algorithms presented in Chapter 5. 
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2. BACKGROUND 

In this chapter, we introduce the basic concepts of agent-based systems and emergent 

phenomena, and we present a few examples of agent-based systems exhibiting emergent 

behavior. We limit our discussion to those aspects that are relevant to the content of this thesis 

and we encourage the reader to consult the references for further details. 

2.1. Agent-based systems 

Put simply, an agent-based system is a system of interacting agents. Therefore, in order to 

define an agent-based system, it is necessary to clarify what is meant by the notion of agent. 

There is, however, no generally accepted definition for this term. Agent-based systems play a 

central role in various fields and, usually, the meaning ascribed to the term agent differs from 

field to field and even within the same field. In the next paragraphs, we present the most 

important research areas dealing with agent-based systems and we discuss the interpretations 

they give to the notion of agent. We should mention that the boundaries between these 

research areas are not always clear. They often overlap and, sometimes, positioning a research 

in a specific area is rather a matter of perspective, reflecting the point of view adopted by a 

researcher. 

Most research concerned with agent-based systems can be subsumed under the field of 

artificial intelligence. This is a vast research field and it is difficult to define the concept of 

agent in such a general context. However, Russel and Norvig [96] offer the following 

definition: ―An agent is anything that can be viewed as perceiving its environment through 

sensors and acting upon that environment through effectors‖. 

Agent-Based Modeling and Simulation (ABMS) is concerned with creating representations of 

existing complex systems in terms of interacting agents. These agent-based models can be 

used to simulate the evolution of the corresponding complex systems, to predict their 

behavior, to test hypotheses about these systems or to gain insight into their underlying 

mechanisms. Macal and North [80] consider that for the purposes of ABMS, the defining 

characteristics of an agent are: 

 an agent is autonomous and self-directed. 

 an agent is modular or self-contained. 

 an agent is social, interacting with other agents. 

The two authors of [80] also identify a few additional properties that are frequently associated 

with agents, but which are not necessarily a defining characteristic of them: 

 an agent may live in an environment. 

 an agent may have explicit goals that drive its behavior. 

 an agent may have the ability to learn and adapt its behaviors based on its experiences. 

 an agent may have resource attributes that indicate its current stock of one or more 

resources. 
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ABMS has applications in a variety of areas, such as biology [89], supply chains [73], agent-

based social simulation [31] or agent-based computational economics [112]. Most systems of 

interest are complex adaptive systems (CAS) [83]. These are systems that ―change and 

reorganize their component parts to adapt themselves to the problems posed by their 

surroundings‖ [56]. In the context of CAS, ―agents are semi-autonomous units that seek to 

maximize their fitness by evolving over time‖ [40]. The ability to adapt and to learn from 

previous experiences is considered a major characteristic of an agent in CAS. However, we 

should note that some complex systems are adaptive, although their agents are governed by 

hard-coded rules. One example is an ant colony, which is able to adapt to changes in the 

environment, although ants are not intelligent and they act based on fixed rules. These rules 

do not change during the life of the ants, but the ant colony exhibits a complex, adaptive 

behavior. An important research direction in CAS is the study of the complex emergent 

phenomena produced by the interaction of agents following relatively simple rules. 

A large number of definitions for the concept of agent have been offered in the field of 

multi-agent systems (MAS). They differ, sometimes significantly, in the characteristics 

ascribed to an agent. In general, these definitions impose more capabilities than in the case of 

ABMS and, frequently, the main abstraction used is that of an intelligent agent. 

Wooldridge [127] proposes the following definition: 

An agent is a computer system that is situated in some environment, and that is 

capable of autonomous action in this environment in order to meet its design 

objectives. 

Frequently, agents are only indirectly defined, by enumerating their required characteristics. 

Wooldridge and Jennings [128] identify and examine two major usages of the term agent. The 

first one, referred as the ―weak notion of agency‖ is characterized by the following properties: 

 autonomy: agents can control their own actions. 

 social ability: agents interact by means of a communication language. 

 reactivity: agents can sense and react to changes in the environment. 

 pro-activeness: agents can take the initiative to interact. 

A more restrictive meaning of the term agent is given by the ―strong notion of agency‖, which 

implies the existence of mental traits such as knowledge, beliefs, desires, intentions, 

obligations [98] or even emotions [7]. 

One characteristic that appears in one form or another in almost all definitions of an agent is 

that of autonomy. This is another concept for which no generally accepted definition exists. A 

classification of different forms of autonomy proposed in the literature is given in [20]. 

Autonomy represents the central concept of a recent bottom-up paradigm called autonomy 

oriented computing [75], which refers to agents as autonomous entities and defines autonomy 

as follows: 

Autonomy of an entity refers to its condition or quality of being self-governed, self-

determined, and self-directed. It guarantees that the primitive behavior of an entity is 

free from the explicit control of other entities. 

For some researchers, autonomy has a more specific meaning than that conveyed by the 

above definition. For example, d’Inverno and Luck [38] relate autonomy with the existence of 

motivations, for which they give the following definition: 
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A motivation is any desire or preference that can lead to the generation and adoption 

of goals and that affects the outcome of the reasoning or behavioural task intended to 

satisfy those goals. 

Motivations are higher-level components that can generate goals. The two authors exemplify 

the difference between motivations and goals by discussing how the goal of robbing a bank 

may have greed as motivation. They introduce a hierarchy of concepts starting with the 

general notion of entity and ending with that of autonomous agent [38]: 

 An entity is something that comprises a non-empty set of attributes, a set of 

actions, a set of goals and a set of motivations. 

 An object is an entity with a non-empty set of actions. 

 An agent is an object with goals. 

 An autonomous agent is an agent with motivations. 

In the absence of a generally accepted definition, it is necessary to specify what we mean by 

agent in the context of this thesis. Since we are mainly interested in the complex behavior that 

emerges from the interaction of agents governed by only simple rules, we need a definition 

that imposes very few restrictions on the agents. In our research, we regard as agents even 

very simple entities, such as the cells of a cellular automaton. The only requirement we 

impose to an agent is to act autonomously, that is, to decide by itself what actions to take, 

without receiving commands from an external entity. In chapter 3, we develop a formalism 

for the study of emergence, which allows us to give rigorous definitions for the major 

concepts related to agent-based systems. 

2.2. Emergence 

Emergence consists in the appearance of system-level features that do not characterize the 

elements composing the considered system. Examples include the emergence of life from 

inanimate matter or the emergence of consciousness from the interaction of a large number of 

neurons. Another example is an ant colony, where ants returning from a food source lay 

pheromones on the ground on their way back to the nest. Other ant foragers are able to sense 

these pheromones and are attracted by the trails with higher concentrations of pheromone. In 

time, pheromone trails corresponding to the shortest paths between nest and food sources 

emerge from the collective behavior of individual ants. 

While it is easy to grasp intuitively the meaning of emergence, it is nonetheless difficult to 

give a rigorous definition of it. In this respect, emergence is similar to concepts such as 

intelligence, consciousness or life. 

Different people ascribe different meanings to this term, but, in general, they fall into two 

distinct classes: strong emergence and weak emergence. For Chalmers [22], a system exhibits 

strong emergence if a ―high-level phenomenon arises from the low-level domain, but truths 

concerning that phenomenon are not deducible even in principle from truths in the low-level 

domain‖. Consciousness is often presented as a potential instance of strong emergence. 

However, the possibility of strong emergence is a subject of debate in philosophy, because its 

existence would require rethinking our conception of nature. Most scientists involved in 

natural sciences reject this kind of emergence and they refer instead to weak emergence in 

their discussions about emergence. Chalmers [22] considers that a system exhibits weak 

emergence if a ―high-level phenomenon arises from the low-level domain, but truths 

concerning that phenomenon are unexpected given the principles governing the low-level 

domain‖. 
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Beside strong and weak emergence, Bedau [9] identifies a third kind of emergence, which he 

calls nominal emergence. This is characterized by the existence of ―a macro property that is 

the kind of property that cannot be a micro property‖. For example, the fluidity and 

transparency of water are macro properties that cannot exist at the level of its constituent 

molecules. 

In this thesis, we are mainly concerned with weak emergence. Therefore, if not otherwise 

stated, we use the term emergence in the following to refer to this kind of emergence. 

Chalmer’s above definition of weak emergence is subjective, because it is based on the 

existence of unexpected features, thus putting emergence ―in the eye of the observer‖. An 

objective definition is offered by Bedau [10], who considers that the macrostate of a system is 

weakly emergent if it can be derived from the system’s microdynamic only by simulation. 

However, this definition may be too restrictive. For example, the appearance of pheromone 

trails indicating the shortest paths between the nest of an ant colony and some food sources is 

not an emergent phenomenon according to Bedau’s definition. Moreover, using this 

definition, the question of emergence is in general undecidable. 

In our research, we are interested in engineering emergent behavior, that is, in designing 

agent-based systems that produce certain desired behavior. In this context, we attach a broader 

meaning to the term emergence, because, for our purposes, it is not relevant whether the 

exhibited behavior is perceived as unexpected or not. We are only concerned with the difficult 

task of finding sets of simple rules for agents, in order to obtain a desired system behavior. 

Our own definition of emergence is given in chapter 3, where we develop a mathematical 

formalism for the study of emergence in agent-based systems. 

2.3. Cellular automata 

Emergent phenomena can be observed even in simple computational systems such as cellular 

automata. These are deterministic, discrete-time systems, characterized by only local 

interactions. The cells of a cellular automaton are placed on a regular grid. At each time step, 

the cells update simultaneously their state, based on a given rule. The number of possible 

states is finite and the update rule is the same for all cells. For a given cell, the update rule 

takes into consideration the state of a number of nearby cells. 

The history of cellular automata begins in the late 1940s and is associated with the 

mathematicians Stanisław Ulam and John von Neumann [12]. At Ulam’s suggestion, von 

Neumann has used cellular automata as abstract model for a self-replicating machine. He was 

able to design a universal constructor using a two-dimensional cellular automaton with 29 

states and he showed that for a particular start configuration, this constructor makes an 

infinite number of copies of itself [117]. Later, Codd has designed a universal constructor 

with only 8 states [24], and Banks has further reduced this number to only 4 states per cell [5]. 

In 1970, the mathematician John Horton Conway has devised a two-dimensional cellular 

automaton called the Game of Life [51], which has become widely known. In the 1980s, 

Stephen Wolfram has published numerous articles on cellular automata [124], being a major 

contributor to the progress of this research area. In the last decades, a large amount of work 

has been dedicated to the study of cellular automata and they have found applications in a 

variety of fields. Wolfram’s book A New Kind of Science, published in 2002 [119], covers a 

broad range of experimental research related to cellular automata. In spite of their simplicity, 

cellular automata can exhibit complex emergent behavior. This has led Zuse [130] and 

Fredkin [49] to hypothesize that our universe is actually a huge cellular automaton. 
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An infinite number of types of cellular automata can be obtained by combining different 

values for the factors that characterize a cellular automaton. Some of these factors are: 

 the number of dimensions: most frequently studied are one- and two-dimensional 

cellular automata, which can be visualized graphically in a natural way. 

 the number of states: the most simple cellular automata have only two states (usually 

denoted by 0 and 1), which can be represented graphically using two different colors 

(usually black and white). 

 the neighborhood: the cells taken into consideration by the update rule in order to 

determine the new state of a given cell constitute its neighborhood. If the update rule 

also takes into account the current state of the given cell, the neighborhood includes 

the cell itself. 

 the update rule: this is the function that computes the new state of a cell based on the 

current states of the cells in its neighborhood. The update rule is frequently 

represented in a tabular form. 

 the cellular universe type: in the case of a finite grid, it is necessary to specify how to 

apply the update rule at the edges. One possibility is to consider that outside the grid 

exist virtual cells, which remain always in a constant given state. Another possibility 

is to consider a circular or toroidal arrangement of the cells. 

2.3.1. One-dimensional cellular automata 

We start our discussion by presenting the simplest class of one-dimensional cellular automata, 

called elementary cellular automata. These have only two states (labeled 0 and 1) and the 

cellular universe is infinite, that is, the cells are arranged on a line that extends infinitely in 

both directions. The neighborhood of a cell is given by its two adjacent cells and by the cell 

itself. Since every cell can be in one of the two possible states, there are      possible state 

combinations for the cells in a neighborhood. For each of these 8 combinations, there are two 

possible ways to update the cell state: setting it to 0 or setting it to 1. Therefore, there are 

       possible update rules, that is, there are 256 types of elementary cellular automata. 

The update rule for one of these elementary cellular automata is given in the table below: 

Current configuration 111 110 101 100 011 010 001 000 

New cell state for the middle cell 0 1 0 1 1 0 1 0 

 

Wolfram [122] has introduced an identification system of cellular automata, based on the 

sequence of binary digits representing the new state of a cell in the update rule table. The 

corresponding encoding for the above cellular automaton is 01011010, which is the binary 

representation of the number 90. Therefore, this cellular automaton can be referred to as ―the 

rule 90 elementary cellular automaton‖. 

The time evolution of a one-dimensional cellular automaton can be visualized by representing 

the configuration at each time step as a row of black and white cells. Considering that initially 

a single cell was in state 1, the figure below presents the first steps in the evolution of the 

rule 90 cellular automaton: 

initial configuration                  

step 1                  

step 2                  

step 3                  
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It can be observed how the cells states change based on the simple rules defined in the 

automaton’s table. The time evolution corresponds to the appearance of a graphical pattern. 

The pattern obtained after 300 steps is presented in the figure below: 

 

Fig. 2.1. Three hundred steps in the evolution of the rule 90 elementary cellular automaton. 

(source: Wikimedia Commons) 

The above figure is named ―the Sierpiński triangle‖, after the Polish mathematician who 

described it in 1915. The resulting patterns differ from one cellular automaton to another: they 

can be symmetrical, asymmetrical or apparently chaotic. Wolfram [125] has identified a series 

of particularities of these patterns and has categorized the cellular automata in four classes: 

Class 1 cellular automata 

From almost any initial configuration, these cellular automata evolve to a homogeneous state. 

Using the dynamic systems terminology, this final state can be described as a limit point 

attractor. 

Class 2 cellular automata 

Depending on the initial configuration, these cellular automata evolve to stable or periodical 

configurations. In terms of dynamical systems, they are analogous to limit cycles (also known 

as periodic attractors). Changes in the initial configuration may affect the final state, but they 

remain localized in a small region. Therefore, class 2 cellular automata act as filters on the 

initial configuration. 

Class 3 cellular automata 

These automata exhibit chaotic, aperiodic behavior. For almost any initial configuration, the 

statistical properties of the resulting pattern, such as the proportion of non-zero cells, become 

very similar after a sufficient number of steps. Cellular 3 automata are very sensitive to the 

initial configuration, small changes in the initial states leading to increasingly large changes in 

subsequent states. They are analogous to the strange attractors typically found in chaotic 

dynamic systems. 

Class 4 cellular automata 

Propagating structures appear during the evolution of these cellular automata. In terms of 

complexity, they are between the class 2 and class 3 cellular automata. 
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Among the above classes, the most interesting are class 3 and class 4 cellular automata, 

because they show that very simple rules can lead to a very complex behavior. 

The best known class 3 cellular automaton is rule 30, whose update rule table is given below: 

Current configuration 111 110 101 100 011 010 001 000 

New cell state for the middle cell 0 0 0 1 1 1 1 0 

 

The figure below presents the first 200 steps in the evolution of this cellular automaton: 

 

Fig. 2.2. Two hundred steps in the evolution of the rule 30 elementary cellular automaton. 

(source: Wikimedia Commons) 

The resulting pattern is chaotic. Although triangles and other small structures can be 

identified, there is no periodicity in their occurrence. Rule 30 is non-linear and 

computationally irreducible: there is no simpler method to predict the cell states after a given 

number of steps than applying at each step the automaton’s update rule. Wolfram [120] has 

observed that the digit sequence corresponding to the cell states evolution in this cellular 

automaton passes the standard statistical tests for randomness and has proposed a random 

number generator [121] based on rule 30, which has been implemented in the Mathematica 

software package [123]. 

The update rule table of rule 110, which is a class 4 elementary cellular automaton, is given 

below: 

Current configuration 111 110 101 100 011 010 001 000 

New cell state for the middle cell 0 1 1 0 1 1 1 0 

 

The figure below presents the first 250 steps in the evolution of this cellular automaton: 
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Fig. 2.3. Two hundred fifty steps in the evolution of the rule 110 elementary cellular automaton. 

(source: Wikimedia Commons) 

This automaton exhibits a complex behavior, which is neither chaotic nor repetitive and is 

characterized by the occurrence of localized propagating structures interacting in complex 

ways. Matthew Cook [27] has proved that rule 110 is computation universal, by showing that 

it can emulate a cyclic tag system. This is an important theoretical result, because it shows 

that even the simple rules of an elementary cellular automaton are able to produce highly 

complex behavior. 

Although extremely simple, rule 110 is not the simplest computation universal system. In his 

book ―A New Kind of Science‖ [119], Wolfram has conjectured that a particular Turing 

machine with only two states and three colors is also computation universal and, in 2007, he 

has announced a 25000$ award to the first person being able to prove or disprove this 

conjecture. A few months later, Alex Smith, a then 20-year-old student, has proved the 

conjecture [100] and has won the prize. 

In order to use the rule 110 automaton as a computational system, it would be necessary to 

encode in its initial configuration both the problem to be solved and the Turing machine 

capable to solve it. This would lead to a huge initial configuration, which makes rule 110 

unusable for practical purposes. In practice, however, one is interested to solve a particular 

problem, rather than having a computation universal system capable to solve any problem. 

Therefore, the question arises, whether it is possible to find a cellular automaton able to solve 

a particular problem. Until now, we have discussed only elementary cellular automata, which 

have two states and a neighborhood composed of three cells: the two adjacent cells and the 

cell itself. There are, however, an infinite number of one-dimensional cellular automata, 

which can be obtained by varying the number of states and the number of cells in the 

neighborhood. Hence, there is a good chance that a one-dimensional cellular automaton 

capable of solving the given problem exists.  

Mitchell et al. [84] describe a series of experiments in which they use genetic algorithms that 

evolve a population of cellular automata in order to solve a particular problem. Each 

automaton can be seen as a computing system whose program is stored in the update rule 

table and whose input is given by the initial configuration. The result of the computation is 

given by the configuration obtained after a given number of steps or when a termination 

condition is met. One of their experiments concerns the majority problem, which consists in 
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deciding whether or not the initial configuration contains a majority of cells in state 1. For this 

purpose, the authors have considered one-dimensional cellular automata with two states and a 

neighborhood composed of 7 cells: the cell itself and its 3 neighbors on either side. For this 

type of automata, there are        possible state combinations for the cells in a 

neighborhood. Therefore, the number of cellular automata of this type is:            . 

Since an exhaustive search is not feasible in this case, the authors have been able to find good 

approximate solutions by using genetic algorithms. This is an example of engineering 

emergent behavior in a multi-agent system, where cells represents the agents and the desired 

behavior is to obtain a final configuration that contains only 1s or only 0s, depending on 

which state occurs more frequently in the initial configuration. 

2.3.2. Two-dimensional cellular automata 

The most studied two-dimensional cellular automata use a rectangular grid, but other 

topologies are also possible. The figure below presents cellular automata based on hexagonal 

and triangular lattices: 

 

Fig. 2.4. Non-rectangular topologies: (a) hexagonal lattice; (b) triangular lattice. 

For a cellular automaton with a rectangular grid, the most frequently used neighborhoods are: 

the Moore neighborhood, which includes the eight surrounding cells, and the von Neumann 

neighborhood, which includes only the four orthogonally surrounding cells (Fig. 2.5). 

Usually, the cell itself is also part of the neighborhood. 

 

Fig. 2.5. (a) Moore neighborhood; (b) von Neumann neighborhood. 

For a two-dimensional cellular automaton with two states and using a Moore neighborhood, 

there are        possible combinations for the states of the cells in the neighborhood, 

which leads to a number of            possible cellular automata. Using a von Neumann 

neighborhood, there are       possible state combinations, leading to           

possible cellular automata. 
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A frequently studied category of cellular automata is that of totalistic automata. For these 

automata, the update rules depend only on the number of state 1 cells in the neighborhood. 

For a Moore neighborhood, there are 10 possible combinations (because the number of cells 

in state 1 is between 0 and 9), therefore there are          possible totalistic automata. 

Analogous, there are       possible totalistic automata with von Neumann neighborhood. 

Another category is that of outer totalistic automata, whose update rules depend on the state 

of the given cell and on the number of remaining cells with state 1 in the neighborhood. For a 

Moore neighborhood, the number of state 1 cells in the neighborhood not including the cell 

itself is between 0 and 8, which gives 9 possible values. Since the update rules also take into 

consideration the state of the given cell, there are 2 x 9 = 18 possible combinations, leading to 

a number of            possible outer totalistic automata. Analogous, there are     
     outer totalistic automata with von Neumann neighborhood. 

In order to visualize the time evolution of a two-dimensional cellular automaton, a method 

similar to that presented for one-dimensional automata can be used, thus obtaining a 

three-dimensional representation. Another possibility, usually used in computer simulations, 

is to visualize dynamically the evolution: the representation remains two-dimensional, but it 

changes at each step, in order to reflect the current state of the cellular automaton. This is a 

more attractive alternative, because, in many cases, the dynamic of the structures arising 

during the evolution creates the impression of watching a computer game, as in the case of 

Conway’s Game of Life. 

Conway’s Game of Life 

The Game of Life has been devised in 1970 by the mathematician John Horton Conway and it 

has become wildly known after being presented by Martin Gardner in the ―Mathematical 

Games‖ column  of ―Scientific American‖ [51]. The game is nothing more than an outer 

totalistic two-dimensional cellular automaton with two states and using a Moore 

neighborhood. A cell in state 1 is considered a live cell, while a cell in state 0 is considered a 

dead cell. Because the automaton is outer totalistic, we use the term ―neighbor‖ in this context 

to refer to any surrounding cell, but not to the cell itself. Conway’s Game of Life uses the 

following update rule:  

 A live cell with less than 2 or more than 3 live neighbors dies. 

 A live cell with 2 or 3 live neighbors stays alive. 

 A dead cell with exactly 3 live neighbors becomes a live cell. 

The only task of a player is to initialize the start configuration, after which the automaton 

evolves without player’s intervention. The game has attracted great interest due to the 

unexpected patterns that arise and their surprising evolution. The philosopher Daniel C. 

Dennett has repeatedly referred to this game [34][35][36] in order to illustrate the emergence 

of complex philosophical concepts such as consciousness or free will from a set of relatively 

simple deterministic physical rules governing our universe. 

There are many types of patterns that can emerge in Game of Life, such as: still lives (static 

patterns), oscillators (repeating patterns), starships (patterns translating across the grid), 

puffers (starships leaving debris behind), guns (oscillators that emit starships), rakes (puffers 

that emit starships) or breeders (patterns exhibiting quadratic growth, such as: guns that emit 

rakes, puffers that emit guns, rakes that emit puffers or rakes that emit other rakes). The most 

known pattern, presented in the figure below, is called glider and it is the smallest possible 

starship: 
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Fig. 2.6. Glider 

Conway [11] has shown that Game of Life is Turing complete. His proof is based on 

emulating the basic building blocks of a computer by using Game of Life’s patterns. For 

example, glider guns can be used as clocks that generate pulses in the form of gliders at 

regular intervals. By studying the interactions between gliders or between gliders and other 

patterns, Conway has noticed interesting properties that allow emulating logical gates. For 

example, if two gliders collide in a particular way, they can annihilate themselves completely. 

This behavior can be exploited in order to create a NOT gate, by using a glider gun whose 

stream of gliders collide with the input stream. The presence of a glider in the input stream is 

interpreted as a bit of value 1, while its absence (i.e., a pattern of blank cells) is interpreted as 

a bit of value 0. After interacting with the stream produced by the glider gun, gliders in the 

input stream are annihilated, which can be interpreted as the conversion of a bit of value 1 

into a bit of value 0. Conversely, since a glider produced by the glider gun continues to exist 

after the interaction with a pattern of blank cells, it can be interpreted as a bit of value 1 

obtained from the conversion of a byte of value 0 present in the input stream.  Using more 

complex interactions, it is possible to emulate other building blocks of a computer, such as 

AND gates, OR gates or counters. Finally, it is possible to combine these blocks in order to 

obtain a finite state machine connected to two counters, which is capable of universal 

computation. Based on Conway’s ideas, Paul Rendell has implemented a Turing machine in 

Game of Life [93]. 

2.4. Ant colony optimization 

As mentioned before, emergent phenomena can be observed in many natural systems, and 

scientists often take inspiration from nature in order to design algorithms that make use of the 

emergent behavior exhibited by these systems. Frequently, such emergent phenomena can be 

seen in biological systems composed of many individuals that coordinate their actions in a 

decentralized way. Examples of such systems include: colonies of social insects (such as ants, 

termites, bees or wasps), flocks of birds, schools of fish, herds of land animals or crowds of 

people. Swarm intelligence [16] is a research field that tries to identify and understand the 

mechanisms that lead to emergent behavior in these systems. By mimicking the working of 

such systems, it is possible to devise algorithms capable of performing complex tasks for 

which no feasible conventional algorithms are known. Some of the best known swarm 

intelligence techniques are: ant colony optimization [45], particle swarm optimization [88] or 

bee inspired algorithms [69]. 

Ant colony optimization (ACO) is currently the best known and the most used swarm 

intelligence technique. Since we refer repeatedly to it in the next chapters, we give in this 

section a description of this technique. 

2.4.1. The behavior of foraging ants 

In their way to a food source and back to the nest, ants deposit on the ground small amounts 

of chemicals called pheromones. These pheromones can be sensed by other foragers, which 

are more likely to follow the trails having a stronger concentration of pheromone. Although 
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very simple, this foraging strategy proves to be very effective. The interactions between ants 

are mediated by pheromones. This indirect form of communication, where traces left in the 

environment by an individual influence the subsequent actions of other individuals or even of 

the individual itself, is called stigmergy [53] [114]. An important characteristic of stigmergy 

is the locality of information, illustrated in our case by the fact that only nearby ants are able 

to sense the pheromones. 

Deneubourg et al. [33] have performed a series of experiments in order to study the behavior 

of a colony of Argentine ants. In one experiment, they have used a double bridge with 

branches of equal length to connect the nest with a food source, as seen in Fig. 2.7. Initially, 

ants choose randomly between the two branches and lay pheromones on their way. Due to 

random fluctuations, after some time the concentration of pheromone on one branch becomes 

higher than on the other branch. Therefore, this branch attracts more ants, which in turn 

deposit more pheromones, thus further increasing the gap between the pheromone 

concentrations on the two branches. Due to this positive feedback, all ants converge 

eventually to the same branch. 

 

Fig. 2.7. Double bridge experiment with branches of equal length. (modified from [33]) 

In a variant of the above experiment, Goss et al. [52] have used branches of different length 

(Fig. 2.8). In this case, random fluctuations are no longer important, because this time another 

aspect plays a more significant role: ants that have chosen the short branch are the first to 

return to the nest. Therefore, the concentration of pheromone on the short branch becomes 

higher than that on the long branch and the positive feedback mechanism described before 

leads to the convergence of all ants to the short branch. 

 

Fig. 2.8. Double bridge experiment with branches of different length. (modified from [52]) 

Ant colony optimization (ACO) algorithms are based on the observation that a pheromone 

trail corresponding to the shortest path between the nest and the food source emerges from the 

stigmergic interactions of ants. The traveling salesman problem has been the first problem 

solved using ACO algorithms. In the next subsection, we use this problem to illustrate how 

ACO algorithms work. Then, in subsection 2.4.3, we present the formalization of ACO as a 

metaheuristic. 
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2.4.2. Ant colony optimization for the traveling salesman problem 

The traveling salesman problem (TSP) consists in finding the shortest round-trip tour through 

a given set of   cities. It can be represented as a weighted graph, whose vertices correspond to 

the cities and whose arcs correspond to the paths between cities. Each arc has an associated 

weight indicating the distance between the cities connected by this arc. In general, it is 

assumed that there is a path between any two cities, that is, the problem graph is complete. 

Otherwise, it can be transformed into a complete graph, by associating infinite weights to the 

missing arcs. This way, the missing arcs do not affect the result, because they cannot be part 

of the solution. If the distance between two cities does not depend on the direction in which 

the corresponding arc is traversed, the problem is symmetric and its graph is undirected. 

Otherwise, the problem is asymmetric and it can be represented by a directed graph having 

two arcs between each pair of nodes   and  : one arc from   to   and one arc from   to  . In 

general, these arcs have different weights. For simplicity, we discuss only the case of 

symmetric problems. If we denote by     the distance between nodes   and  , then        . 

Since ants deposit pheromones during their walk, the concentration of pheromone becomes 

higher on the paths traversed more frequently. ACO algorithms consider that each arc has an 

attached value corresponding to the pheromone concentration on the given arc. The 

pheromone concentration on the arc connecting the cities   and   is denoted    . At start, the 

pheromone concentration on all arcs is initialized with a value   . 

ACO algorithms use a population of artificial ants, which mimic to some degree the behavior 

of real ants. Each artificial ant constructs at each iteration a solution to the problem. In order 

to avoid visiting a city more than once, each ant keeps a list of the nodes already visited in the 

current iteration. Usually, at the start of a new iteration each ant is placed on a randomly 

chosen city. At each construction step, an artificial ant has to decide which city to visit next. 

For this purpose, it uses a stochastic rule that takes into account the pheromone concentration 

on the arcs to the potential next cities, as well as some heuristic information. Most algorithms 

use as heuristic information the inverse of the distance to the potential next node. If the 

current node is   and the candidate node is  , the heuristic information is          . 

The probability of an ant located at city i to choose j as the next city is given by: 

     
    

      
 

                

 (2.1) 

where    represents the set of unvisited cities in the neighborhood of city  , and the 

parameters   and   determine the influence of the pheromone concentration and that of the 

heuristic information. 

At the end of each iteration, when each ant has constructed a solution to the problem, the 

pheromone concentration on each arc is updated. The update rule is based on two factors that 

affect the pheromone concentration in the case of real ants: the pheromone evaporation and 

the pheromone accumulation on the traversed paths. The pheromone concentration on the arc 

connecting nodes   and   is updated according to the following formula: 

                      
 

 

   

 (2.2) 

The first term corresponds to pheromone evaporation. The parameter         gives the 

evaporation rate. The second term represents the amount of pheromone deposited by all ants 

that have traversed the arc       during the current iteration. Considering that the artificial ant 
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  has constructed the tour    having the total length   , the amount of pheromone deposited 

by this artificial ant on the arc       is given by: 

     
   

 

  
             

                 

  (2.3) 

The above equations correspond to the first ACO algorithm, called Ant System, which has 

been introduced by Marco Dorigo [42]. Many extensions of this algorithm have been 

proposed, such as: Elitist Ant System [41], Ant-Q [50], Rank-based Ant System [18], Ant 

Colony System [43] or MAX-MIN Ant System [106]. The last two variants, which are among 

the best-performing ACO algorithms, are briefly described in the next paragraphs. 

Ant Colony System (ACS) 

Unlike the original Ant System algorithm, ACS decides which city to be visited next by using 

an action choice rule that exploits more aggressively the experience gained by ants. The 

probability that an ant chooses a given potential node as the next to be visited depends on a 

random variable   uniformly distributed in the range       and on a constant parameter 

        . If the current value of   is such that     , the artificial ant chooses the node   
that maximizes the expression          

 . Otherwise, the node to be visited next is chosen 

based on the probabilities given by formula (2.1), where the parameter   is set to 1. This 

action choice rule is called pseudorandom proportional. 

Another difference between ACS and the original algorithm is that pheromone evaporation 

and pheromone deposit occur only on the arcs corresponding to the best-so-far tour. However, 

this strategy may lead to stagnation, because all ants converge to the best-so-far tour. 

Therefore, in addition to the global pheromone trail update, which takes place at the end of 

each iteration, ACS performs a local update, at each construction step: each time an artificial 

ant traverses an arc, it removes a certain amount of pheromone from the arc, in order to favor 

the exploration of alternative paths in the future. 

MAX-MIN Ant System (MMAS) 

Pheromone evaporation and pheromone deposit is restricted to the arcs corresponding either 

to the best-so-far tour (as in ACS) or on the arcs corresponding to the iteration-best tour. 

While ACS avoids stagnation by performing a local pheromone trail update, MMAS achieves 

this goal by limiting the value range of the pheromone concentration. This way, MMAS 

prevents the excessive growth of pheromone concentrations on some paths and the excessive 

decrease on some other paths. Pheromone concentrations are constrained to the interval 

           , where      is recomputed at each iteration, based on the length     of the best-

so-far tour:           . The minimum value allowed for pheromone concentrations is 

computed as:            , where a is a constant parameter. 

Additionally, pheromone concentrations are reinitialized in MMAS each time the system 

approaches stagnation or when no improved tour has been found after a given number of 

iterations. 

2.4.3. The ant colony optimization metaheuristic 

After the initial application to the TSP, ACO techniques have been adapted to many other 

classes of problems. The set of concepts characterizing all ACO algorithms have been 

formalized as a metaheuristic by Dorigo et al. [44]. Metaheuristics are algorithmic templates 

used to specify problem-independent optimization strategies, which can be instantiated in 
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order to define problem-specific heuristics. The pseudocode description of the ACO 

metaheuristic [45] is given below: 

 procedure ACOMetaheuristic 

 
 ScheduleActivities 

  ConstructAntsSolutions 

   UpdatePheromones 

   DaemonActions  % optional 

  end-ScheduleActivities 

 end-procedure 

Fig. 2.9. The ACO metaheuristic in pseudocode. (from [45]) 

ACO techniques can be applied to any combinatorial optimization problem for which a 

solution consists of a sequence of components and for which it is possible to map the problem 

space to a construction graph having solution components as nodes. This way, a solution to 

the problem can be represented as a path in the construction graph. As shown in the 

pseudocode above, ACO is based on three activities: ConstructAntsSolutions, 

UpdatePheromones and DaemonActions. The metaheuristic does not specify whether these 

activities should be executed in parallel or sequentially, or whether they should be 

synchronized in some way. These aspects are specific to each algorithm and they are 

determined in each case by the particular instantiation of the ScheduleActivities construct. 

During the ConstructAntsSolutions phase, artificial ants incrementally build solutions, by 

walking through the construction graph. At each step, a new node of the construction graph is 

visited and the corresponding component is added to the partial solution. The walk is 

stochastic and biased by the pheromone trails and by some heuristic information. 

Pheromone concentrations are changed during the UpdatePheromones activity. 

Concentrations increase when ants deposit pheromones on the traversed arcs and they 

decrease as a result of evaporation. Since more pheromones are deposited on arcs that are 

traversed more often or on arcs belonging to high quality tours, these arcs become more 

attractive for the artificial ants. Evaporation allows forgetting past decisions, thus allowing the 

exploration of new areas and preventing an algorithm to converge too rapidly to a suboptimal 

region in the search space. 

A series of optional centralized actions are grouped under the DaemonActions activity. A 

typical example is a local optimization procedure that can be used to improve the solutions 

constructed by the ants. 
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3. A DIFFERENT VIEW ON EMERGENCE 

The research presented in this thesis is driven by the issue of engineering emergent behavior. 

This is a difficult problem, because the mechanisms behind emergence are not completely 

understood and emergent phenomena are characterized by their apparent unpredictability. 

In this chapter, we develop a mathematical formalism for the study of emergence, in order to 

gain insight into the principles of emergent behavior. Our formalism puts emergence in an 

agent-oriented context, consistent with the frame imposed by the problem of engineering 

emergent behavior. 

As discussed in section 2.2, there are many definitions for emergence in the literature. They 

range from intuitive to formal and they differ in the aspects of emergence they are able to 

capture. Many formal definitions start from a preliminary intuitive definition and try to 

express it in a rigorous manner. In doing this, they are usually concerned with the aspects that 

distinguish emergent properties or behaviors from non-emergent ones. In some cases, this 

distinction can be easily formalized, but there is no general procedure that allows to decide 

whether a given phenomenon is emergent or not. One example is Darley’s definition [30], 

which states that a ―true emergent phenomenon is one for which the optimal means of 

prediction is simulation‖. In other cases, it is more difficult to express formally the defining 

characteristics of an emergent phenomenon, and the definitions actually formalize a procedure 

for detecting emergence. This is, for example, the approach taken by Bonabeau and 

Dessalles [15]. In many definitions, emergence is detected by means of an observer. In some 

cases, this leads to a subjective description, putting emergence ―in the eye of the observer‖. 

Examples include the Turing test for emergence [17] or the use of an observer that relies on 

the surprise element [95]. There are, nevertheless, several attempts to provide an objective 

definition of emergence. One example is the approach taken by Crutchfield [29], which 

introduces the notion of intrinsic emergence, characterized by an increase in intrinsic 

computational capability. Besides their theoretical importance, objective definitions are 

appealing because they offer in principle a way to automatically detect emergent phenomena. 

However, they usually involve very complex computations, making them unsuitable for 

practical purposes. 

In this thesis, we take a different view on emergence, which allows us to provide a definition 

that is both objective and suitable for practical purposes. We argue that a definition of 

emergent phenomena should only be concerned with how these phenomena arise and it 

should not address the properties of the emergent phenomena. In our view, these properties 

should be the subject of an entire research field and not part of the definition of emergence. 

From this perspective, a definition should be given only in terms of the processes that produce 

emergent phenomena. We propose an informal definition that represents the starting point in 

developing our formalism: 

Definition 3.1 (informal) An emergent behavior is the behavior exhibited by a decentralized 

agent-based system. 
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Obviously, the above definition is objective, because it does not depend on the way an 

observer perceives the behavior. It is also suitable for practical purposes, because it eliminates 

the need to detect emergent phenomena. However, one may argue that this definition is too 

broad, making almost any behavior emergent. Let us consider for example a decentralized 

agent-based system where all agents die or settle down to a stable state after one time step. 

Should we really consider this an emergent behavior? Our answer is ―yes‖. While this is an 

uninteresting behavior, it is nonetheless an instance of the possible emergent behaviors 

exhibited by a decentralized agent-based system. We consider that the class of emergent 

behaviors includes all behaviors produced by a decentralized agent-based system and we 

regard the study of the properties of emergent behaviors as a scientific discipline, which we 

will refer to as emergent behavior theory (EBT).  

Of course, EBT is focused on ―interesting‖ behaviors, but what aspects of an emergent 

behavior make it interesting? There is no absolute answer to this question, because it depends 

on the observer watching the emergent behavior. One may therefore argue that we have 

eliminated the subjectivity from the definition of emergence only to move it to the EBT. 

However, this kind of subjectivity can be found in many research fields. Let us take an 

example from computational complexity theory, by considering the Traveling Salesman 

Problem (TSP), which is known to be NP-hard. An instance of TSP with a cost matrix 

containing only zeros is trivial to solve and it is of no interest for a researcher studying this 

class of problems, but it nonetheless represents an instance of this class of NP-hard problems. 

One researcher may be interested in non-trivial TSP instances for which exact algorithms are 

able to find solutions within reasonable time. Another researcher may find interesting those 

TSP instances that are intractable for exact algorithms, but for which heuristic algorithms 

obtain very good results. Yet, another researcher may consider that a TSP instance is 

interesting only if no exact algorithm or heuristic is able to find a good solution within 

reasonable time. Furthermore, a researcher may be surprised to find out that an algorithm can 

easily solve a given TSP instance, but it is not able to solve another TSP instance, although 

the researcher cannot detect any significant differences in the structure of the cost matrices 

corresponding to these two instances. 

The example above shows that subjective notions like ―interesting‖ or ―surprising‖ are not 

uncommon in a research field, although definitions of concepts related to the given research 

field do not usually involve subjective notions. Defining emergence in terms of the 

characteristics of the exhibited behaviors is like arguing that only ―useful‖, ―interesting‖ or 

―surprising‖ instances of the TSP should be considered as members of this class of problems. 

For this reason, we consider that our approach to exclude the behavior properties from the 

definition of emergent behavior is a necessary step toward a theory of emergence. 

In order to give a more formal definition of emergence, it is necessary to clarify the meaning 

of the concepts involved by definition 3.1. We start with the notion of decentralized agent-

based system. When can we say that a system is decentralized? Intuitively, a system is 

decentralized if it lacks a central control structure. However, for any conceivable agent-based 

system, it is possible to build a model that involves a central control structure. This can be 

done for example by viewing the agents as merely passive elements, unable to take actions on 

their own. In this case, the set of rules associated with a given agent is not considered a 

characteristic of this (degenerated) agent, but it is instead viewed as part of a complex set of 

rules used by a central control structure. This central control structure acts on each agent in 

accordance with the corresponding set of rules. To exemplify, let us consider an artificial life 

system based on agents that act without the need of a central control structure. This system 

can be implemented as a computer simulation where the agents are nothing more than data 

structures manipulated by the program. In this case, the program clearly represents a central 

control structure, although the model used is a decentralized one. 
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The above discussion shows that it is more accurate to talk about the model used to describe a 

given system than about the system itself. Therefore, it would be preferable to give a 

definition of emergence in terms of agent-based models rather than agent-based systems. Still, 

it is not clear whether decentralization is an objective or rather a subjective characteristic of a 

model.  

We try to capture the essence of decentralization by examining how a centralized system 

could be modeled as a decentralized one. In order to do this, it is necessary to remove the 

central control structure while preserving the behavior of the system. A control structure is 

actually nothing more than an agent that coordinates the activities of other agents. In doing 

this, it needs information about the state of each agent. Based on this information and on a set 

of rules, the control structure issues a series of commands in order to control its subordinate 

agents. A possible approach to eliminate the control structure is to implement its logic in each 

agent, thus transforming the control structure into a passive agent. Instead of receiving 

commands from the control structure, each agent can decide itself what action to do next. 

However, this implies that each agent has information about the state of the other agents. This 

problem can be solved by implementing a kind of stigmergic communication between agents. 

For this purpose, the passive agent corresponding to the former control structure can be used 

as a blackboard on which each agent writes information about its state and from which each 

agent can retrieve the needed information. The resulting model exhibits the same behavior as 

the original system, but the central control structure has been replaced by a passive agent 

playing the role of an environmental element that mediates the communication between 

agents. 

Using the above method, it is possible to transform a centralized agent-based system into a 

system lacking a central control structure. However, it is questionable whether the resulting 

model is decentralized. In our view, the answer to this question is ―no‖. Although the model 

lacks a control structure, it still contains a central structure, represented by the passive agent 

used to mediate the communication. We argue that that the defining characteristic of 

decentralization is the existence of only local interactions between agents and that the 

presence of a control structure has no relevance in deciding whether a model is decentralized 

or not. From this perspective, we propose the following informal definition: 

Definition 3.2 (informal) An agent-based model is decentralized if no agent is able to 

interact with all other agents. 

The above definition is ambiguous, because it does not explicitly disallow the interaction of 

an agent with all other agents by means of stigmergic communication. Stigmergy implies the 

existence of environment elements that mediate the communication, but making references to 

environment elements would complicate the definition of a decentralized agent-based model. 

We choose instead to treat the environment as a collection of agents, thus integrating the 

environment into the agent-based model. This may seem a radical decision, but we consider 

that there is no fundamental difference between agents and environment elements. Agents are 

able to perceive their environment and act upon it, but they are also able to perceive the state 

of other agents and to interact with them. One can argue that environmental elements are 

typically passive entities, which do not actively interact with other agents, while agents are 

typically active, autonomous entities. However, this is not necessarily true. For example, the 

air is an environmental element, but it could take the form of a tornado that interacts in a 

devastating way with an autonomous agent like a human been. Moreover, depending on the 

level of observation, the same entity may play the role of an agent or an environment element. 

Finally, our universe is probably the best example that an agent-based system does not 

necessarily have an environment. 
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In order to clarify what we mean by interaction in the context of an agent-based model, we 

propose the following definition: 

Definition 3.3 (informal) An interaction of a group of agents is an exchange of information 

between the agents in the considered group, which leads to a change in the state of at least 

one of the agents. 

There are a few more things we have to take into account before proceeding with our 

mathematical formalism. One of them is that the set of agents with which an agent interacts 

may change over time. Another one is that, in general, the number of agents does not remain 

constant during the evolution of the system. Some agents may die, while other agents may be 

created. Who should be responsible for creating and destroying agents? Should we place the 

logic of creating and destroying agents at the system level or at the level of individual agents? 

In our view, having the logic at the system level would represent an inherent loss of 

decentralization. Moreover, let us notice that placing the logic at system level is equivalent to 

having a central control structure that decides when a subordinate agent should die and when 

a new subordinate agent should be created. Since a central control structure can be always 

seen as an agent, it means that there is no loss of generality in placing the logic at the level of 

individual agents. 

One of the most interesting aspects of emergence is that even very simple rules are able to 

produce complex behavior. Therefore, we consider that in order to understand the 

mechanisms of emergence, one should start by studying the behavior exhibited by systems 

containing agents that are governed by only simple rules. The question is how to express the 

notion of simple rules in a formal way. One idea is to use algorithmic complexity concepts 

such as Kolmogorov complexity [76]. However, this approach is not practical, because 

Kolmogorov complexity is not computable. Therefore, we take a pragmatic approach and we 

propose to use abstract syntax trees (AST) in order to assess the complexity of agent rules. 

Assuming that a method to represent agent rules as ASTs has been agreed upon, we measure 

the complexity of the rules of an agent as the number of leaves in the corresponding AST. 

This is, of course, not an ideal measure, because it depends on the language used to express 

the rules and because the same rules can be expressed in many ways. Nevertheless, it is a 

useful measure for practical purposes. 

We are ready now to give a formal definition of agent-based models. The notations that 

appear in the next paragraphs use upper indices to denote agents and lower indices to denote 

time steps. 

Definition 3.4 An agent-based model is a discrete-time dynamical system described by a tuple 

        , where: 

   is the state space. 

   is the language used to describe agent rules, together with a definite method of 

representation as AST. 

    is the initial finite set of agents. An agent is a tuple           , where: 

-      is the initial state. 

-          is the selection function, which returns the set of agents with which 

this agent interacts. (  denotes the set of all possible agents, that is, the set of all 

possible tuples          . The notation    denotes the power set of  .) 

-         is the interaction rule, which computes the new state of the agent 

based on the states of the agents with which it interacts.   is described in the 

language  . 

-         is the transformation rule that decides if the agent should die and/or 

other agents should be created. The return value of   is the agent itself, if the 
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agent continues to exist and no new agents are created; it is the empty set, if the 

agent dies and no new agents are created; it is a finite set of agents (possibly 

containing the agent itself), if new agents are created.   is described in the 

language  . 

 The interaction between agents is reflexive in the sense that if an agent   interacts 

with an agent   at a given moment  , then   also interacts with   at the moment  : 

                          
           

   

 The state of an agent evolves over time according to the following rule: 

                
              

In the above equation,       denotes the preliminary state of the agent at the moment 

   , that is, the state before applying the transformation rule. The definitive 

configuration of the agent-based model at the moment     is: 

              
 

 

    

 

Next, we provide a definition for a decentralized agent-based model, which is a formalization 

of the definition 3.2: 

Definition 3.5 An agent-based model is decentralized iff: 

       
                    . 

In studying emergence, it is interesting to analyze and compare the behaviors obtained in a 

variety of agent-based models, ranging from centralized to strongly decentralized. Therefore, 

it is useful to have a measure of how decentralized an agent-based model is. Let us first notice 

that the condition imposed by the definition 3.5 can be alternatively expressed as: 

       
                     . 

Based on this observation we provide the following definition: 

Definition 3.6 The centralization level of an agent-based model is a quantity   given by: 

     
   

   
    

      
     

    
 

Using the above measure, a strongly decentralized agent-based model can be defined as a 

model with a very low centralization level: 

Definition 3.7 An agent-based model is strongly decentralized iff     . 

According to definition 3.1, emergent phenomena require a decentralized model. However, 

some agent-based models are only partially decentralized. Should we consider in this case the 

resulting behavior as emergent? In order to better understand this question and what we mean 

by partially decentralized models, let us examine the agent-based models used by the Ant 

Colony Optimization (ACO) algorithms for the traveling salesman problem, which have been 

described in section 2.4. In almost all ACO algorithms, ants update the pheromone trails at the 

end of each construction phase by depositing pheromones on the arcs contained in the newly 

constructed tour. In Ant System, the amount of pheromone is inversely proportional to the 

length of the constructed tour. Other variants of ACO use update strategies that require global 

knowledge about the solution quality. In algorithms such as Elitist Ant, MAX-MIN Ant 

System or Ant Colony System the pheromone update process is strongly biased in favor of the 

best-so-far or iteration-best solution. In Rank-Based Ant System a ranking of the solutions 
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based on their quality is performed before updating the pheromone trails. Ant System is the 

algorithm that mimics most closely the behavior of real ants, but it is clearly outperformed by 

all other ACO algorithms. Nevertheless, Ant System is the only algorithm that uses a 

decentralized model. The other algorithms use global information that implies the existence of 

a central structure. However, the global information is not needed at each time step, but only 

at the end of the construction phase. During the construction phase, ants’ actions are 

decentralized. Therefore, we denote as partially decentralized the model used by these 

algorithms. Should we consider that the behavior exhibited by Ant System is emergent, while 

the behavior exhibited by the other algorithms is not, because they use only partial 

decentralized models? In our opinion, the answer is ―no‖, although the behavior exhibited by 

Ant System could be denoted as pure emergent, in order to differentiate it from the partially 

emergent behavior exhibited by the other algorithms. 

In accordance with the discussion above, we offer the following definition for a partially 

decentralized agent-based model: 

Definition 3.8 An agent-based model is partially decentralized iff: 

                                 
                     

Notice that in the above definition we require that there is an infinite set of time steps at 

which the model behaves like a decentralized one. For an agent-based model where the 

condition imposed by the definition 3.8 is satisfied only for a finite set T of time steps, there 

exists a moment   from which on the agents’ actions are centralized at each time step. 

Therefore, we do not consider such a model as partially decentralized. Conversely, if there is 

a finite set T of time steps such that the decentralization condition is satisfied for each 

     , then it exists a moment   from which on the agents’ actions are decentralized at 

each time step. Hence, such a model could be considered decentralized. 

As mentioned before, we are mainly interested in emergent phenomena exhibited by agents 

that follow only simple rules. Therefore, we need a measure for the complexity of agent rules. 

Definition 3.9 Given a function   described in a language    that specifies a definite method 

of representation as AST, the rule complexity of   relative to the language  , noted      , is 

given by the number of leaves in the AST representation of g associated with the language  . 

Using this measure, we introduce a definition for the rule complexity of an agent-based 

model: 

Definition 3.10 The rule complexity of an agent-based model is a quantity   given by: 

     
   

   
    

     
       

     

There is a large class of agent-based models for which the set of agents does not change over 

time: agents do not die and no new agents are created. In such models, the transformation rule 

of each agent is the identity function, which has a rule complexity of 1. Since the set of agents 

does not change over time, the rule complexity of the model is determined by the initial set of 

agents. In this case, we can write: 

     
    

     
       

Definition 3.11 The dynamic of a decentralized agent-based model, expressed in terms of 

system-level properties, is called pure emergent behavior. 
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Definition 3.12 The dynamic of a partially decentralized agent-based model, expressed in 

terms of system-level properties, is called partially emergent behavior. 

The two definitions above refer to system-level properties, but this is a concept that is not 

involved in our definition of an agent-based model. What characteristics of a system are 

regarded as system-level properties depends on the perspective of an observer. In general, 

there is a loss of information when a system is described in terms of system-level properties 

instead of describing it in terms of its agents’ states, although in most cases the system-level 

description is more useful. For example, describing a gas in terms of its temperature and 

pressure is more useful than specifying the positions and velocities of each of its molecules. 

Nevertheless, knowing only the temperature and pressure of a gas, one cannot compute the 

position and velocity of a particular molecule. This loss of information makes the behavior of 

an agent-based model – as defined by the two definitions above – a subjective notion, because 

it depends on the set of system-level properties used to describe the dynamic of the system. 

However, this does not represent a problem from the practical perspective of engineering 

emergent behavior. Since in this case the desired behavior is specified a priori, the set of 

system-level properties is implicitly imposed by the need to detect this given behavior. 

The formalism introduced in this chapter is a first step towards an Emergent Behavior Theory 

(EBT). It is consistent with our view that emergent phenomena should be defined only in 

terms of the computational models able to produce them, while the characteristics of these 

phenomena should represent an entire research topic of EBT. From this perspective, EBT 

should identify and analyze different classes of emergent behavior, such as: 

 emergent behavior characterized by an increase in complexity; 

 emergent behavior characterized by pattern formation; 

 chaotic emergent behavior; 

 emergent behavior characterized by attractors; 

 emergent behavior for which simulation is the shortest way to predict it. 

There are many questions to which EBT should find an answer. The list below contains only a 

few of them: 

 How is pure emergent behavior different from partially emergent behavior? For 

practical purposes, is it the mixed approach offered by partially emergent behavior 

preferable to the pure approach? 

 In what respects is the emergent behavior exhibited by homogenous agent-based 

systems different from the emergent behavior exhibited by heterogeneous systems? 

Which type of system should be preferred when engineering emergent behavior? 

Homogenous or heterogeneous? 

 How affects the centralization level the emergent behavior? Is there a threshold that 

must be exceeded in order to be able to obtain a certain behavior? Is there an optimum 

value of the centralization level? 

 Is there a minimum number of agents needed to obtain a certain behavior? Is there an 

optimal number? 

 How does relate the complexity of agents’ rules and the number of agent types needed 

to achieve a desired behavior? 

 What is the best methodology to engineer emergent behavior? 

How should one proceed in order to answer these questions? Let us first note that the above 

questions are too broad to admit a simple answer. Moreover, some of the problems raised by 

these questions may be undecidable in the general case. Therefore, one should initially 

address more specific versions of these questions, by restricting for example the class of 

desired behavior taken into consideration, by considering a particular methodology of 
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engineering the emergent behavior or by putting additional constraints on the agent-based 

models used. However, we hypothesize that even for such specific questions, only a fraction 

of them are decidable. Since there are virtually endless specific questions that could be posed 

and since one cannot know a priori whether an answer can be found for a particular question, 

it is difficult to decide which questions are the most suitable to be tackled.  

We propose to identify promising specific questions by performing computational 

experiments and choosing those questions for which empirical answers can be found. Then, 

using the formalism introduced in this chapter, one can try to give rigorous proofs of these 

empirical answers. This approach implies the existence of an experimental framework for the 

study of emergence, which must be compatible with our mathematical formalism. A 

meta-framework designed by us to meet these requirements makes the subject of the next 

chapter.  
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4. METFREM – A META-FRAMEWORK FOR THE STUDY 

OF EMERGENCE 

In order to study emergent phenomena in a rigorous manner, we need a framework that allows 

the modeling of virtually any agent-based system in a unified way. For this purpose, we 

develop a Meta-Framework for Emergence, called MetFrEm, which can be used to describe 

various algorithmic frameworks comprising a population of interacting agents. MetFrEm is a 

meta-framework, because it is typically used to model abstract, high-level algorithms such as 

metaheuristics, which are themselves frameworks allowing to describe specific algorithms. 

By modeling different high-level algorithmic specifications in the same meta-framework, we 

can make a rigorous comparison of the methods considered. MetFrEm provides a set of 

concepts and rules that must be used to model the desired systems and it imposes a general 

algorithmic structure for these systems. At a first glance, constraining all models to the same 

algorithmic structure may seem to limit the range of systems that can be expressed in 

MetFrEm. This is not true. The algorithmic structure prescribed by MetFrEm requires only 

describing the working of each modeled system using a fixed template. It does not prevent 

any agent-based system from being able to be modeled in the meta-framework. Instead, the 

imposed algorithmic structure actually improves the usefulness of MetFrEm. Due to this 

constraint, the methods expressed in the meta-framework are somewhat devoid of their 

underlying metaphor. Therefore, we can better identify which aspects are similar and which 

are really different when comparing various algorithmic frameworks. 

Since our meta-framework is used to model meta-algorithms, its structure must be defined at 

the meta-meta-algorithm level. To better understand what this means, we make an analogy 

with the four-layered architecture introduced by OMG (Object Management Group) [113] for 

modeling languages (Figure 4-1). 

The topmost layer in the OMG architecture defines the language used by MOF (Meta-Object 

Facility) to specify metamodels. Possible such metamodels are: the UML language, UML 

profiles (e.g., SysML - Systems Modeling Language or SPEM - Software Process 

Engineering Modeling) or other metamodels (e.g., CWM – Common Warehouse Metamodel 

or ODM – Ontology Definition Model). Specific models, positioned at the M1 Layer, can be 

specified using these metamodels. Finally, real world object instances are created based on 

specific models. 

Similarly, we can describe a four-layer architecture containing MetFrEm at the topmost layer 

(Figure 4-2). Meta-algorithms are positioned at Level 2 in this architecture. An instantiation 

of a meta-algorithm represents an algorithm for a specific class of problems. For example, the 

MAX-MIN Ant System algorithm [106] for the Traveling Salesman Problem is an 

instantiation of the Ant Colony Optimization metaheuristic. The last level in this architecture 

is represented by the application of an algorithm to a particular problem instance. 
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Figure 4-1. The OMG four-layer modeling architecture. 

Figure 4-2. The MetFrEm four-layer architecture. 
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4.1. Goals and objectives of MetFrEm 

In the introductory chapter, we have mentioned a series of questions and hypotheses that 

motivate our research. We take them into consideration in order to establish the goals of our 

meta-framework. The main design objectives of MetFrEm are: 

 to allow the modeling of virtually any agent-based algorithmic framework. Since 

emergent phenomena may occur in virtually any agent-based system, our meta-

framework should not restrict the type of systems that can be modeled. 

 to favor the modeling of strongly decentralized systems. Although we do not try to 

mimic natural systems, our research is focused on building models that could explain 

some of the properties and phenomena observed in these systems. It is highly 

improbable that a centralized control structure can arise by pure chance in the systems 

of the type considered in our research. Therefore, we constrain many of the models 

proposed in this thesis to be strongly decentralized. We should note, though, that there 

is no reason to forbid centralized control for optimization algorithms, and, in practice, 

most optimization heuristics present some form of centralized control. For example, 

swarm intelligence techniques like Ant Colony Optimization (ACO) or Particle Swarm 

Optimization (PSO) keep track of the best-so-far solution and use this information in 

various ways (e.g., for updating the pheromone trail in ACO or for adjusting the 

velocity in PSO). MetFrEm should allow us to clearly identify which models use 

centralized control and which not. 

 to favor the modeling of systems with agents that follow only simple rules. In order 

to understand the underlying principle of emergence, it is necessary to study the 

mechanisms that allow simple rules to produce complex behavior. Moreover, we focus 

on agents with simple rules, because in nature only such agents could appear by pure 

chance. These agents have no intelligence, beliefs, desires or intentions. They pursue no 

goals and there is no meaning associated with the simple rules that govern their 

behavior. Therefore, there is no need to introduce such high-level concepts in our meta-

framework. We are instead interested in how these concepts may emerge from the 

interaction of our simple agents. 

 to facilitate the modeling of algorithmic frameworks with highly heterogeneous 

agents. One characteristic of many agent-based computational models is that 

individuals are relatively homogeneous. For example, there is only one species of ant in 

most Ant Colony Optimization algorithms and only one type of particle in Particle 

Swarm Optimization. On the other hand, one of the hypotheses mentioned in the 

introductory chapter is that it is easier to engineer a desired emergent behavior in a 

system with heterogeneous agents. Our meta-framework should be able to model 

systems with homogeneous agents, like swarm intelligence techniques, but one 

important goal of MetFrEm is to facilitate the modeling of algorithmic frameworks with 

highly heterogeneous agents. For this purpose, a system comprising a great number of 

agent types should be described in a generic manner in the meta-framework, without 

the need to explicitly state the interaction rules between each pair of agent types. An 

agent of a given type has to know how to interact with agents of other types without 

even needing to be aware of the existence of these other types. Another related goal of 

MetFrEm is to facilitate the modeling of systems where new types of agents are 

continually created during the evolution of the systems. This implies the possibility to 

automatically generate new types of agents. 

 to offer a unitary approach to the modeling of direct communication and 

stigmergy. Two major forms of communication between agents have been observed in 

natural systems like colonies of social insects. The first one is direct communication, 

used for example by honey bees. They are able to perform a so called ―waggle dance‖, 
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through which they inform other bees in the hive about the location and quality of a 

food source. The second form of communication, called stigmergy, is an indirect form 

of communication, based on traces left in the environment by an agent. These traces 

influence the subsequent actions of other agents or even of the agent itself. Stigmergy 

can be observed for example in some species of ants, which leave a pheromone trail on 

their way to the food source and back to the nest.  In our opinion, there is no 

fundamental difference between these two types of communication, because the 

distinction between agents and environment elements is a subjective one, depending on 

the perspective taken. Therefore, our meta-framework should treat all types of 

communication in a unitary fashion. 

Emergence is often associated with the occurrence of hierarchical structures. However, we do 

not require that MetFrEm facilitates the modeling of such structures. While they represent an 

important aspect of self-organization in complex systems, we are rather interested in whether 

and how hierarchical structures can emerge in decentralized systems with simple agents. 

Therefore, a typical framework considered in our research can be used in experiments aiming 

to observe the appearance of hierarchical structures, but it does not try to model them 

explicitly. 

4.2. Related work 

Existing frameworks for the study of emergence differ in their goals and in the aspects of 

emergence they try to capture. Artificial chemistries investigate the emergence of life and of 

its underlying evolutionary mechanisms by introducing a framework that takes inspiration 

from real chemical systems. A comprehensive review is given in [39], where the following 

definition is offered: ―an artificial chemistry can be defined by a triple ( ,  ,  ), where   is 

the set of all possible molecules,   is a set of collision rules representing the interaction 

among the molecules, and   is an algorithm describing the reaction vessel or domain and how 

the rules are applied to the molecules inside the vessel‖. One of the first and best known 

models of artificial chemistry is the AlChemy [48] system, which uses λ-calculus to describe 

the interactions between molecules. 

John H. Holland [57] argues that in complex systems, emergence can be associated with the 

existence of procedures able to generate dynamic behaviors, together with constraints that 

restrict the set of such possible behaviors. Consequently, he introduces a framework called 

constrained generating procedures (CGP), which permits the modeling of virtually any 

complex system. The basic elements in CGP are mechanisms, which are characterized by 

their state and their transition function. Mechanisms have inputs, but no outputs. However, it 

can be considered that the state of a mechanism represents its output. Therefore, when one 

mechanism is connected to another, the state of the first mechanism is transformed by an 

interface function into a sequence of values, which are placed on one of the second 

mechanism’s inputs. In the standard framework, the connections between mechanisms are 

fixed, but Holland also proposes an extension of his framework, called constrained 

generating procedures with variable geometry (CGP-v), which allows mechanisms to make 

and break their connections. 

Another framework for the study of emergence, introduced by Kubík [72], is based on 

grammar systems. In this framework, agents are represented by grammars that operate on a 

number of shared symbolic tapes, which form the environment. In order to define emergence, 

Kubík provides a formal interpretation of the phrase ―the whole is greater than the sum of its 

parts‖ using concepts available in his framework. Thus, a system exhibit emergent behavior, 
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if the language generated by the interacting grammars cannot be generated by the 

superimposition of the individual languages of these grammars. 

 

4.3. Concepts and structure of MetFrEm 

Universe 

We denote as universe an agent-based model represented in MetFrEm. The universe 

representation is consistent with the definition of an agent-based model introduced in the 

previous chapter. This means that a universe is a discrete time model that has no environment. 

Environment elements can be represented as ordinary agents, which are called mechanisms in 

MetFrEm’s terminology. A metamodel in MetFrEm involves only one universe, which in turn 

contains all metamodel’s mechanisms. 

Mechanism 

In order to denote an agent in MetFrEm, we adopt the term mechanism, which was introduced 

by Holland to describe his CGPs. However, the structure of a mechanism in MetFrEm differs 

from the structure of a mechanism in CGP. An important characteristic of mechanisms in 

MetFrEm is that they know how to interact with any other mechanisms, without needing to 

know what types of mechanisms exist in the universe. 

Property 

The internal state of a mechanism is characterized by the values of its internal properties. It 

is not mandatory that each type of mechanism has the same set of internal properties. 

However, the set of properties that characterizes a mechanism is a subset of a finite global set 

of properties defined in the given universe. When there is no possible confusion we will use 

the term properties to denote the internal properties and the term state to denote the internal 

state of a mechanism. Each property has a numeric value that can change over time. In 

general, a mechanism does not fully expose its state to other mechanisms. Moreover, in 

different contexts, a mechanism can expose different sets of properties, by using the 

appropriate view for the given context. 

View 

A view represents a set of properties exposed by a mechanism to other mechanisms. This set 

of properties can be a subset of the internal properties or it can involve properties whose 

values aggregate the values of some internal properties. The properties exposed by a view 

must also be a subset of the global set of properties of the universe. Each mechanism provides 

three views, which will be discussed in the following paragraphs: the observable view, the 

active view and the reactive view. Each of the three views has a corresponding view function, 

which is used to compute the values of the exposed properties. Accordingly, these view 

functions are: the observable view function   , the active view function    and the reactive 

view function   . We call observable state of a mechanism the set of values returned by the 

observable view function   . 

Neighborhood 

At each time step, a mechanism can initiate an interaction with a subset of mechanisms. This 

subset is selected from a family of potential subsets, which represents the neighborhood of the 

mechanism at the given time step. Each mechanism has an associated neighborhood 

function  , which returns the neighborhood of the mechanism at a given time step, based on 

the observable states of the other mechanisms in universe. 
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Evaluation function 

In order to choose the subset of mechanisms with which it initiate an interaction at a given 

time step, a mechanism has to evaluate each subset in its neighborhood. This operation is 

performed by using an evaluation function  , which returns a numerical value indicating how 

suitable a given subset is. The suitability of a subset is computed based on the values of the 

properties exposed by the observable view of each of the mechanisms in the subset. 

Selection function 

Based on the suitability values returned by the evaluation function, a mechanism selects the 

subset of mechanisms with which it initiates an interaction, by using a selection function  . 

Interaction functions 

In MetFrEm, one of the mechanisms involved in an interaction plays an active role and it is 

called the initiator of the interaction. The other mechanisms, which are determined by the 

selection function  , represent the target of the interaction and play a reactive role. During the 

interaction, the initiator exposes its state to the target mechanisms by means of its active view, 

while a target mechanism exposes its state to the initiator and to other target mechanisms by 

means of its reactive view. In general, the state of a mechanism changes as a result of the 

interaction. This change is reflected by changes in the values of the internal properties of the 

mechanism. The new internal state is computed by applying an interaction function. Each 

mechanism has two associated interaction functions: an active interaction function    and a 

reactive interaction function   . Which function is used depends on the role played by the 

mechanism in interaction: the initiator mechanism computes its new state by using the active 

interaction function, while the target mechanisms compute their new states by using the 

reactive interaction function. 

Transformation function 

As a result of an interaction, a mechanism may continue to exist, it may die or it may create 

new mechanisms. These operations are performed by a transformation function  , which 

replaces the mechanism with a set of other mechanisms. If the mechanism continues to exist 

and no new mechanisms are created, this set is represented by the mechanism itself. If the 

mechanism dies and no new mechanism are created, the transformation function returns an 

empty set. If new mechanisms are created, the transformation function returns a finite set of 

mechanisms, which also contains the mechanism itself, if it continues to exist. 

4.4. A formal description of MetFrEm 

In this section, we give a formal description of the concepts presented in the above 

paragraphs. We first introduce the set of global properties of a universe: 

                   

where     is the number of global properties. 

Each element    of the set   identifies a measurable property. For example, a universe that 

models microscopic particles could involve properties such as: mass, position and velocity. In 

MetFrEm, the value of a property is a dimensionless quantity expressed as a real number. 

We denote by   the infinite set of all possible mechanisms. A universe in MetFrEm is a 

tuple ( ,   ), where   is the global set of properties and      is the initial finite set of 

mechanisms. 

A mechanism is defined as a tuple (  ,   ,   ,   ,   ,   ,   ,   ,  ,  ,  ,  ,   ,   ), where: 
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      is the set of internal properties; 

      is the set of observable view properties; 

      is the set of active view properties; 

      is the set of reactive view properties; 

          is the initial internal state, that is, the initial set of values of the internal 

properties; 

      
           is the observable view function, which computes the set of values 

representing the observable state of the mechanism; 

      
           is the active view function, which computes the set of values 

exposed during an interaction initiated by this mechanism; 

      
           is the reactive view function, which computes the set of values 

exposed during an interaction in which this mechanism is a target; 

         
 

 is the neighborhood function, which returns a family of subsets of 

mechanisms with which this mechanism could initiate an interaction. The return value 

is computed based on the observable states of all mechanisms in the universe. 

         is the evaluation function, which computes the suitability of a subset of 

mechanisms from the family of potential subsets, based on their observable states. 

          is the selection function, which chooses the subset of mechanisms with 

which this mechanism initiates an interaction, based on the suitability of each potential 

subset. 

         is the transformation function, which returns a set of mechanisms 

reflecting the transformation undergone by this mechanism at the end of an 

interaction: it may continue to exist, it may die and/or it may create new mechanisms. 

      
      is the active interaction function used by the initiator mechanism in 

order to compute its new internal state, based on its current state and on the values of 

the reactive properties of the target mechanisms. 

      
      is the reactive interaction function used by a target mechanism in order 

to compute its new internal state, based on its current state, on the values of the active 

properties of the initiator mechanism, and on the values of the reactive properties of 

the other target mechanisms. 

In the next paragraphs, we show how the dynamic of the universe results from the application 

of the functions associated with the mechanisms. At the same time, we analyze whether a 

MetFrEm universe represents an agent-based model in the sense given by the definition 3.4 

introduced in the previous chapter. A first apparent problem is posed by the selection function 

 . In the definition 3.4, the domain of the selection function is the set of all agents’ states. In 

contrast, the input of a selection function in MetFrEm is given by the set of suitability values 

of potential subsets. Let us see how the set of mechanisms with which a given mechanism 

initiates the interaction is computed in MetFrEm. The neighborhood of a mechanism  , that 

is, the set of potential subsets of mechanisms with which it can initiate an interaction at a time 

step  , is computed as: 

  
 
          

   

    

 

 

(4.4) 

where    is the set of all mechanisms that exist at time step   and   
  is the internal state of 

the mechanism   at time step  . 

The set of suitability values corresponding to each potential subset is given by: 
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(4.5) 

The actual subset of mechanisms with which a given mechanism   initiates an interaction is: 

  
 
       

 
  

 (4.6) 

In MetFrEm, a mechanism can interact with other mechanisms in an active or in a reactive 

way. The set of all mechanisms with which a mechanism interacts must therefore include the 

mechanisms involved in either of these types of interactions. For a given mechanism  , this 

set is: 

  
 
   

 
               

    
 (4.7) 

It can be noticed that although the set of mechanisms with which a given mechanism interacts 

is determined in a rather complex way, the result depends ultimately only on the internal 

states   
  of the mechanisms in the universe. Therefore, it is possible to construct a function 

   representing a composition of  ,  ,   and   , having as domain the set of all mechanisms’ 

states and returning the set of interacting mechanisms. The    function has the same form and 

the same meaning as the evolution function from the definition 3.4. 

A second issue concerning the compatibility of a MetFrEm universe with the formal 

definition of an agent-based model is given by the interaction functions. In MetFrEm, it is 

possible that at a given time step  , a mechanism is the subject of several interactions: it may 

be the initiator in one of these interactions and the target in the others. The new state after an 

interaction in which the mechanism acts as initiator is computed using the active interaction 

function   . The new state after an interaction in which the mechanism acts as target is 

computed using the reactive interaction function   . The final state of the mechanism is 

obtained by successively applying these functions for each interaction of the given 

mechanism. If we denote by   the initiator mechanism, its preliminary state after the 

interaction, that is, the state before applying the transformation rule, is given by: 
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 (4.8) 

The preliminary state of a target mechanism   after the interaction is: 

     
    

 
    

        
 
   

 
        

    
         

 
     ) 

 
(4.9) 

It can be observed that, ultimately, the preliminary states are determined only by the internal 

states   
  of the mechanisms in the universe. It is therefore possible to construct an interaction 

function    having as domain the set of all mechanisms’ states and returning the state of a 

mechanism after all interactions undergone at a given time step  . The    function has the 

same form and the same meaning as the interaction function from the definition 3.4. 

In addition, let us notice that MetFrEm defines the interaction between agents in a way that is 

inherently reflexive in the sense required by the definition 3.4: if a mechanism    interacts 

with a mechanism    at a given moment  , then    also interacts with    at the moment  . 

Finally, note that the definition of the transformation function   in MetFrEm is identical with 

that introduced in the definition 3.4. The definitive configuration of the universe at time step 

    is: 
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(4.10) 

Based on the observations above, we conclude that a universe in MetFrEm is compatible with 

the formal definition of an agent-based model. 

4.5. The algorithmic structure 

The evolution of a universe in MetFrEm is presented in pseudocode in the figure below: 

1 procedure MetFrEm () 
2  M ← initializeUniverse () 
3  while (termination condition not met) do 

4   executePreliminaryActions (M)  // optional 
5   foreach initiator   M do 

6    neighborhood ← getNeighborhood (initiator) 
7    suitabilities ← evaluateNeighborhood(neighborhood) 
8    targets ← selectTargets (neighborhood, suitabilities) 
9    initiator.state ← activeInteraction (initiator, targets) 

10    replacement  ← transform(initiator) 
11    M ← (M \ {initiator)}   replacement 

12    foreach target   targets do 

13     target.state ← reactiveInteraction (target, initiator, targets) 
14     replacement  ← transform(target) 
15     M ← (M \ {target)}   replacement 

16    end foreach 

17   end foreach 

18   executeFinalActions (M)   // optional 
19  end while 

20 end procedure 

Figure 4-3. Pseudocode of the evolution of a universe in MetFrEm. 

During the initialization phase (line 2), the initial set of mechanisms is created and the state of 

each mechanism is configured. The algorithm enters then the main loop (lines 3-19). In order 

to allow modeling of systems that do not perfectly fit the formal structure specified by 

MetFrEm, the algorithm offers two optional procedures: executePreliminaryActions (line 4) 

and executeFinalActions (line 18). Typically, these procedures perform global operations that 

cannot be modeled as decentralized actions, but the meta-framework does not impose any 

restriction on what operations they can execute. For example, in some Ant Colony 

Optimization algorithms, only the best-so-far ant is allowed to update the pheromone trails. 

This operation requires global knowledge about the solutions constructed by all ants and 

could be therefore implemented by one of these optional procedures. 

While MetFrEm does not specify the actions performed by the optional procedures, the 

working of the other procedures referred in the pseudocode above is completely determined 

by the underlying functions and views introduced by the formal description. The 

getNeighborhood procedure (line 6) uses the neighborhood function   in order to determine 

the set of potential subsets of mechanisms with which the initiator could interact, in 

accordance with formula 4.4. The evaluateNeighborhood procedure (line 7) uses the 

evaluation function   in order to compute the suitability value of each set of mechanisms in 

the neighborhood, in accordance with formula 4.5. The selectTargets procedure (line 8) uses 
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the selection function   in order to choose the set of target mechanisms, in accordance with 

formula 4.6. The activeInteraction procedure (line 9) uses the active interaction function    in 

order to compute the state of the initiator after the interaction, in accordance with formula 4.8. 

The reactiveInteraction procedure (line 13) uses the reactive interaction function    in order 

to compute the state of a target mechanism after the interaction, in accordance with formula 

4.9. The transform procedure (lines 10 and 14) uses the transformation function   in order to 

determine the set of mechanisms that replaces a given mechanism, in accordance with 

formula 4.10. 

4.6. Analysis of MetFrEm 

As mentioned before, one of the main goals in designing MetFrEm was the possibility to 

model highly heterogeneous agent-based systems, where a mechanism knows how to interact 

with any other mechanism, without needing to know what types of mechanisms exist in the 

universe. For this purpose, the interaction depends only on the application of mechanism 

specific functions and it is defined only in terms of property values exposed by views. The 

concept of type is not even used in MetFrEm. However, this does not mean that MetFrEm 

prevents the modeling of systems that rely on the concept of type. This would be a major 

constraint, because many agent-based algorithms require that the agents are aware of the types 

of other agents and implement different interaction rules based on the types of agents that 

interact. It is easy to model such an algorithm in MetFrEm, by treating the type of a 

mechanism as one of its observable properties. This way, all mechanism specific functions are 

able to different implement rules for different types of mechanisms. Although for the 

considered model the type property has a special meaning, from MetFrEm’s perspective, it is 

nothing more than a regular observable property. 

In the formal description of MetFrEm, properties can have only numerical values. However, 

since a numerical encoding is possible for any type of information, we can consider without 

loss of generality that any type of values is permitted for properties.  

While modeling a meta-algorithm, it is not required to use all concepts offered by MetFrEm. 

For example, in many cases the set of mechanisms does not change over time. Mechanisms 

do not die and no new mechanisms are created. This means that the transformation function   

is the identity function, which implies that lines 10, 11, 14 and 15 from Figure 4-3 have no 

effect in this case. There are also many meta-algorithms where agents fully expose their 

internal state. In such cases, the view functions   ,    and    are all identity functions. In 

other cases, these functions are projections that simply return a subset of the values 

corresponding to the internal properties, while in most complex scenarios the return values of 

these functions aggregate some of the values of the internal properties. Similarly, there are 

meta-algorithms where an agent interacts at each time step with the same fixed set of agents. 

In this case, the neighborhood function   returns a single constant set of mechanisms, the 

evaluation function   become unnecessary and the selection function   returns the single set 

of mechanisms in the neighborhood. Finally, it is possible that the set of targets returned by 

the selection function is empty. Even in this case, the state of the initiator may change as a 

result of the interaction with the empty set. Such a change is equivalent with an evolution in 

time of the initiator’s state. In many cases, this time evolution is a component independent of 

the ―real‖ interactions of a mechanism. Therefore the active interaction function    can be 

implemented as a superposition of two other functions: the time evolution function and the 

―real‖ interaction function. 



 Metfrem – a meta-framework for the study of emergence 

42 

4.7. Modeling various systems in MetFrEm 

MetFrEm’s first purpose is to help the study of emergence and the implementation of new 

meta-algorithms and agent-based systems that make use of emergent behavior. However, 

modeling existing algorithms and systems in MetFrEm is also useful, because it permits a 

comparative analysis and a better understanding of their characteristics. In this section, we use 

several such existing algorithms and systems as a means to illustrate the use of MetFrEm. 

In order to model a system in MetFrEm, one must provide a description of the properties, 

views and functions specified in the formal representation of this meta-framework. This 

description refers in turn to operations expressed in terms of the modeled system. When 

MetFrEm is used for meta-modeling, that is, for modeling a meta-algorithm or a high-level 

representation of a system, some of these operations are not completely specified. They 

become fully specified only when the template provided by the meta-algorithm is applied to a 

specific scenario. 

If necessary, the MetFrEm model may also specify a series of operations to be performed by 

the optional procedures executePreliminaryActions and executeFinalActions referred in the 

pseudocode from Figure 4-3. 

In order to distinguish the properties available in the global set from their corresponding 

values, we adopt the convention to start the name of a property with a capital letter, while 

values of this property should be denoted by using a lowercase as the first letter. For example, 

the global set of properties could contain a property called Velocity. The corresponding value 

of this property for a given mechanism at a given time step should be denoted as velocity. 

Additionally, in the case studies presented below, we use the following notations: 

    – the identity function:             

       – the function that returns the unique element of the set representing its 

argument:                 . The return value is unspecified if the argument of this 

function is a set containing more than one element. 

      – the function that always returns 0:               

       – the function that always returns an empty set:               

   – the projection on a set of elements. It is typically used to describe view functions 

that simply return a subset of the values corresponding to the internal properties. For 

example, consider a universe having the set of internal properties    = {Mass, 

Velocity} and the set of observable properties   = {Velocity}. The observable view 

function is simply a projection of the internal state on the elements of   , that is, on 

Velocity:                 . 

4.7.1. Case study: Cellular automata 

Cellular automata (CA), presented in section 2.3, are deterministic systems characterized by 

only local interactions. The type of a CA depends on several factors, such as: the number of 

dimensions, the number of states, the type of neighborhood, the update rule or the type of 

cellular universe. We first show how a meta-model of CA can be described in MetFrEm, then 

we instantiate this meta-model for two specific types of CA: a one-dimensional CA 

implementing rule 110 and the two-dimensional CA representing Conway’s Game of Life. 

In order to distinguish concepts that have identical names but different meanings in MetFrEm 

and CA, we use the terms cell state, cell neighborhood and cellular universe to denote the 

concepts associated with CA. 
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In a CA, the cell states are updated simultaneously, but the algorithmic structure imposed by 

MetFrEm allows only sequential update of the mechanisms’ states. In order to model a CA in 

MetFrEm, we divide the cell interactions in two phases. In the first phase, which we call the 

computation phase, the new value for each cell state is computed, but the cell states are not 

updated. In the second phase, which we call the change phase, the cell states are updated with 

the values computed in the previous phase. 

Each cell of a CA can be implemented as a mechanism in MetFrEm. A cell is characterized 

by its position and its state. Since we model the evolution of a CA as a two-phase process, a 

mechanism needs two additional properties: a property indicating the current phase in the CA 

evolution and a property corresponding to the new cell state. Therefore, the global set of 

properties is: 

  = {Position, CellState, NewCellState, Phase} 

The Position property indicates the location of the mechanism in the cellular universe. The 

corresponding values are points in a  -dimensional space, where   represents the number of 

dimensions of the cellular universe: position     . We denote the values corresponding to 

individual directions in this multidimensional space by adding a suffix that indicates the 

particular direction considered. For example, in a three-dimensional cellular universe, the 

position of a cell is described by the values: position.x, position.y and position.z. 

If we denote by   the number of possible cell states of the considered CA, then the values of 

the properties CellState and NewCellState are natural numbers less than  : 

cellState              
newCellState              

The Phase property admits two possible values: phase       . The value 0 corresponds to 

the computation phase, while the value 1 corresponds to the change phase. 

The meta-model is a generic description, which is not bound to a particular type of CA. 

Therefore, the operation of a CA cannot be fully specified at this level. In particular, it is not 

specified what cells compose the neighborhood of a given cell and how the state of a cell is 

updated based on the states of the cells in its neighborhood. For this reason, we introduce two 

generic functions, which must be instantiated in order to obtain the model of a concrete type 

of CA. The first function, called cellNeighborhood, returns a family of sets containing only 

one set1: the set of cells that constitute the neighbors of a given cell. The second function, 

called updateRule, computes the new state of a cell based on the states of its neighboring 

cells. In our MetFrEm model, this function is called only during the computation phase. 

The cellular universe can be described in MetFrEm as follows: 

   =   = {Position, CellState, NewCellState, Phase} 

   = {Position} 

   =   

   = {CellState} 

   =     

   =       

   =     

  = cellNeighborhood 

  =      

                                                 
1 It is necessary that the return value is a family of sets instead of just a set, in order to be compatible with the formal 

definition of the neighborhood function  . 
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  =       
  =    

   =    

   – pseudocode description using the variables initiator and targets referred in Figure 

4-3: 

if initiator.phase = 0 then 

 targetCellStates ← {cell.cellState | cell   targets } 
 initiator.newCellState ← updateRule (initiator.cellState, targetCellStates) 
else 

 initiator.cellState ← initiator.newCellState 

end if 

initiator.phase ← 1 - initiator.phase 

Our meta-model describes the interaction between a cell and its neighbors in a unidirectional 

way: only the initiator changes its state as a result of the interaction. The targets, that is, the 

neighbor cells, expose their cell states, but they are not affected by the interaction. Therefore, 

the initiator does not expose any properties and the reactive interaction function is the identity 

function. Since the cell neighborhood is fixed, there is no need for an evaluation function. 

Cells are not destroyed and no new cells are created during the evolution of the cellular 

universe, therefore the transformation function is the identity function. 

The active interaction function computes the new cell states and stores them as NewCellState 

properties during the computation phase and updates the CellState properties during the 

change phase. The value of the Phase property is switched at each MetFrEm time step. 

The CA meta-model perfectly fits the structure imposed by MetFrEm, therefore it does not 

need the optional procedures executePreliminaryActions and executeFinalActions. 

MetFrEm model of the rule 110 one-dimensional CA 

In order to apply our meta-model to a concrete type of CA, we must instantiate the generic 

functions cellNeighborhood and updateRule. The neighborhood of a one-dimensional CA is 

composed of its two adjacent cells. The location of a cell is described by a single coordinate: 

position.x. Therefore, the cellNeighborhood function can be described in pseudocode as 

follows: 

function cellNeighborhood (initiator) 

 leftCell ←       ({cell | cell.position.x = initiator.position.x – 1}) 

 rightCell ←       ({cell | cell.position.x = initiator.position.x + 1}) 

 return [leftCell, rightCell] 

end function 

The update rule for the rule 110 CA is given in the table below: 

Current configuration 111 110 101 100 011 010 001 000 

New cell state for the middle cell 0 1 1 0 1 1 1 0 

The updateRule procedure can be described in pseudocode as follows:  
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function updateRule (initiatorCellState, targetCellStates) 

 pattern ← targetCellStates[0] || initiatorCellState || targetCellStates[1] 

 if pattern   {111, 100, 000} then  

  return 0 

 else 

  return 1 

 end if 

end function 

In the above pseudocode, the symbol || denotes the concatenation operation. 

MetFrEm model of Conway’s Game of Life 

Conway’s Game of Life (described in subsection 2.3.2) is a two-dimensional CA, therefore 

the location of a cell is described by two coordinates: position.x and position.y. It uses a 

Moore neighborhood, which means that the neighborhood of a cell comprises its eight 

surrounding cells. The cellNeighborhood function can be described in pseudocode as follows: 

function cellNeighborhood (initiator) 

 return {cell | (cell.position.x - initiator.position.x)   {-1, 1},  

    (cell.position.y - initiator.position.y)   {-1, 1}} 

end function 

A cell in state 1 is considered a live cell, while a cell in state 0 is considered a dead cell. 

Conway’s Game of Life uses the following totalistic update rule:  

 A live cell with less than 2 or more than 3 live neighbors dies. 

 A live cell with 2 or 3 live neighbors stays alive. 

 A dead cell with exactly 3 live neighbors becomes a live cell. 

The corresponding updateRule procedure can be described in pseudocode as follows:  

function updateRule (initiatorCellState, targetCellStates) 

 liveNeighbors ← 0 

 foreach cell   targetCells do 

  if cell.state = 1 then 

   liveNeighbors ← liveNeighbors + 1 

  end if 

 end foreach 

 if initiatorCellState = 1 then 

  if  liveNeighbors < 2 or liveNeighbors > 3 then 

   return 0  

  else 

   return 1  

  end if 

 else 

  if  liveNeighbors = 3 then 

   return 1  

  else 

   return 0  

  end if 

 end if 

end function 
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4.7.2. Case study: Ant Colony Optimization 

Ant Colony Optimization (ACO), presented in section 2.4, is a metaheuristic inspired by the 

behavior of real ant colonies. It is typically used to solve combinatorial optimization problems 

where a solution can be incrementally constructed by adding at each step a new component 

from a given set of available components. We denote by                 
  the finite set of 

components, where    is the number of components. A partial solution is a finite length 

sequence of components:                   , where the number of components cannot 

exceed a given maximum value  :    . A complete solution is also considered a partial 

solution. 

The components   can be seen as the nodes of a construction graph         , where   is 

the set of arcs that fully connects the components of  . In ACO, the solution construction is a 

randomized walk on the construction graph. At each construction step, an ant has to decide 

which component to visit next. This decision is biased by the concentration of pheromone on 

the arcs connecting the current component with the potential next components. Additionally, 

ants’ decisions may be influenced by some heuristic information. The pheromone trail is 

updated by the ants themselves, by depositing a certain amount of pheromone.  

Instead of interacting directly, ants coordinate their activities via stigmergy. We can consider 

that an ant interacts with an arc connecting two components, by perceiving the existing 

concentration of pheromone and by modifying it through the deposition of a new amount of 

pheromone. Therefore, our meta-model should contain two types of mechanisms: ants and 

arcs between components. As mentioned before, since MetFrEm does not use the concept of 

type, the type of a mechanism must be represented by a property. 

An ant can perform a local pheromone trail update, by depositing pheromone on the current 

arc at each construction step, or it can perform a global update at the end of the construction 

phase, by depositing pheromone on the path representing a complete solution. In some 

algorithms, both methods are combined. However, only the local pheromone trail update can 

be in general regarded as a MetFrEm interaction. While a global update could be also 

modeled as a MetFrEm interaction, by considering that an ant interacts with all arcs contained 

in its newly constructed solution, most algorithms require global knowledge in order to decide 

which ants are allowed to perform the global pheromone trail update. Therefore, we treat the 

global update as an operation not fitting the algorithmic structure imposed by MetFrEm and 

we implement it as one of the operations performed by the optional procedure 

executeFinalActions. Most ACO algorithms use global update, because it improves the 

performance. Some early variants of the Ant System algorithm, called ant-quantity and 

ant-density [25] are among the algorithms that use exclusively local update. Ant Colony 

System (ACS) [43], which is one of the best-performing ACO algorithms, combines local and 

global pheromone trail update. 

In order to create a meta-model of ACO in MetFrEm, we introduce a number of generic 

functions that, at this level, are only described in terms of their purpose. A concrete 

representation of these functions must be provided when instantiating the meta-model in order 

to describe a specific ACO algorithm. The generic functions are: 

 chooseStartComponent – this function is called at the beginning of a solution 

construction phase, in order to choose the first component in the partial solution. 

 getNeighborComponents – given a mechanism of type ant, this function returns a set 

of components representing the potential next destinations of the ant2. The main factor 

                                                 
2 In order to be compatible with the formal definition of the neighborhood function  , this function must actually return a 

family of sets, each set containing a single element that represents a component. 
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that influences the result returned by this function is the current position of the ant, 

that is, the last element in the partial solution constructed by the given ant during its 

randomized walk on the construction graph. Since the construction graph is 

completely connected, this function may return, in principle, the entire set of 

components  . However, in most cases, there are a series of constraints that drastically 

reduce the number of components in the return set. For example, in many algorithms, 

an ant is not allowed to walk to an already visited component. In addition, many 

algorithms use candidate lists containing only a relatively small number of 

components, which are in some sense ―close‖ to the current component. The argument 

of this function may be an empty partial solution at the beginning of a solution 

construction phase. In this case, the return value is the empty set  . 

 getCost – given a partial solution, this function computes its cost. In many cases, this 

cost is the result of applying the objective function of the considered optimization 

problem to the partial solution. If the partial solution given as argument is an array 

containing only one component, the function returns 0. If the array contains two 

components, the result corresponds to the cost associated with the arc identified by 

these components. 

 getComponentSuitability – given an arc that connects the current location of an ant 

with a potential next location, this function returns a value proportional to the 

probability to choose this arc. 

 chooseNextComponent – based on a set of arcs and their corresponding suitability 

values, this function chooses the arc to be traversed next. 

 isCompleteSolution – given a partial solution, this function returns a boolean value 

indicating whether the partial solution represents a complete solution. 

 updateLocalPheromoneTrail – this function updates the pheromone concentration on 

the arc determined by the two components supplied as argument. 

 updateGlobalPheromoneTrails – this function updates the pheromone trails at the end 

of a solution construction phase. 

Our ACO meta-model contains the following global set of properties: 

  = {Type, PartialSolution, ArcComponents, PheromoneTrail, HeuristicInfo} 

The Type property admits two possible values: type       . The value 0 corresponds to a 

mechanism of type ant, while the value 1 corresponds to a mechanism of type arc. 

The values of the PartialSolution property are arrays of components. The last element of a 

partialSolution indicates the current location of the ant on the construction graph. The values 

of the ArcComponents property are arrays containing the two components that define an arc. 

PheromoneTrail and HeuristicInfo are real-valued. The pheromoneTrail typically change as a 

result of the interactions between ants and arcs, while the heuristicInfo is typically not 

affected by interactions. 

Since all mechanisms have identical sets of properties, ants must possess arc-specific 

properties and, conversely, arcs must possess ant-specific properties. The unused properties 

are initialized with default values and do not influence the evolution of the universe. An ACO 

meta-model can be described in MetFrEm as follows: 

   = {Type, PartialSolution, ArcComponents, PheromoneTrail, HeuristicInfo} 

   = {Type, ArcComponents, PheromoneTrail, HeuristicInfo} 

   =   

   = {Pheromone, HeuristicInformation} 

   =     
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   =       

   =     

  = getNeighborComponents 

  = getComponentSuitability 

  = chooseNextComponent 

  =    

   – pseudocode description using the variables referred in Figure 4-3: 

if targets =   or isCompleteSolution (initiator.partialSolution) then 

 initiator.partialSolution ← chooseStartComponent () 
else 

 currComp ← initiator.partialSolution.last 

 target ←       (targets) 

 nextComp ←       ({c | c   target.arcComponents, c   currComp}) 

 initiator.partialSolution ← initiator.partialSolution   nextComp 
end if 

   – pseudocode description using the variables referred in Figure 4-3: 

updateLocalPheromoneTrail (target) 

executeFinalActions = updateGlobalPheromoneTrails 

In the pseudocode of the active interaction function   , the operator   is used to indicate the 

addition of an element to an array. Also note that in the pseudocode of the above functions, 

the initiator mechanism is of type ant, while the targets mechanisms are of type arc. 

MetFrEm model of Ant Colony System for the Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) was the first combinatorial optimization problem 

solved using ACO and is frequently used to assess the performance of new ACO algorithms. 

Ant Colony System (ACS) performs both local and global pheromone trail update, it 

introduces an aggressive choice rule and it uses candidate lists in order to restrict the number 

of available choices. The reader is referred to subsection ??? for a detailed description of this 

algorithm. 

In the case of the TSP, the components that constitute the nodes of the construction graph are 

the cities to be visited. The cost of an arc in the construction graph represents the distance 

between the cities identifying the given arc. 

In order to apply our ACO meta-model to the ACS algorithm for the TSP, we must instantiate 

the meta-model’s generic functions. In the pseudocode below,   denotes the number of cities. 

The meaning of the parameters  , q0,  ,    and   is described in subsection ???. 
 

function chooseStartComponent () 

 return random     

end function 

 

function getNeighborComponents (initiator) 

 currentCity ← initiator.partialSolution.last 

 return {c | c   candidate_list[currentCity], c   initiator.partialSolution } 

end function 
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function getCost (partialSolution) 

 cost ← 0 

 previousCity ← partialSolution.first 

 foreach c   partialSolution do 

  cost ← cost + distance[previousCity, c] 

  previousCity ← c 

 end foreach 

 return cost 

end function 

 

function getComponentSuitability (initiator, target) 

 return                                                

end function 

 

function chooseNextComponent (targets, suitabilities) 

 q ← random        
 if q   q0 then 

  target ←                                   

  return target 

 else 

  target  ← random proportional choice based on suitabilities 

  return target 

 end if 

end function 

 

function isCompleteSolution (partialSolution) 

 if size(partialSolution) =   then 

  return true 

 else 

  return false 

 end if
 

end function 

 

function updateLocalPheromoneTrail (target) 

 target.pheromoneTrail ←       target.pheromonTrail +    
 

end function 

 

function updateGlobalPheromoneTrail (M) 

 search all mechanisms in M to determine bestSoFarAnt 

 costBSF = getCost (bestSoFarAnt.partialSolution) 

 foreach arc   bestSoFarAnt.partialSolution do 

  arc.pheromoneTrail ←        arc.pheromoneTrail +   / costBSF 

 end foreach
 

end function 

Some operations in the pseudocode above are described in plain text, because their 

implementation is not relevant to our discussion about MetFrEm. 
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4.7.3. Case study: Predator-Prey models 

In the previous two case studies, the transformation function   is the identity function, 

because the set of mechanisms does not change over time. In the predator-prey models 

considered in this subsection, this is no longer the case. Predators and prey can die and they 

can reproduce. One of the first and best known models of predation is the Lotka-Volterra 

model [77][116], which uses differential equations in order to describe the dynamic of 

interacting populations of predators and prey. Many other models are available in the 

literature, most of them with a higher complexity. 

We consider in this subsection a very simple model, inspired by an article of Wilensky and 

Reisman [118]. This allows us to show that MetFrEm can be used to describe not only meta-

models, but also ordinary models. In our model, predators and prey are wolves and sheep, 

which live on a rectangular grid of dimensions W x H.  

Wolves need energy to live and they are able to gain it only by eating sheep. At each time 

step, a wolf moves to a randomly chosen location on the grid and it eats any sheep found at 

the new location. Each change of location costs the wolf an amount E1 of energy, and its 

energy increases by an amount E2, each time it eats a sheep. If the energy of a wolf decreases 

below 0, it dies. Wolves reproduce with a probability R1. 

The sheep behavior is even simpler. At each time step, a sheep moves to a randomly chosen 

location on the grid and it reproduces with a probability R2. 

In the considered model, wolves can start eating only after all animals have changed their 

locations. Therefore, in the corresponding MetFrEm model, we divide the interactions in two 

phases. In the first phase, which we call the move phase, the new locations of each animal are 

determined. In the second phase, which we call the eat phase, wolves are allowed to eat sheep 

and they may also die of starvation. 

Our MetFrEm model contains the following global set of properties: 

  = {Phase, Type, X, Y, Energy, Dead} 

The Phase property admits two possible values: phase       . The value 0 corresponds to 

the move phase, while the value 1 corresponds to the eat phase. 

The Type property also admits two possible values: type       . The value 0 corresponds to 

a mechanism of type wolf, while the value 1 corresponds to a mechanism of type sheep. 

The Energy property is real-valued, while the Dead property has boolean values. The Dead 

property is needed only to mark that a sheep has been eaten. The dead of a wolf can be 

determined by checking its energy. 

Our model can be described in MetFrEm as follows: 

   =   = {Phase, Type, X, Y, Energy, Dead} 

   = {Type, X, Y} 

   =   

   =   

   =     

   =       

   =       
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  = pseudocode description using the variables referred in Figure 4-3: 

if initiator.type = 0 then 

 return { {m} | m   M, m.type=1,m.X=initiator.X, m.Y=initiator.Y } 

else 

 return   

end if 

  =      

  =       
   – pseudocode description using the variables referred in Figure 4-3: 

if initiator.phase = 0 then 

 initiator.X ← random   [1, W] 
 initiator.Y ← random   [1, H] 

 if initiator.type = 0 then 

  initiator.energy ← initiator.energy - E1 

 end if 

else 

 if initiator.type = 0 then 

  foreach sheep   targets do 

   initiator.energy ← initiator.energy + E2 

  end foreach 

 end if 

end if 

   – pseudocode description using the variables referred in Figure 4-3: 

if target.phase = 1 then 

 if target.type = 1 then 

  target.dead ← true 

 end if 

end if 

  – pseudocode description using the notation   to denote the argument of this function: 

replacement ← {m} 

if m.phase = 1 then 

 if m.type = 0 then 

  if m.energy < 0 then 

   replacement ←   

  else 

   p ← random   [0, 1] 
   if p   R1 then 

    replacement ← replacement   {new wolf} 

   end if 

  end if 
 else 

  if m.dead = true then 

   replacement ←   

  else 

   p ← random   [0, 1] 
   if p   R2 then 

    replacement ← replacement   {new sheep} 

   end if 

  end if 
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 end if 

end if 

return replacement 

 

The optional procedures executePreliminaryActions and executeFinalActions are not needed 

in this MetFrEm model. 
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5. THE CONSULTANT-GUIDED SEARCH 

METAHEURISTIC 

The meta-framework introduced in the previous chapter has been designed to allow modeling 

of highly heterogeneous systems, with agents that know how to interact with any type of 

agent, without needing to know what types of agents exist in the system. For this reason, an 

interaction in MetFrEm is performed in two steps. First, the initiator chooses a set of targets 

from a family of potential sets, and then it interacts with the chosen targets. For simplicity, let 

us consider that the set of targets contains only one element, that is, there is only one target 

mechanism with which the initiator interacts. The initiator changes its state as a result of the 

interaction. The new state is computed based on the values present in the reactive view 

exposed by the target. Since the reactive view provides values that are in general not available 

in the observable view, these additional values can be regarded as private information offered 

by the target mechanism. The initiator gets this information only because it has chosen to 

interact with this specific target. We can see the target mechanism as a consultant that has 

expert knowledge, which it makes available to the mechanisms that are willing to interact 

with it. Similarly, the initiator can be seen as a client that chooses one of the available 

consultants, in order to get useful information. Viewed from this perspective, the interaction 

in MetFrEm has led us to the idea of a new heuristic method, which we call the Consultant-

Guided Search, and which constitutes the subject of this chapter. 

5.1. Introduction 

Many combinatorial optimization problems of both practical and theoretical importance are 

known to be NP-hard. Since exact algorithms are not feasible in such cases, heuristics are the 

main approach to tackle these problems. Metaheuristics are algorithmic templates used to 

specify problem-independent optimization strategies, which can be instantiated in order to 

define problem-specific heuristics. Some of the most successful metaheuristics conceived in 

the last two decades are swarm intelligence techniques [16] like Ant Colony Optimization 

(ACO) [45], Particle Swarm Optimization (PSO) [70] or Bee Colony Optimization (BCO) 

[110]. They are population-based methods that make use of the global behavior that emerges 

from the local interaction of individuals with one another and with their environment. 

Consultant-Guided Search (CGS) is a population-based metaheuristic for combinatorial 

optimization problems that takes inspiration from the way people make decisions based on 

advice received from consultants. Human behavior is complex, but CGS uses virtual people 

that follow only simple rules. Furthermore, there is no centralized control structure in CGS, 

and the group behavior self-organizes. These properties allow us to regard CGS as a swarm 

intelligence metaheuristic. 

Individuals in a swarm intelligence system can use direct communication or stigmergy to 

exchange information. Stigmergy is an indirect form of communication based on traces left in 

the environment by an individual. Currently, ACO algorithms are the most successful swarm 

intelligence techniques that use stigmergic communication. In contrast, CGS uses only direct 

communication between individuals, thus bearing some resemblance to BCO. 
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5.2. The CGS Metaheuristic 

In this section, after describing the CGS method, we present its formalization as a 

metaheuristic and analyze its operation. 

5.2.1. Method Description 

CGS is a population-based method. An individual of the CGS population is a virtual person, 

which can simultaneously act both as a client and as a consultant. As a client, a virtual person 

constructs at each iteration a solution to the problem. As a consultant, a virtual person 

provides advice to clients, in order to help them construct a solution. 

The goal of a combinatorial optimization problem is to find values for discrete variables in 

order to obtain an optimal solution with respect to a given objective function. In CGS, a client 

constructs a solution as a sequence of steps, choosing at each step a value for one of the 

discrete variables of the considered problem. 

At the beginning of each iteration, a client chooses a consultant that will guide it during the 

construction of the current solution. The first factor considered when deciding which 

consultant to choose is its reputation. The reputation of a consultant depends on the number 

of successes achieved by its clients. We say that a client achieves a success, if it constructs a 

solution better than all solutions found up to that point by any client guided by the same 

consultant. In this case, the consultant’s reputation will be incremented. Should a client 

constructs a solution that is better than all solutions previously found by any client, 

irrespective of the consultant used, the consultant’s reputation will receive a supplementary 

bonus. On the other hand, consultant’s reputation fades over time. To keep its reputation, a 

consultant needs that its clients constantly achieve successes.  

For each consultant, the algorithm keeps track of the best result obtained by any client 

working under its guidance. We use the term result in this context to refer to the value of the 

objective function applied to the considered solution. Based on these results, CGS maintains a 

ranking of the consultants. For a small number of consultants appearing at the top of this 

ranking, the algorithm prevents their reputations from sinking below a predefined level. This 

is motivated by the fact that the records (or at least the very good results) set by them in the 

past are still current, even if they happened long ago.  

Besides reputation, another factor contributing to the choice of a consultant is client’s 

personal preference. The concretization of this concept is specific to each application of CGS 

to a given class of optimization problems. 

Each consultant has a strategy, which is used in order to guide its clients during the solution 

construction. If the consultant’s reputation sinks below a minimum value, it will take a 

sabbatical leave, during which it will stop offering advice to clients and it will instead start 

searching for a new strategy to use in the future. At each iteration, a virtual person on 

sabbatical leave constructs a new strategy, based on some heuristic. After a predefined period 

of time, the sabbatical ends and the virtual person selects the best strategy found during this 

period. This best strategy will be subsequently used to guide clients. At the end of the 

sabbatical, the consultant’s reputation is reset to a predefined value. 

At each step of an iteration, a client receives from the consultant chosen for this iteration a 

suggestion regarding the next action to be taken. Solution construction is a stochastic process 

in CGS, therefore the client will not always follow the consultant’s recommendation. Usually, 

at each step there are several variants the client can choose from. The variant recommended 
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by the consultant has a higher probability to be chosen, but the client may opt for one of the 

other variants, which it selects based on some heuristic. 

When a client achieves a success, it means having obtained a result that is better than the 

result it would have obtained following the consultant’s recommendations at each step. For 

this reason, the consultant adjusts its strategy in order to reflect the sequence of decisions 

taken by the client. This way, a consultant dynamically improves its strategy every time one 

of its clients achieves a success. 

5.2.2. The Metaheuristic 

The pseudocode that formalizes the CGS metaheuristic is shown in Figure 5-1.  

1 procedure CGSMetaheuristic() 
2  create the set   of virtual persons 

3  foreach p    do 

4   setSabbaticalMode(p) 
5  end foreach 

6  while (termination condition not met) do 

7   foreach p    do 

8    if actionMode[p] = sabbatical then 

9     currStrategy[p] ← constructStrategy(p) 
10    else 

11     currCons[p] ← chooseConsultant(p) 
12     if currCons[p] ≠ null then 

13      currSol[p] ← constructSolution(p, currCons[p]) 
14     end if 

15    end if 

16   end foreach 

17   applyLocalOptimization()     // optional 

18   foreach p    do 

19    if actionMode[p] = sabbatical then 

20     if currStrategy[p] better than bestStrategy[p] then 

21      bestStrategy[p] ← currStrategy[p] 

22     end if 

23    else 

24     c ← currCons[p] 

25     if c ≠ null and currSol[p] is better than all solutions  

26      found by a client of c since last sabbatical then 

27       successCount[c] ← successCount[c] + 1 

28       strategy[c] ← adjustStrategy(c, currSol[p]) 
29     end if 

30    end if 

31   end foreach 

32   updateReputations() 
33   updateActionModes() 
34  end while 

35 end procedure 

Figure 5-1. The CGS metaheuristic 

A virtual person may be in one of the following modes: normal and sabbatical. During the 

initialization phase (lines 2-5), virtual people are created and placed in sabbatical mode. 

Based on its mode, a virtual person constructs at each iteration (lines 7-33) either a solution to 
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the problem (line 13) or a consultant strategy (line 9). Optionally, a local optimization 

procedure (line 17) may be applied to improve this solution or consultant strategy.  

The consultant used to guide the solution construction (line 11) is chosen based on its 

reputation and on the personal preference of the client. Since a virtual person act 

simultaneously as a client and as a consultant, it is possible for a client to choose itself as a 

consultant. The exact details of how reputation and personal preference are used in order to 

select a consultant are specific to each application of CGS to a particular class of problems. 

Similarly, the metaheuristic does not detail how a solution is constructed based on the strategy 

promoted by the consultant or how a strategy is constructed by a virtual person in sabbatical 

mode. 

After the construction phase, a virtual person in sabbatical mode checks if it has found a new 

best-so-far strategy (lines 20-22), while a virtual person in normal mode checks if it has 

achieved a success and, if this is the case, its consultant adjusts its strategy accordingly (lines 

24-29). Again, the method used to adjust the strategy is specific to each instantiation of the 

metaheuristic. 

At the end of each iteration, the reputation and action mode of each virtual person are updated 

(lines 32-33).  

Figure 5-2 details how consultants’ reputations are updated based on the successes achieved 

by their clients. A concrete application of the metaheuristic must specify how reputations fade 

over time (line 4) and how the reputations of top-ranked consultants are prevented from 

sinking below a predefined level (line 13). 

1 procedure updateReputations() 
2  foreach p    do 

3   if actionMode[p] = normal then 

4    rep[p] ← applyReputationFading(rep[p]) 
5    rep[p] ← rep[p] + successCount[p] 

6    if currSol[p] is better than best-so-far solution then 

7     rep[p] ← rep[p] + bonus 

8    end if 

9    if rep[p] > maxReputation then 

10     rep[p] ← maxReputation 

11    end if 

12    if isTopRanked(p) then 

13     rep[p] ← enforceMinimumReputation(rep[p]) 
14    end if 

15   end if 

16  end foreach 

17 end procedure 

Figure 5-2. Procedure to update reputations 

Figure 5-3 details how the action mode of each virtual person is updated: consultants whose 

reputations have sunk below the minimum level are placed in sabbatical mode, while 

consultants whose sabbatical leave has finished are placed in normal mode. 
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1 procedure updateActionModes() 
2  foreach p    do 

3   if actionMode[p] = normal then 

4    if rep[p] < minReputation then 

5     setSabbaticalMode(p) 
6    end if 

7   else 

8    sabbaticalCountdown ← sabbaticalCountdown – 1 

9    if sabbaticalCountdown = 0 then 

10     setNormalMode(p) 
11    end if 

12 
13 

  end if 

 end foreach 

14 end procedure 
Figure 5-3. Procedure to update action modes 

Figure 5-4 and Figure 5-5 show the actions taken to place a virtual person in sabbatical or 

normal action mode. 

1 procedure setSabbaticalMode(p) 
2  actionMode[p] ← sabbatical 

3  bestStrategy[p] ← null 

4  sabbaticalCountdown ← sabbaticalDuration 

5 end procedure 
Figure 5-4. Procedure to set the sabbatical mode 

 

1 procedure setNormalMode(p) 
2  actionMode[p] ← normal 

3  rep[p] ← initialReputation 

4  strategy[p] ← bestStrategy[p] 

5 end procedure 

Figure 5-5. Procedure to set the normal mode 

5.2.3. Method Analysis 

The goal of a metaheuristic is to guide the solution search toward promising regions of the 

search space, where high-quality solutions are expected to be found. In CGS, the strategy of a 

consultant can be seen as a region of the search space that is advertised by this consultant. 

Because consultants with a higher reputation are more likely to be chosen by clients, it is 

important to ensure that the reputation of a consultant is in concordance with the probability 

to find high-quality solutions in the region of the search space that it advertises. 

As the strategy of a consultant approaches a local or global optimum, the rate of achieving 

new successes decreases. This leads to a decrease in the consultant’s reputation. As seen, 

CGS maintains a ranking of the consultants. This ranking is not based on reputation, but on 

the best result obtained until then by any client guided by the considered consultant. It is very 

likely that the global optimum lies in one of the regions advertised by consultants appearing at 

the top of the ranking. Preventing the reputations of these consultants to sink below a 

specified level guarantees that the search will continue in the regions that most likely contain 

the global optimum. 
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A heuristic should keep a balance between the exploration of new regions in the search space 

and the exploitation of promising regions already found. In CGS, the sabbatical leave allows 

to abandon regions of the search space that are no longer promising and to start exploring new 

regions. During the sabbatical, at each iteration a new region of the search space is visited. At 

the end, the best region found is chosen to be advertised as the consultant’s strategy. Because 

this region had not been exploited before, it is expected that its corresponding results are 

initially rather modest. If clients would choose consultants based on their results, a consultant 

that has just finished its sabbatical leave would have only a small chance to be chosen. 

Fortunately, consultants are chosen based on their reputation and the reputation of a 

consultant is reset at the end of the sabbatical. The reset value should be low enough to 

prevent the overexploitation of a region whose potential is still unknown, but high enough to 

allow a few clients to exploit this region. If the region selected during the sabbatical leave 

really has potential, a great number of successes will be achieved in the next period for this 

region, leading to a rapid increase in the consultant’s reputation. This way, the consultant is 

likely to rise to the top of the ranking, thus ensuring that its reputation will not fade below a 

specified level and, consequently, that the region of the search space it advertises will be 

further exploited by clients. 

Two aspects should be taken into account when choosing the rate at which the reputation 

fades over time. On the one hand, a too high rate leads to the premature termination of the 

exploitation of promising regions of the search space, thus preventing the convergence of the 

algorithm. On the other hand, a too low rate leads to stagnation, because it keeps reputations 

at high values for a long time, thus preventing consultants from taking a sabbatical leave in 

order to explore new regions of the search space. 

5.3. Modeling CGS in MetFrEm 

The solution construction in CGS can be seen as the result of an interaction between a client 

and a consultant. Therefore, a meta-model of CGS in MetFrEm contains virtual persons as 

mechanisms. The client is the initiator of the interaction and the consultant is the target. 

In CGS, a consultant is chosen based on its reputation and on client’s personal preference. 

The reputation of a consultant is incremented each time one of its clients achieves a success. 

This increase in reputation can also be seen as the result of an interaction between a client and 

a consultant and it can be modeled by means of the reactive interaction function in MetFrEm. 

A consultant receives a reputation bonus when one of its clients constructs a best-so-far 

solution. In order to determine that a solution is best-so-far, global knowledge about the 

solutions constructed under the guidance of any consultant is needed. Therefore, we make use 

of the optional procedure executeFinalActions in order to describe the offering of a reputation 

bonus. In addition, we implement the reputation fading as another operation performed by the 

executeFinalActions procedure. 

Our CGS meta-model contains the following global set of properties: 

  = {ActionMode, Solution, BestSolution, BestResult, Strategy, BestStrategy,  Reputation} 

The ActionMode property admits two possible values: actionMode       . The value 0 

corresponds to a mechanism in normal action mode, while the value 1 corresponds to a 

mechanism in sabbatical action mode. 

The Solution property identifies the solution constructed during the current iteration. The 

BestSolution property is relevant when a mechanism acts as a consultant and it represents the 

best solution constructed by any client working under the guidance of this consultant. The 
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BestResult property represents the cost of the best solution. It can be computed from the value 

of the BestSolution and therefore it is not considered an internal property of a mechanism in 

the meta-model. Instead, BestResult is one of the observable properties of a mechanism. 

The Strategy property represents the strategy used by a consultant in normal mode. During the 

sabbatical mode, Strategy identifies the strategy constructed during the current iteration, while 

the BestStrategy property indicates the best strategy constructed since the beginning of the 

sabbatical leave.  

We do not impose any constraints on the value types permitted for the Solution, BestSolution, 

Strategy and BestStrategy properties, because their structure is not specified at this level of 

description. The Reputation properties are relevant only for mechanisms in normal mode. 

In order to create a meta-model of CGS in MetFrEm, we introduce a number of generic 

functions that, at this level, are only described in terms of their purpose. A concrete 

representation of these functions must be provided when instantiating the meta-model in order 

to describe a specific CGS algorithm. The generic functions are: 

 constructSolution – given a client and a strategy, this function constructs a solution 

biased by the given strategy. It may also improve the solution by applying a local 

optimization procedure. 

 getCost – given a solution, this function computes its cost. It represents the objective 

function of the considered optimization problem. 

 constructStrategy – given a consultant in sabbatical mode, this function constructs a 

new strategy. It may also improve the strategy by applying a local optimization 

procedure. 

 getStrategyCost – given a strategy, this function computes its cost. The result returned 

by this function must represent the cost of a solution constructed by a client that 

follows at each construction step the recommendations of a consultant using the 

strategy given as argument. 

 getConsultantSuitability – given a client and a consultant, this function returns a value 

proportional to the probability that the client chooses this consultant. 

 chooseConsultant – based on a set of potential consultants and their corresponding 

suitability values, this function chooses the consultant for the next iteration. 

 adjustStrategy – based on a set of potential consultants and their corresponding 

suitability values, this function chooses the consultant for the next iteration. 

 isSabbatical – based on a set of potential consultants and their corresponding 

suitability values, this function chooses the consultant for the next iteration. 

We describe now the CGS meta-model in MetFrEm using the notation conventions 

introduced in section 4.7: 

   = {ActionMode, Solution, BestSolution, Strategy, BestStrategy, Reputation} 

   = {ActionMode, BestResult, Reputation} 

   =   

   = {Strategy, BestResult} 

   =                                                   ) 

   =       

   =                                          ) 

  = pseudocode description using the variable   referred in Figure 4-3: 

return                             

  = getConsultantSuitability 

  = chooseConsultant 
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  =    

   – pseudocode description using the variables referred in Figure 4-3: 

if initiator.actionMode = 0 then 

 consultant ←       (targets) 

 if consultant   null then 

  initiator.solution ← constructSolution (initiator, consultant.strategy) 

 end if 

else 

 initiator.strategy ← constructStrategy (initiator) 

 strategyCost ← getStrategyCost (initiator.strategy) 

 if  strategyCost < getStrategyCost(initator.bestStrategy) then 

  initiator.bestStrategy ← initiator.strategy 

 end if 

end if 

   – pseudocode description using the variables referred in Figure 4-3: 

if getCost(initiator.solution) < target.bestResult then 

 target.strategy ← adjustStrategy (initiator.solution) 

 target.reputation ← target.reputation + 1 

end if 

executeFinalActions: 

update reputations and action modes 

 

The executeFinalActions procedure is described in plain text, because a pseudocode 

description would be very similar to that given in Figure 5-2 and Figure 5-3 for the 

procedures updateReputations and updateActionModes. 

5.4. Positioning of CGS 

CGS introduces a new metaphor, but it is not obvious whether it represents a novel 

metaheuristic or rather a reformulation of a known method, using new names for existing 

concepts. In this section, we try to place CGS in the context of heuristic optimization methods 

and we argue that it represents a hybrid metaheuristic, which combines new ideas with 

concepts found in other optimization techniques. 

CGS can be classified as a model-based search (MBS) algorithm [129]. In MBS, candidate 

solutions are constructed using some parameterized probabilistic model. These solutions are 

then used to modify the probabilistic model in order to bias future sampling toward high 

quality solutions. CGS mainly differs from other MBS algorithms like ACO and estimation of 

distribution algorithms (EDA) [74] in the way it bias probabilities with respect to past 

experience in order to intensify the search around the best combinations. Instead of using an 

indirect pheromone-based learning mechanism (like in ACO), or estimation of distributions 

(like in EDA), a set of combinations is used in CGS to directly bias probabilities. 

Somewhat surprisingly, CGS can even be cast into the formal framework of ant programming 

(AP) [13]. AP is based on the use of an iterated Monte Carlo approach for the multi-stage 

solution of combinatorial optimization problems. A population of agents, called ants, is used 

in order to construct solutions. Each agent perceives the state of the system through a 

representation, which can be seen as a mental image and, in general, gives less information 

than the state description. During the solution construction, each ant moves on the state graph, 

but it represents its movement on the representation graph. At each step, a set of feasible 
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candidate actions is determined based on information pertaining to the system state. One of 

these actions is then selected based on a probabilistic policy parameterized in terms of a 

desirability function. The desirability function associates a real value to each edge of the 

representation graph. For both ACO and CGS, a partial solution is expressed as a sequence of 

components, while the AP representation of a state can be expressed as the last component 

added to the partial solution. In the case of ACO, the desirability is given by the amount of 

pheromone on the edge connecting the last component included and the candidate component. 

In the case of CGS, the desirability function can be expressed in terms of two elements: the 

reputations and the strategies of the consultants. The reputations bias the probability to use a 

given strategy, which in turn biases the probability to select a given component. In AP, the 

desirability information is updated on the basis of the cost of the generated solutions. CGS fits 

into the AP framework, because both reputations and strategies are updated in accordance 

with the successes achieved by clients. This shows that the AP framework is not restricted to 

pheromone-based algorithms, but it can also accommodate algorithms that use non-stigmergic 

communication. 

In CGS, the information exchange is based on direct communication, thus bearing some 

resemblance to bee inspired algorithms [69]. These algorithms mimic the behavior of real 

bees, which perform a so-called waggle dance in order to transmit information about the 

direction and distance to a food source. In this way, a bee is able to recruit other nest mates to 

the discovered food source. In the CGS metaphor the consultants wait passively to be selected 

by clients, but we can consider that they actually try to recruit clients. The recruitment 

procedure in CGS differs though from the recruitment procedure in bee inspired algorithms in 

the way the probability to recruit an agent is biased: CGS uses the consultant reputation, while 

most bee inspired algorithms use the solution quality. 

CGS does not specify how a strategy is represented and how a consultant uses this strategy in 

order to produce a recommendation at each step of the solution construction. These details are 

specific to each instantiation of CGS for a given class of problems. One possibility would be 

to represent the strategy as a solution advertised by the consultant to its clients. Because at 

some steps a client may choose to not follow the recommendation of the consultant, the 

solution constructed by a client could be interpreted as a perturbation of a guiding solution. 

This means that the solution construction process is in this case similar to an iterated local 

search [78]. 

CGS combines several concepts found in other optimization techniques. For example, the 

reputation fading is similar to the pheromone evaporation in ACO. Another example is the 

construction of a new strategy during the sabbatical leave. This process resembles the escape 

mechanism used in Reactive Tabu Search [8] when the system is trapped in a complex 

attractor, or the pheromone trail reinitialization performed in MAX-MIN Ant System [106] 

when the algorithm approaches the stagnation behavior. As a final example, we consider how 

CGS keeps information about promising solutions, by means of consultant strategies. This 

approach of maintaining a list of high quality solutions can also be found in some ACO 

variants like Population-Based ACO [54] or      [102]. 

5.5. CGS applied to the Traveling Salesman Problem 

In this section, we illustrate the use of the CGS metaheuristic by applying it to the Traveling 

Salesman Problem (TSP). To this end, we propose a concrete CGS algorithm, called 

CGS-TSP, and report the results of its application to symmetric instances of the TSP. Most 

swarm intelligence techniques have been applied to TSP, but currently ACO algorithms 

outperform BCO [111][126] and PSO [23][97] for this class of problems. Therefore, we are 
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interested if our direct communication approach can compete with stigmergy-based methods 

and we compare the performance of CGS-TSP with that of ACO algorithms. Our 

experimental results show that the solution quality obtained by CGS-TSP is comparable with 

or better than that obtained by the Ant Colony System (ACS) [43] and MAX-MIN Ant 

System (MMAS) [106]. 

5.5.1. The CGS-TSP algorithm 

The CGS-TSP algorithm introduced in this subsection exemplifies how the CGS 

metaheuristic can be used to solve a specific class of problems, in this case the TSP. 

TSP [3] is the problem of a salesman, who is required to make a round-trip tour through a 

given set of cities, so that the total traveling distance is minimal. The problem can be 

represented by a graph        , where               is the set of nodes and   
              is the set of edges. Each edge          has an associated cost measure     , 

which we will refer to as the distance between cities   and  . If         for all       , the 

problem is a symmetric TSP, otherwise it is an asymmetric TSP. CGS-TSP can be applied to 

symmetric instances of TSP, but it can be easily adapted to also solve asymmetric instances. 

In order to apply CGS to a particular class of problems, one must define the different concepts 

used by this metaheuristic (e.g. strategy, result, personal preference) in the context of the 

given class of problems. Then, one must decide how to implement the actions left unspecified 

by the CGS metaheuristic (e.g. constructStrategy, constructSolution, chooseConsultant). 

Constructing a solution for the TSP means building a closed tour that contains each node of 

the graph only once. To avoid visiting a node several times, each virtual person in CGS-TSP 

keeps a list of the nodes already visited in the current iteration.  

The strategy of a consultant is represented by a tour, which it advertises to its clients; the 

result of a tour is computed as the inverse of its length. Since both solution construction and 

strategy construction imply building a tour, the type of decision a virtual person has to make 

at each step is the same in both cases: it has to choose the next city to be visited. However, the 

rules used to make decisions in each of these two cases are different. 

To restrict the number of choices available at each construction step, CGS-TSP uses candidate 

lists that contain for each city i the closest cand cities, where cand is a parameter. This way, 

the feasible neighborhood of a person k when being at city i represents the set of cities in the 

candidate list of city i that person k has not visited yet. 

During the sabbatical leave, consultants build strategies using a heuristic based only on the 

distances between the current city and the potential next cities. The rule used at each step to 

choose the next city is inspired by the pseudorandom proportional rule introduced by the ACS 

algorithm, but since CGS does not use pheromones (or other stigmergic communication), our 

rule involves only distances between cities. A virtual person k located at city i moves to a city 

j according to the following rule: 

   
      

    
              

            
  (5.1) 

where: 

   
  is the feasible neighborhood of person k when being at city i. 

     is the distance between cities i and l. 
 a is a random variable uniformly distributed in [0,1] and    (      ) is a parameter.  
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 J is a random variable selected according to the probability distribution given by formula 

(5.2), where   is a parameter.  

   
  

       
 

             
 

 (5.2) 

In other words, with probability    the person moves to the closest city in its feasible 

neighborhood, while with probability        it performs an exploration of the neighbor 

cities, biased by the distance to the city i. 

At each step of the solution construction, a client receives from its consultant a 

recommendation regarding the next city to be visited. This recommendation is based on the 

tour advertised by the consultant. Let i be the city visited by the client k at a construction step 

of the current iteration. To decide which city to recommend for the next step, the consultant 

finds the position at which the city i appears in its advertised tour and identifies the city that 

precedes i and the city that succeeds i in this tour. If neither of these two cities is already 

visited by the client, the consultant recommends the one that is closest to city i. If only one of 

these two cities is unvisited, this one is chosen to be recommended. Finally, if both cities are 

already visited, the consultant is not able to make a recommendation for the next step.
 

The client does not always follow the consultant’s recommendation. Again, a pseudorandom 

proportional rule is used to decide which city to visit at the next step:  

   

                 
      

    
                             

            

  (5.3) 

where: 

   is the city recommended by the consultant for the next step. 

 q is a random variable uniformly distributed in [0,1] and q0 (      ) is a parameter.  

   
  is the feasible neighborhood of person k when being at city i. 

     is the distance between cities i and l. 
 b is a random variable uniformly distributed in [0,1] and b0 (      ) is a parameter.  

 J is a random variable selected according to the probability distribution given by formula 

(5.2). 

In other words, if a recommendation is available, the client moves with probability    to the 

city recommended by its consultant; with probability          it moves to the closest city 

in its feasible neighborhood; with probability              it performs an exploration of 

the neighbor cities, biased by the distance to the city i. 

The two factors that influence the choice of a consultant are: consultant’s reputation and 

client’s personal preference. In CGS-TSP the personal preference is given by the result of the 

consultant’s advertised tour, that is, by the inverse of the advertised tour length. The 

probability to choose consultant k is given by formula (5.4):  

   
           

        
 

            
        

 
   

 (5.4) 

where: 

   is the set of all available consultants, that is, the set of all virtual people that are not in 

sabbatical mode. 

   is a parameter that determines the influence of the reputation. 
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   is a parameter that determines the influence of the result. 

A client is allowed to choose itself as a consultant. Because the probabilities given by formula 

(5.4) do not depend on the client making the choice, the client index does not appear in this 

formula. 

Every time a client achieves a success (i.e., it finds a tour shorter than the tour advertised by 

its consultant), the consultant updates its strategy, replacing its advertised tour with the tour 

constructed by the client. 

At each iteration, the consultant’s k reputation fades as given by formula (5.5):  

                             (5.5) 

where r is the reputation fading rate. CGS-TSP adjusts its reputation fading rate according to 

the total number s of successes achieved during the last w iterations by the best fadingRanks 
consultants, where w and fadingRanks are parameters:  

    

 

 
 
 

  
 

    
 
 
 
 

 

 
 
 

 (5.6) 

The parameter    gives the reputation fading rate for the case where no successes where 

achieved by the best fadingRanks consultants during the last w iterations. The parameter f 
controls how the reputation fading rate increases with the number s of successes. In particular, 

we have:  

   
   

          (5.7) 

Since it is difficult to estimate what values are appropriate for the parameter f, we compute its 

value based on the value of another parameter. Let us denote by repdec(s) the decrease in 

reputation after w iterations in the hypothetical case that s remains constant during this period:  

                  
  (5.8) 

We introduce the parameter kw that indicates how much greater is the decrease in reputation 

for a very high number of successes than the decrease in the case when no successes were 

achieved:  

                
   

          (5.9) 

From equations (5.6) to (5.9) we have:  

   
 

  
      

 

   
 

  (5.10) 

Using for example w=1000, kw=10 and        , we obtain      . 

In CGS-TSP the reputation value cannot exceed a maximum value specified by the parameter 

maxReputation, and the reputation of a top-ranked consultant cannot sink below the limit 

given by:                                                     . 
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The value of the parameter               referred in Figure 5-3 is fixed in this algorithm at 

1, because only the differences between               and the other reputation parameters 

are relevant for the algorithm. 

The optional local optimization step referred in Figure 5-1 can be implemented in CGS-TSP 

by a local search procedure. 

5.5.2. Implementation 

As mentioned before, our goal is to find out if the direct communication approach used by 

CGS can compete with stigmergy-based methods like ACO. To allow a meaningful 

comparison between heuristics, we have created a software package containing Java 

implementations of CGS-TSP, ACS and MMAS algorithms. The software package is 

available as an open source project at http://swarmtsp.sourceforge.net/. At this address, we 

also provide all configuration files, problem instances and results files for the parameter 

tuning and for the experiments described in this section. 

We have tried to share as much code as possible between the implementations of CGS-TSP, 

ACS and MMAS, and we have taken care to keep the same level of code optimization while 

implementing the code portions specific to each algorithm. This way, we ensure that the 

relative differences in performance observed in our experiments reflect only the 

characteristics of the algorithms and are not due to implementation factors. 

The implementation of the ACO algorithms is basically a port to Java of Thomas Stützle’s 

ACOTSP program available at http://www.aco-metaheuristic.org/aco-code/. 

5.5.3. Parameter tuning 

For all algorithms, the experiments presented in the following subsection have been 

performed without local search and using candidate lists of length 20. In the first series of 

experiments, each algorithm run has been terminated after constructing 500000 tours. In the 

preliminary tuning phase, we have used these basic settings to identify parameter values that 

produce good results. In order to make a fair comparison between algorithms, we have 

performed parameter tuning not only for CGS-TSP, but also for ACS and MMAS. 

5.5.3.1. CGS-TSP tuning 

Because CGS-TSP is a completely new algorithm, we have performed the parameter tuning in 

several steps. First, we have searched for a good configuration in a set of candidate 

configurations that span a large range of values. After this coarse tuning step, we have 

performed a fine tuning, by using candidate configurations in a closer range around the 

configuration selected in the previous step. Finally, we have identified dependencies between 

two parameters or between a parameter and the size of the problem. 

We have excluded from tuning the parameters that configure the sabbatical leave, because the 

purpose of the sabbatical is only to provide a decent strategy to start with and, in our opinion, 

the algorithm should not be very sensitive to these parameters. We have chosen        and, 

in order to keep the sabbatical leave relatively short,                       . We have 

also fixed at 1000 the value of the parameter w referred in equations  

In the coarse and fine tuning steps we have used the paramILS configuration framework [59] 

to find good parameter settings. ParamILS executes an iterated local search in the parameter 

configuration space and it is appropriate for algorithms with many parameters, where a full 

factorial design becomes intractable. As training data for paramILS, we have generated a set 

of 500 Euclidean TSP instances with the number of cities uniformly distributed in the interval 

http://swarmtsp.sourceforge.net/
http://www.aco-metaheuristic.org/aco-code/
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[300, 500], and with coordinates uniformly distributed in a square of dimension 10000 x 

10000. 

In the next step, using as starting point the configuration found during the fine tuning, we 

have checked if there is a dependency between the optimum value for                and 

the number   of virtual persons used. For each value of   in the interval [4, 20], we have 

tuned the value of                using the F-Race method and the previous training set. 

F-Race [14] is a racing configuration method that sequentially evaluates candidate 

configurations and discards poor ones as soon as statistically sufficient evidence is gathered 

against them. It is appropriate when the space of candidate configurations is relatively small, 

because at the start all candidate configurations are evaluated. Applying the linear least 

squares method to the optimum configurations found by F-Race, we have obtained the 

equation:  

                         (5.11) 

In the final step, using as starting point the configuration found during the fine tuning, with 

the value of                given by the equation (5.11), we have checked if there is a 

dependency between the optimum value for the number   of virtual persons and the number 

  of cities of a TSP instance. To this end, we have generated 9 sets of Euclidean TSP 

instances, with coordinates uniformly distributed in a square of dimension 10000 x 10000, 

each set comprising 100 instances. Each instance in the first set has a number   of 100 cities, 

in the second set 200 cities, and so on, until the last set with 900 cities. Using again F-Race 

and the linear least squares method, we have obtained the equation:  

           (5.12) 

The parameter settings used in the experiments presented in the following subsection are 

shown in Table 5-1. 

5.5.3.2. ACS tuning 

ACS is a well-known algorithm, for which good parameter values are already available (see 

[45], p.71):  =10,  =0.1,  =0.1,   =0.9,   [2, 5]. We have performed a fine tuning of 

these parameters using paramILS and the same training set used in the coarse and fine tuning 

steps of CGS-TSP. The best configuration found, which has been used in the experiments 

presented in the following subsection, is:  =6,  =0.9,  =0.1,   =0.5,  =6. 

5.5.3.3. MMAS tuning 

As in the case of ACS, good parameter values are already available for MMAS (see [45], 

p.71):  = ,  =0.02,  =1,    [2, 5]. We have performed a fine tuning of these parameters 

using paramILS and the same training set used in the coarse and fine tuning steps of 

CGS-TSP. The best configuration found, which has been used in the experiments presented in 

the following subsection, is:  = ,  =0.1,  =1,   =5. 

Some of the values found by paramILS during the tuning of ACS and MMAS differ 

significantly from the standard values given in [45]. For this reason, for ACS and MMAS, we 

have repeated the experiments described in the next subsection, using the standard settings. 

The results obtained using the tuned parameters outperform those obtained with the standard 

settings, thus confirming the effectiveness of paramILS. 
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Table 5-1. Parameter settings for CGS-TSP  

Parameter Value Description 

m 3+1400/n number of virtual persons 

b0 0.3 solution construction parameter 

see formula (5.3) 

q0 0.98 solution construction parameter 

see formula (5.3) 

α 1 reputation’s relative influence 

see formula (5.4) 

  10 heuristic’s relative influence 

see formula (5.2) 

γ 4 result’s relative influence 

see formula (5.4) 

maxReputation 70 maximum reputation value 

initialReputation 10 reputation value after sabbatical 

bonus 15 reputation bonus for best-so-far tour 

protectedRanks 0.8*m-2.5 protected top consultants 

r0      basic reputation fading rate 

see formula (5.6) 

fadingRanks 2 top consultants for fading rate 

see formula (5.6) 

kw 20 reputation decrease factor 

see formulas (5.9) and (5.10) 

5.5.4. Experimental results 

To compare the performance of CGS-TSP with that of ACS and MMAS, we have applied 

these algorithms without local search to 15 symmetric instances from the TSPLIB benchmark 

library [92]. The number of cities of the TSP instances used in our experiments is between 

150 and 1060. We have intentionally included TSP instances whose number of cities lies 

outside the range of values considered in the tuning phase (300 to 500), because a good 

algorithm is not problem dependent, and therefore it should not be very sensitive to the set of 

training instances used for tuning. 

The experiments have been performed on an HP ProLiant with 8 x 2.33 GHz Intel(R) 

Xeon(R) CPUs and 16 GB RAM, running Red Hat Enterprise Linux 5. 

In the first series of experiments performed to compare CGS-TSP with ACS and MMAS, we 

have stopped each run after constructing 500000 tours. Table 5-2 reports for each algorithm 

and TSP instance the best and mean percentage deviations from the optimal solutions over 25 

trials, as well as the sample standard deviations of the means. The best results for each 

problem are in boldface. We also report for each problem the p-values of the one-sided 

Wilcoxon rank sum tests for the null hypothesis (H0) that there is no difference between the 

solution quality of CGS-TSP and that of the considered algorithm, and for the alternative 

hypothesis (H1) that CGS-TSP outperforms the considered algorithm. Applying the 

Bonferroni correction for multiple comparisons, we obtain the adjusted α–level: 0.05 / 15 = 

0.0033. The p-values in boldface indicate the cases where the null hypothesis is rejected at 

this significance level. 
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Table 5-2. Comparison of CGS-TSP with ACS and MMAS. Runs are terminated after 

constructing 500000 tours. 

Problem 

name 

CGS-TSP ACS MMAS 

Best 

(%) 
Mean 

(%) 
Mean 

stdev 
Best 

(%) 
Mean 

(%) 
Mean 

stdev 
p-value 

Best 

(%) 
Mean 

(%) 
Mean 

stdev 
p-value 

kroA150 0.098 0.659 0.280 0.151 1.145 0.744 0.0067 0.222 0.759 0.253 0.2022 
kroB150 0.000 0.510 0.304 0.000 0.881 0.512 0.0076 0.000 0.140 0.239 1.0000 
si175 0.000 0.074 0.049 0.051 0.173 0.091 < 0.0001 0.028 0.124 0.065 0.0045 
kroA200 0.051 0.286 0.181 0.140 0.861 0.756 0.0002 0.041 0.178 0.113 0.9740 
kroB200 0.258 0.840 0.345 0.265 1.141 0.740 0.1522 0.455 0.853 0.202 0.5019 
pr299 0.218 0.777 0.491 0.826 1.805 0.574 < 0.0001 0.494 0.790 0.267 0.0472 
lin318 0.949 1.430 0.309 0.305 1.708 0.867 0.0462 0.404 0.834 0.302 1.0000 
pr439 0.632 1.518 0.649 0.661 2.294 1.686 0.0880 1.054 2.216 0.432 < 0.0001 
pcb442 0.825 1.610 0.395 1.266 2.926 1.107 < 0.0001 0.924 1.762 0.668 0.4257 
att532 1.383 2.015 0.261 1.380 2.653 0.814 0.0006 1.015 1.622 0.338 1.0000 
u574 2.073 2.841 0.396 2.412 5.651 2.025 < 0.0001 2.078 3.205 0.541 0.0036 
gr666 1.705 2.933 0.455 2.649 4.030 0.832 < 0.0001 2.481 3.369 0.606 0.0045 
u724 1.601 2.399 0.363 1.253 2.195 0.607 0.9467 1.133 1.663 0.326 1.0000 
pr1002 3.406 4.524 0.608 3.350 5.263 1.721 0.0734 5.868 8.607 1.501 < 0.0001 
u1060 3.461 4.352 0.530 4.135 7.454 1.889 < 0.0001 7.961 9.924 1.170 < 0.0001 

 

Using the one-sided Wilcoxon signed rank test, we compute the p-values for the null 

hypothesis (H0) that there is no difference between the means of CGS-TSP and the means of 

the competing algorithm considered, and the alternative hypothesis (H1) that the means of 

CGS-TSP are smaller than the means of the considered algorithm. The p-values obtained are: 

0.00009 for ACS and 0.22287 for MMAS. 

Therefore, the null hypothesis can be rejected for ACS at a high significance level, but cannot 

be rejected for MMAS. This means that CGS-TSP clearly outperforms ACS for runs 

terminated after constructing 500000 tours, but there is no statistically significant difference 

between CGS-TSP and MMAS for this kind of runs. 

Using a given number of constructed tours as termination condition does not provide a fair 

comparison, because the algorithms have different complexities. A fairer approach is to stop 

the execution after a given CPU time interval. In our second series of experiments, we have 

limited to 60 seconds the CPU time allowed for each run. The results are presented in Table 

5-3, which has the same structure as Table 5-2.  

Again, using the one-sided Wilcoxon signed rank test, we compute the p-values for the null 

hypothesis (H0) that there is no difference between the means of CGS-TSP and the means of 

the competing algorithm considered, and the alternative hypothesis (H1) that the means of 

CGS-TSP are smaller than the means of the considered algorithm. The p-values obtained are: 

0.00003 for ACS and 0.00269 for MMAS. 

The null hypothesis can be rejected for both ACS and MMAS at a high significance level, 

which means that for runs terminated after 60 seconds CPU time, CGS-TSP clearly 

outperforms both ACS and MMAS. 
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Table 5-3. Comparison of CGS-TSP with ACS and MMAS. Runs are terminated after 60 

seconds CPU time. 

Problem 

name 

CGS-TSP ACS MMAS 

Best 

(%) 
Mean 

(%) 
Mean 

stdev 
Best 

(%) 
Mean 

(%) 
Mean 

stdev 
p-value 

Best 

(%) 
Mean 

(%) 
Mean 

stdev 
p-value 

kroA150 0.207 0.430 0.177 0.256 1.344 0.676 < 0.0001 0.211 0.558 0.228 0.0076 
kroB150 0.000 0.287 0.319 0.000 0.641 0.549 0.0113 0.000 0.010 0.037 1.0000 
si175 0.000 0.036 0.033 0.000 0.168 0.103 < 0.0001 0.000 0.090 0.047 < 0.0001 
kroA200 0.000 0.127 0.099 0.000 0.585 0.549 0.0001 0.065 0.151 0.102 0.0434 
kroB200 0.000 0.573 0.320 0.034 1.131 0.661 < 0.0001 0.340 0.699 0.245 0.0460 
pr299 0.174 0.602 0.350 0.583 1.647 0.698 < 0.0001 0.291 0.643 0.283 0.1304 
lin318 0.385 1.068 0.340 0.578 1.847 0.815 < 0.0001 0.452 0.940 0.441 0.9339 
pr439 0.354 1.133 0.531 0.850 2.382 1.542 0.0002 1.582 2.472 0.591 < 0.0001 
pcb442 0.441 1.261 0.363 1.266 2.953 0.923 < 0.0001 1.321 2.967 1.096 < 0.0001 
att532 1.358 1.862 0.228 1.806 3.196 0.814 < 0.0001 1.611 2.920 0.840 < 0.0001 
u574 1.775 2.485 0.336 2.834 6.004 2.033 < 0.0001 3.325 5.659 1.094 < 0.0001 
gr666 1.994 2.757 0.358 2.778 6.149 2.294 < 0.0001 5.848 7.480 0.971 < 0.0001 
u724 1.090 2.232 0.378 1.341 2.655 0.992 0.0174 7.860 9.584 0.952 < 0.0001 
pr1002 3.010 4.277 0.574 4.689 8.188 2.253 < 0.0001 15.056 16.753 0.685 < 0.0001 
u1060 3.603 4.644 0.590 7.371 12.316 3.202 < 0.0001 17.607 19.582 0.876 < 0.0001 

In our last series of experiments, we compare the development of the mean percentage 

deviation over 25 trials as a function of the CPU time for instances lin318 and u1060, over 

10000 seconds. 

In our previous experiments, CGS-TSP has achieved relatively poor results for lin318 and, as 

seen in Figure 5-6, MMAS is able to produce better solutions than CGS-TSP after less than 

20 seconds. Nevertheless, at the end of our 10000 seconds interval, CGS-TSP succeeds to 

outperform MMAS, albeit by a very small margin. 

 
Figure 5-6. Mean percentage deviations for instance lin318. 
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In Figure 5-7, it can be observed that for u1060, CGS-TSP outperforms the other algorithms 

during the entire interval. MMAS is not able to reach the solution quality of CGS-TSP, 

although its performance improves significantly over time. 

 
Figure 5-7. Mean percentage deviations for instance u1060. 

5.6. CGS combined with local search for the Traveling Salesman Problem 

As shown in the previous section, the CGS-TSP algorithm is able to outperform some of the 

best Ant Colony Optimization algorithms. However, these results can be misleading, because 

the experiments have been performed without local search and, in practice, ACO algorithms 

for the TSP are always combined with local search. While most metaheuristics work better 

when combined with local search, the performance improvement can vary significantly from 

one algorithm to another. Therefore, we investigate in this section whether CGS is still able to 

compete with ACO when the algorithms are combined with local search. 

5.6.1. Local search 

Local search [1] is a general technique that starts with a candidate solution and tries to 

improve it by iteratively moving to a neighbor solution. Typically, the exploration of the 

neighborhood is performed by applying local changes to the current solution. In the case of 

TSP, where a candidate solution is represented by a tour in the problem graph, a local change 

could consist in modifying a group of arcs, by interchanging their corresponding nodes. 

The simplest variant of local search for the TSP is the 2-opt algorithm [28], which considers 

only groups composed of two arcs. These two arcs are initially eliminated, thus breaking the 

tour in 2 separate paths. After that, the two arcs are reconnected in the other possible way. In 

the example in Figure 5-8, the arcs (2,3) and (4,5) are eliminated and replaced by two new 

arcs, obtained by interchanging the nodes corresponding to the initial arcs, that is: (2,4) and 

(3,5). 
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Another variant of local search is 3-opt, which considers groups of 3 arcs and analyses the 8 

ways in which these arcs can be recombined. For the general case, called k-opt, the method is 

applied to groups comprising k arcs. The performance increases with the number k of arcs, 

but the complexity grows exponentially with this number. Therefore, in our experiments we 

combine CGS with 3-opt, which provides a good compromise between performance and 

complexity. 

5.6.2. Applying local search to CGS-TSP 

Since the CGS metaheuristic provides an optionally local optimization step, combining 

CGS-TSP with local search is a straightforward process. Local search improves the results, 

but it is a time-consuming procedure. Therefore, significantly fewer iterations can be 

performed in the same amount of time, when the algorithm is combined with local search. For 

this reason, different parameter settings are appropriate in this case. The standard CGS-TSP 

algorithm fixes the value of the parameter w to 1000 and the sabbaticalDuration to 100 

iterations. In our experiments with local search we fix the value of w to 100 and the 

sabbaticalDuration to       iterations, where   is the number of virtual persons. For the 

other parameters with fixed values in the standard CGS-TSP, we preserve the original values 

when combining the algorithm with local search:        and                . 

5.6.3. CGS-TSP with confidence 

In addition to the algorithm described in the previous subsection, we propose a variant of the 

CGS-TSP algorithm, which we refer to as CGS-TSP-C, where each arc in the tour advertised 

by a consultant has an associated strength. Strengths are updated each time the consultant 

adjusts its strategy. If an arc in the new advertised tour was also present in the old advertised 

tour, its strength will be incremented; otherwise, its strength is set to 0. The strength of an arc 

could be interpreted as the consultant’s confidence in recommending this arc to a client. A 

client is more likely to accept recommendations made with greater confidence. This idea is 

expressed in CGS-TSP-C by allowing the value of the parameter q0 to vary in a given range, 

at each construction step: 

    
       

         

    
          

               

  (5.11) 

where   is the strength of the recommended arc and     ,      and      are parameters. 

5.6.4. Experimental setup 

We run a series of experiments in order to compare the performance of CGS-TSP and 

CGS-TSP-C with that of Ant Colony System (ACS)[43] and MAX-MIN Ant System 

(MMAS) [106]. We combine all algorithms used in our experiments with 3-opt local search 

and we use candidate lists of length 20 for all algorithms. Each run is terminated after n / 50 

seconds CPU time, where n is the problem size (i.e., the number of cities). 

5 

4 

1 2 

3 

5 

4 

1 2 

3 

Figure 5-8. Modifying a tour by using a 2-opt move. 
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In order to make a fair comparison, we have tuned the parameters of all algorithms 

considered, through the ParamILS [59] and F-Race [14] procedures. As training set, we have 

used 600 generated Euclidean TSP instances, with the number of cities uniformly distributed 

in the interval [1000, 2000]. 

For CGS-TSP and CGS-TSP-C, the parameter settings are given in Table 5-4. 

Table 5-4. Parameter settings for CGS-TSP and CGS-TSP-C. 

Parameter CGS-TSP CGS-TSP-C Description 

m max(3,21-n/125) max(3, 16-n/250) number of virtual persons 

b0 0.98 0.95 see formula (5.3) 

q0 0.98 

         

see formulas (5.3), (5.11)           

       

α 7 7 reputation’s relative influence 

  12 12 heuristic’s relative influence 

γ 7 8 result’s relative influence 

maxReputation 40 50 maximum reputation value 

initialReputation 6 3 reputation after sabbatical 

bonus 8 6 best-so-far reputation bonus 

protectedRanks             protected top consultants 

r0               basic reputation fading rate 

fadingRanks 2 10 top consultants for fading rate 

kw 3 30 reputation decrease factor 

The best configuration found for ACS is:  =12,  =0.6,  =0.4,   =0.98,  =2. For MMAS, 
the best configuration found is:                      ,  =0.15,  =2,   =2. Some 

of these values differ significantly from the standard values given in [45], p.96, which are: 

 =10,  =0.1,  =0.1,   =0.98,  =2 for ACS and:  =25,  =0.2,  =1,   =2 for MMAS. For 

this reason, for ACS and MMAS, we have performed our experiments using both the tuned 

and the standard values. As shown in the next subsection, the results obtained using the tuned 

parameters outperform those obtained with the standard settings. 

5.6.5. Experimental results 

We have applied the algorithms to 27 symmetric instances from the TSPLIB benchmark 

library [92]. The number of cities of the TSP instances used in our experiments is between 

654 and 3038. We have intentionally included TSP instances whose number of cities lies 

outside the range of values considered in the tuning phase (1000 to 2000), because a good 

algorithm is not problem dependent, and therefore it should not be very sensitive to the set of 

training instances used for tuning. The experiments have been performed on an HP ProLiant 

with 8 x 2.33 GHz Intel(R) Xeon(R) CPUs and 16 GB RAM, running Red Hat Enterprise 

Linux 5. 

Table 5-5 reports for each algorithm and TSP instance the best and mean percentage 

deviations from the optimal solutions over 25 trials. The best mean results for each problem 

are in boldface. We also report for each problem the p-values of the one-sided Wilcoxon rank 

sum tests for the null hypothesis (H0) that there is no difference between the solution quality 

of CGS-TSP-C and that of the competing ACO algorithm, and for the alternative hypothesis 

(H1) that CGS-TSP-C outperforms the considered algorithm. Applying the Bonferroni 

correction for multiple comparisons, we obtain the adjusted α–level: 0.05 / 27 = 0.00185. The 

p-values in boldface indicate the cases where the null hypothesis is rejected at this 

significance level. 
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Table 5-5. Performance over 25 trials. Runs are terminated after n/50 CPU seconds. 

Problem 

instance 

ACS MMAS CGS-TSP CGS-TSP-C 

Best 

(%) 

Mean 

(%) 

Best 

(%) 

Mean 

(%) 

Best 

(%) 

Mean 

(%) 

Best 

(%) 

Mean 

(%) 

p-value 

(ACS) 

p-value 

(MMAS) 

p654 0.000 0.023 0.000 0.062 0.000 0.009 0.000 0.009 0.0004 0.0000 

d657 0.002 0.167 0.031 0.133 0.002 0.129 0.002 0.097 0.0029 0.0326 

gr666 0.056 0.159 0.000 0.066 0.040 0.069 0.000 0.109 0.0142 0.8059 

u724 0.026 0.102 0.045 0.151 0.005 0.128 0.005 0.101 0.5932 0.0070 

rat783 0.000 0.252 0.023 0.185 0.000 0.215 0.000 0.147 0.0157 0.1564 

dsj1000 0.038 0.403 0.133 0.316 0.030 0.296 0.000 0.224 0.0042 0.1315 

pr1002 0.000 0.273 0.034 0.201 0.000 0.189 0.000 0.162 0.0203 0.0863 

si1032 0.000 0.023 0.000 0.035 0.000 0.029 0.000 0.024 0.6031 0.1758 

u1060 0.116 0.331 0.104 0.359 0.026 0.117 0.026 0.119 0.0000 0.0000 

vm1084 0.000 0.064 0.001 0.120 0.000 0.066 0.000 0.071 0.5096 0.0012 

pcb1173 0.002 0.325 0.021 0.219 0.185 0.449 0.002 0.297 0.2456 0.9376 

d1291 0.000 0.111 0.000 0.105 0.000 0.108 0.000 0.186 0.3690 0.4518 

rl1304 0.000 0.196 0.000 0.229 0.000 0.200 0.000 0.189 0.5291 0.0243 

rl1323 0.077 0.243 0.041 0.245 0.000 0.131 0.010 0.152 0.0005 0.0000 

nrw1379 0.088 0.256 0.305 0.486 0.083 0.286 0.152 0.264 0.5668 0.0000 

fl1400 0.020 0.247 0.298 0.668 0.000 0.190 0.000 0.177 0.0046 0.0000 

u1432 0.218 0.389 0.250 0.601 0.292 0.481 0.153 0.426 0.8654 0.0000 

fl1577 0.031 0.293 0.220 0.597 0.004 0.060 0.004 0.172 0.0001 0.0000 

d1655 0.006 0.435 0.019 0.325 0.064 0.332 0.000 0.322 0.0754 0.4446 

vm1748 0.113 0.272 0.154 0.471 0.061 0.191 0.004 0.159 0.0000 0.0000 

u1817 0.192 0.480 0.080 0.295 0.156 0.386 0.107 0.347 0.0043 0.9048 

rl1889 0.345 0.719 0.270 0.545 0.004 0.237 0.000 0.217 0.0000 0.0000 

d2103 0.017 0.332 0.040 0.127 0.000 0.345 0.000 0.047 0.0000 0.0000 

u2152 0.112 0.426 0.254 0.488 0.115 0.356 0.131 0.352 0.0472 0.0015 

u2319 0.287 0.372 0.427 0.599 0.707 0.863 0.742 1.052 1.0000 1.0000 

pr2392 0.235 0.507 0.214 0.542 0.019 0.441 0.051 0.340 0.0001 0.0012 

pcb3038 0.243 0.499 0.671 0.940 0.704 1.056 0.428 0.810 1.0000 0.0003 

For a few pairs of algorithms, we use the one-sided Wilcoxon signed rank test to compute the 

p-values for the null hypothesis (H0) that there is no difference between the means of the first 

and the means of the second algorithm considered, and the alternative hypothesis (H1) that the 

means of the first algorithm are smaller than the means of the second algorithm considered. 

The p-values are given in Table 5-6. 

The null hypothesis can be rejected at a high significance level when CGS-TSP-C is 

compared with the two ACO algorithms, which means that for runs terminated after n/50 

seconds CPU time, CGS-TSP-C clearly outperforms both ACS and MMAS. In addition, 

CGS-TSP-C outperforms CGS-TSP, which means that the use of confidence in relation to the 

recommendations made by consultants can lead to better results. 

As shown in the previous section, in experiments without local search CGS-TSP clearly 

outperforms ACS and MMAS. Combined with 3-opt local search, the CGS-TSP algorithm 

still outperforms ACS and MMAS, but only at a moderate significance level. This means that 

ACS and MMAS benefit more than CGS-TSP from the hybridization with local search. One 

explanation for this discrepancy could be that the solution construction mechanism of 

CGS-TSP already bears some resemblance to a local search procedure: a client builds a 
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solution in the neighborhood of the solution promoted by a consultant and the consultant 

iteratively updates its recommended solution each time one of its clients finds a better one. 

As mentioned in the previous subsection, some of the parameter values found during the 

tuning phase for ACS and MMAS differ significantly from the values recommended in 

[45], p.96. The last two lines of Table 5-6 compare the performance obtained using the tuned 

parameters and the standard settings. The tuned algorithms clearly outperform the algorithms 

that use standard settings, thus confirming the effectiveness of the tuning procedures. 

Table 5-6. Performance comparison using the one-sided Wilcoxon signed rank test. 

First algorithm Second algorithm      p-value 

CGS-TSP-C ACS 0.00472 

CGS-TSP–C MMAS 0.00148 

CGS-TSP–C CGS-TSP 0.02004 

CGS-TSP (without local search) ACS (without local search) 0.00003 

CGS-TSP ACS 0.05020 

CGS-TSP (without local search) MMAS (without local search) 0.00269 

CGS-TSP MMAS 0.03051 

ACS ACS (standard settings) 0.00256 

MMAS MMAS (standard settings) < 0.00001 

In the following series of experiments, we compare the development of the mean percentage 

deviations from the optimum for our competing algorithms over 25 trials as a function of the 

CPU time, over 10000 seconds. We consider two TSP instances: u1060, for which the CGS 

algorithms have achieved good results in our previous experiments, and u2319, for which the 

CGS algorithms have obtained poor results. 

As shown in Figure 5-9, for u1060 the CGS algorithms outperform the ACO algorithms 

during the entire interval. Although CGS-TSP-C performs best in the initial phases, it is 

outperformed by CGS-TSP in the long run. In case of u2319, the CGS algorithms are not able 

to reach the performance of the ACO algorithms. 

 

Figure 5-9. The development of the mean percentage deviations from the optimum. 
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Although for our experimental setup the CGS algorithms generally outperform the ACO 

algorithms, there are a few cases where the performance of CGS is relatively poor. The most 

striking example in our experiments is the TSP instance u2319. It is therefore worthwhile to 

investigate which characteristics of the TSP instances influence the performance of the CGS 

algorithms and how these characteristics relate to the values of the different parameters used 

by these algorithms. In the case of ACO, it has been shown [94] that an increase in the 

standard deviation of the cost matrix of TSP instances leads to a decrease in the performance 

of the algorithm. Like in ACO, the decisions taken in the solution construction phase of CGS 

algorithms depend on the relative lengths of edges in the TSP. Therefore, we expect that the 

standard deviation of the cost matrix also affects the performance of these algorithms. 

The experimental results show that CGS is still able to compete with ACO when the 

algorithms are combined with local search, although the performance improvement due to 

local search is not as significant in the case of CGS as in the case of ACO algorithms. 

Moreover, the CGS-TSP-C algorithm introduced in this section shows that correlating the 

consultants’ recommendations with a level of confidence may improve the results. Still, more 

research is needed in order to determine in which cases CGS-TSP-C should be preferred to 

CGS-TSP. 

5.7. CGS applied to the Quadratic Assignment Problem 

In this section, we discuss how the CGS metaheuristic can be applied to the Quadratic 

Assignment Problem (QAP), and we introduce the CGS-QAP algorithm, which hybridizes 

CGS with a local search procedure. Then, we describe the experimental setting and we report 

the experimental results, using MAX-MIN Ant System (MMAS) [106] as a yardstick to 

compare the performance of the proposed algorithm. 

5.7.1. The CGS-QAP algorithm 

Given   facilities and   locations, a flow matrix         and a distance matrix        , 

the Quadratic Assignment Problem [71] consists in finding an assignment   of facilities to 

locations, which minimizes the cost: 

                 

 

   

 

   

 (5.12) 

The QAP is one of the most difficult combinatorial problems. Currently, exact algorithms are 

not able to solve in reasonable time instances with size n > 30. 

An instantiation of the CGS for the QAP must define the different concepts and actions left 

unspecified by the CGS metaheuristic. In CGS-QAP, the strategy is implemented as a 

solution advertised by the consultant. It is represented by an assignment of facilities to 

locations, which is constructed during the sabbatical leave. In the proposed algorithm, the 

sabbatical leave lasts only one iteration. In order to construct a new strategy, a consultant 

generates a random assignment and improves it by using a local search procedure. 

The personal preference for a consultant is determined by the cost of its advertised 

assignment. Together with the reputation, it gives the suitability of a consultant k: 

             
           

  
             

       

 
(5.13) 
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where the parameter   determines the influence of personal preference,       is the cost of 

the assignment advertised by consultant   and         is the cost of the best-so-far 

assignment. The probability to choose consultant   is: 

   
            

                
 (5.14) 

where   is the set of all available consultants. A client is allowed to choose itself as a 

consultant. Because the probabilities given by formula (5.14) do not depend on the client 

making the choice, the client index does not appear in this formula. 

At each construction step, a client places a not yet assigned facility to a free location. In CGS-

QAP, the order in which facilities are assigned to locations is random. At each step, a client 

receives from its consultant a recommendation regarding the location to be chosen. The 

recommended location is the one corresponding to the given facility in the assignment 

advertised by the consultant. In order to decide whether to follow the recommendation, the 

client uses a method inspired by the pseudorandom proportional rule introduced by the Ant 

Colony System [43]: with probability   , a client places the given facility to the location 

recommended by its consultant; with probability        it randomly places the facility to 

one of the free locations. The value of the parameter    is critical for the performance of 

CGS-QAP. A large value for    leads to an aggressive search, focused around the assignment 

advertised by the consultant. A small value for    favors the exploration of the search space, 

allowing the algorithm to escape from local optima. 

Every time a client achieves a success (i.e., it finds an assignment better than that advertised 

by its consultant), the consultant updates its strategy, replacing its advertised assignment with 

the assignment constructed by the client. 

At each iteration, the consultant’s k reputation fades as given by formula (5.15): 

                             (5.15) 

where the parameter   represents the reputation fading rate. 

CGS-QAP prevents the reputation from sinking below the limit given by:                   
                            . The value of the parameter               referred in 

Figure 5-3 is fixed in this algorithm at 1, because only the differences between 

              and the other reputation parameters are relevant for the algorithm. 

At the end of each iteration, the algorithm applies a local search procedure in order to improve 

the assignments constructed by clients. Since the CGS metaheuristic provides an optional 

local optimization step, hybridizing CGS with a local search procedure is a straightforward 

process. Similar to other algorithms for the QAP, CGS-QAP can use 2-opt local search, short 

runs of tabu search [108] or simulated annealing [26] as the local search procedure. 

5.7.2. Experimental setup 

We run a series of experiments in order to compare the performance of CGS-QAP with that of 

MAX-MIN Ant System (MMAS). The choice of MMAS as a yardstick is motivated by the 

fact that it currently represents one of the best performing heuristics for the QAP. 

To allow a meaningful comparison between heuristics, we have created a software package 

containing Java implementations of the algorithms considered in our experiments. The 

software package is available as an open source project at http://swarmqap.sourceforge.net/. 

http://swarmqap.sourceforge.net/
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At this address, we also provide all configuration files, problem instances and results files for 

the parameter tuning and for the experiments described in this section. 

Taillard [107] groups the QAP instances in four categories: 

(1) unstructured instances with uniform random distances and flows. 

(2) unstructured instances with random flows on grids. 

(3) structured, real-life problems. 

(4) structured, real-life like problems. 

The instances in the first group are the most difficult to solve optimally. According to [104], 

in the case of MMAS the instance type has a strong influence on the local search procedure 

that should be used. Our preliminary experiments have shown that this is also true for CGS-

QAP: as in the case of MMAS, 2-opt local search gives better solutions for structured 

instances, while short runs of tabu search are preferred for unstructured instances. In this 

section, we concentrate on the unstructured QAP instances and we combine all algorithms 

with short robust tabu search runs of length   , where   is the problem size. 

The parameters used for MMAS are those recommended in [104]:     ants;      ; 

     
 

   
 

 

 
 
  , where   

  
 is the objective function value of the global best solution; 

     
    

   
. In MMAS the pheromone trails are updated using either the iteration-best 

solution    , or the global best solution    . As suggested in [104], when applying tabu 

search we use     every second iteration.  

 We have tuned the parameters of CGS-QAP using the ParamILS configuration framework 

[59]. ParamILS executes an iterated local search in the parameter configuration space and it is 

appropriate for algorithms with many parameters, where a full factorial design becomes 

intractable. As training data for paramILS, we have used a set of 500 QAP instances with 

sizes uniformly distributed in the interval [30, 90]. The training instances have random 

distances and flows and have been generated based on the method described in [105]. The 

parameter settings are given in Table 5-7. 

Table 5-7. Parameter settings for CGS-QAP 

Parameter Value Description 

m 10 number of virtual persons 

  0.002 influence of the advertised cost 

q0 1-10/n probability to follow consultant’s recommendation 

maxReputation 40 maximum reputation value 

initialReputation 15 reputation after sabbatical 

bonus 6 best-so-far reputation bonus 

protectedRanks 2 protected top consultants 

r 0.1 reputation fading rate 

5.7.3. Experimental results 

In our experiments we use 17 unstructured instances taken from QAPLIB [19]. For each run, 

we allow a total of 500 applications of tabu search. The experiments have been performed on 

an HP ProLiant with 8 x 2.33 GHz Intel(R) Xeon(R) CPUs and 16 GB RAM, running Red 

Hat Enterprise Linux 5. 

Table 5-8 reports for each algorithm and QAP instance the mean percentage deviations from 

the best known solutions over 25 trials. The best mean results for each problem are in 

boldface. We also report for each problem the p-values of the one-sided Wilcoxon rank sum 
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tests for the null hypothesis (H0) that there is no difference between the solution quality of 

CGS-QAP and that of MMAS, and for the alternative hypothesis (H1) that CGS-QAP 

outperforms MMAS. Applying the Bonferroni correction for multiple comparisons, we obtain 

the adjusted α–level: 0.05 / 17 = 0.00294. The p-values in boldface indicate the cases where 

the null hypothesis is rejected at this significance level. 

Using the one-sided Wilcoxon signed rank test, we compute the p-value for the null 

hypothesis (H0) that there is no difference between the means of CGS-QAP and the means of 

MMAS, and the alternative hypothesis (H1) that the means of CGS-QAP are smaller than the 

means of MMAS. The p-value obtained is 0.00019, which means that the null hypothesis can 

be rejected at a high significance level. Although the results are statistically significant, they 

do not seem to be important from a practical point of view. 

Table 5-8. Algorithm performance for unstructured QAP instances, averaged over 25 trials. 

Runs are terminated after 500 applications of tabu search. 

Problem 

instance 

Best 

known 

MMAS 

% 

CGS-QAP 

% (p-value) 

tai20a 703482 0.302 0.097 (0.0005) 

tai25a 1167256 0.361 0.288 (0.1671) 

tai30a 1818146 0.436 0.364 (0.0441) 

tai35a 2422002 0.556 0.470 (0.0739) 

tai40a 3139370 0.719 0.585 (0.0122) 

tai50a 4938796 1.089 0.999 (0.1400) 

tai60a 7205962 1.257 1.051 (0.0004) 

tai80a 13511780 1.380 0.964 (0.0000) 

tai100a 21052466 1.420 0.917 (0.0000) 

nug30 6124 0.013 0.008 (0.3510) 

sko42 15812 0.014 0.004 (0.0108) 

sko49 23386 0.060 0.044 (0.3551) 

sko56 34458 0.046 0.029 (0.9131) 

sko64 48498 0.036 0.023 (0.5728) 

sko72 66256 0.104 0.098 (0.5058) 

sko81 90998 0.077 0.074 (0.9365) 

sko90 115534 0.086 0.120 (0.9509) 

In the previous experiment, CGS-QAP has outperformed MMAS on all instances except 

sko90. In the following experiment, we compare for this QAP instance the development of the 

mean percentage deviations from the best known solution for our competing algorithms over 

10 trials and 10000 applications of tabu search. As shown in Figure 5-10, although CGS-QAP 

initially produces poorer results for the sko90 instance, it is able to outperform MMAS in the 

long run. 

The experimental results show that combining CGS with a local search procedure leads to an 

efficient algorithm for the QAP, which performs better than MMAS for unstructured QAP 

instances. Our future research will investigate if CGS-QAP is still able to compete with 

MMAS for structured QAP instances. 
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Figure 5-10. Mean percentage deviations for instance sko90 averaged over 10 trials. 

5.7.4. Variants of the CGS-QAP algorithm 

In this subsection, we propose a few variants of the CGS-QAP algorithm, which could 

potentially improve its solution quality. 

5.7.4.1. The CGSV-QAP algorithm 

This algorithm is a variant of CGS-QAP, where the parameter    referred in Table 5-7 is no 

longer constant. Instead, for each client, the value of    is chosen at the beginning of each 

iteration, within an interval [    ,     ], where      and      are constant parameters. 

A value of    close to      leads to an aggressive search, focused around the assignment 

advertised by the consultant. A value of    close to      favors an exploration of the search 

space, allowing the algorithm to escape from local optima. There are many ways a client can 

choose the value of    at the beginning of an iteration. The simplest one is to randomly pick a 

value in the interval [    ,     ]. Another possibility would be to correlate the value of    

with the number   of iterations since the last success achieved by a client working under the 

guidance of the consultant selected for the current iteration. For example, a client can use for 

      a formula such that: 

 
                 
   
   

          

  (5.16) 

Because the value of    controls the size of the neighborhood taken into consideration by a 

client, this variant of the algorithm could be seen as a hybridization of CGS-QAP with 

Variable Neighborhood Search [85]. 

5.7.4.2. The CGS2-QAP algorithm 

The idea behind this algorithm is that a client may ask for a second opinion in order to decide 

to which location to place a facility. For this purpose, at the beginning of each iteration, the 

client randomly selects a second consultant from the remaining ones. The rule used to choose 

a location for the current facility is based on two constant parameters,    and   : with 

probability   , the client places the given facility to the location recommended by its main 

consultant; with probability         , it places the given facility to the location 
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recommended by the second consultant; with probability             , it randomly 

places the given facility to one of the free locations. 

The solution construction bears some resemblance to the approach used by genetic 

algorithms: choosing a location recommended by either the main or the second consultant is 

similar to a recombination operator; the perturbation produced when none of the 

recommendations was followed can be seen as a mutation. 

5.7.4.3. The CGS2V-QAP algorithm 

This variant combines CGSV-QAP and CGS2-QAP. The parameters    and    used by 

CGS2-QAP are no longer constants. Instead, their values are chosen at the beginning of each 

iteration, such that:     [     ,      ],     [     ,      ]. 

Our preliminary results suggest that the variants proposed in this subsection cannot 

outperform CGS-QAP for short runs, due probably to the additional overhead. However, for 

long runs, they seem to perform better than the standard CGS-QAP algorithm, because they 

are more effective in escaping from local optima. The CGS2V-QAP variant appears to be the 

best choice for long runs with unstructured QAP instances. 

5.8. CGS applied to the Generalized Traveling Salesman Problem 

In this section, we discuss the application of CGS to the Generalized Traveling Salesman 

Problem (GTSP). The generalized traveling salesman problem (GTSP) is an NP-hard problem 

that extends the classical traveling salesman problem by considering a related problem given 

a partition of the nodes of a graph into clusters. The problem consists in finding the shortest 

closed tour visiting exactly one node from each cluster. T he existence of several applications 

of the GTSP and the difficulty of obtaining optimum solutions for the problem has led to the 

development of several heuristics and metaheuristics, see for example [55], [99], [101], [109]. 

We propose a hybrid algorithm that combines the consultant-guided search technique with a 

local-global approach for solving the GTSP. Most GTSP instances of practical importance are 

symmetric problems with Euclidean distances, where the clusters are composed of nodes that 

are spatially close one to the other. Our algorithm takes advantage of the structure of these 

instances. 

5.8.1. The local-global approach to the Generalized Traveling Salesman Problem 

Let         be an  -node undirected complete graph whose edges are associated with non-

negative costs and let         be a partitioning of   into   subsets called clusters (i.e. 

              and          for all              ).  

Then, the generalized traveling salesman problem asks for finding a minimum-cost tour   

spanning a subset of nodes such that   contains exactly one node from each cluster   , 
           . We call such a cycle a generalized Hamiltonian tour. 

Based on the way the generalized combinatorial optimization problems are defined as 

extensions of the classical variants, a natural approach that takes advantage of the similarities 

between them is the local-global approach introduced by Pop [90] in the case of the 

generalized minimum spanning tree problem.   

In the case of the GTSP, the local-global approach aims at distinguishing between global 

connections (connections between clusters) and local connections (connections between 

nodes from different clusters). This approach was already pointed out and exploited by Hu et 

al. in [58]. 
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Given a sequence in which the clusters are visited (i.e. a global Hamiltonian tour), there are 

several generalized Hamiltonian tours corresponding to it. The best corresponding (with 

respect to cost minimization) generalized Hamiltonian tour can be determined either by using 

a layered network as we will describe next or by using integer programming. 

We denote by    the graph obtained from   after replacing all nodes of a cluster    with a 

supernode representing   . We will call the graph    the global graph. For convenience, we 

identify    with the supernode representing it. Edges of the graph    are defined between each 

pair of the graph vertices        . 

Given a sequence           in which the clusters are visited, we want to find the best 

feasible Hamiltonian tour    (with respect to cost minimization), visiting the clusters 

according to the given sequence. This can be done in polynomial time by solving       

shortest path problems, as we describe below. 

We construct a layered network, denoted by LN, having     layers corresponding to the 

clusters           and in addition we duplicate the cluster    . The layered network 

contains all the nodes of   plus some extra nodes    for each      . There is an arc       for 

each       and         (           ), having the cost    . Moreover, there is an arc 

       for each        and        having the cost      . 

 

Figure 5-11. Example showing a Hamiltonian tour in the constructed layered network LN 

For any given      , we consider paths from   to   ,       , that visits exactly one node 

from each cluster          , hence it gives a feasible Hamiltonian tour. 

Conversely, every Hamiltonian tour visiting the clusters according to the sequence 

(         ) corresponds to a path in the layered network from a certain node       to 

      . 

Therefore, it follows that the best (with respect to cost minimization) Hamiltonian tour    

visiting the clusters in a given sequence can be found by determining all the shortest paths 

from each       to the corresponding        with the property that it visits exactly one 

node from each of the clusters          . 

The overall time complexity is then                 , i.e.               , in the worst 

case, where by     we denote the number of edges. We can reduce the time by choosing     

as the cluster with minimum cardinality. 

Notice that the above procedure leads to an                        time exact 

algorithm for the GTSP, obtained by trying all the        possible cluster sequences.  
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Clearly, the algorithm presented is an exponential time algorithm, unless the number of 

clusters   is fixed. 

5.8.2. The Hybrid Algorithm for the GTSP 

We propose in this subsection an algorithm for the GTSP that combines the consultant-guided 

search technique with a local-global approach and improves the solutions using a local search 

procedure. Most GTSP instances of practical importance are symmetric problems with 

Euclidean distances, where the clusters are composed of nodes that are spatially close one to 

the other. We design our algorithm to take advantage of the structure of these instances. 

At each iteration, a client constructs a global tour, that is, a Hamiltonian cycle in the global 

graph. The strategy of a consultant is also represented by a global tour, which the consultant 

advertises to its clients. The algorithm applies a local search procedure in order to improve the 

global tour representing either the global solution of a client or the strategy of a consultant in 

sabbatical mode. Then, using the cluster optimization procedure described in the previous 

subsection, the algorithm finds the best generalized tour corresponding to the global tour 

returned by the local search procedure.  

In order to compare the strategies constructed during the sabbatical leave, a consultant uses 

the cost of the generalized tour corresponding to each strategy. Similarly, the success of a 

client is evaluated based on the cost of the generalized solution. The pseudocode of our 

algorithm is shown in Figure 5-12. 

A virtual person may be in one of the following modes: normal and sabbatical. During the 

initialization phase (lines 2-5), virtual people are created and placed in sabbatical mode. 

Based on its mode, a virtual person constructs at each iteration of the algorithm (lines 7-31) 

either a global solution to the problem (line 19) or a global consultant strategy (line 9). In 

subsection 5.8.3, we describe the operations involved by the construction of a global solution 

or strategy, as well as the method used by a client in order to choose a consultant for the 

current iteration (line 17). 

Global strategies and global solutions are improved by applying a local search procedure 

(lines 10 and 20). The clusterOptimization procedure described in section 5.8.1 is then used to 

find the best generalized strategy (line 11) corresponding to the current global strategy or to 

find the best generalized solution (line 21) corresponding to the current global solution. 

After constructing a global strategy, a virtual person in sabbatical mode checks if the 

corresponding generalized strategy is the best generalized strategy found since the beginning 

of the sabbatical (lines 12-15). Similarly, after constructing a global solution, a client checks 

the corresponding generalized solution in order to decide if it has achieved a success and, if 

this is the case, it updates the strategy of its consultant (lines 22-26). 

At the end of each iteration, the reputation and action mode of each virtual person are updated 

(lines 30-31). 
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1 procedure CGS-GTSP() 
2  create the set   of virtual persons 

3  foreach p    do 

4   setSabbaticalMode(p) 
5  end foreach 
6  while (termination condition not met) do 

7   foreach p    do 

8    if actionMode[p] = sabbatical then 

9     currStrategy[p] ← constructStrategy(p) 
10     applyLocalSearch(currStrategy[p]) 
11     genStrategy ← clusterOptimization(currStrategy[p]) 
12     if cost(genStrategy) < bestStrategyCost then 

13      bestStrategy[p] ← currStrategy[p] 

14      bestStrategyCost[p] ← cost(genStrategy) 

15     end if 

16    else 

17     c ← chooseConsultant(p) 
18     if c ≠ null then 

19      currSol[p] ← constructSolution(p, c) 
20      applyLocalSearch(currSol[p]) 
21      currGenSol[p] ← clusterOptimization(currSol[p]) 
22      if currGenSol[p] is better than all solutions found  

23         by a client of c since last sabbatical then 

24       successCount[c] ← successCount[c] + 1 

25       strategy[c] ← currSol[p] 

26      end if 

27     end if 

28    end if 

29   end foreach 

30   updateReputations() 
31   updateActionModes() 
32  end while 

33 end procedure 

Figure 5-12. The CGS-GTSP algorithm. 

Figure 5-13 details how consultants’ reputations are updated based on the successes achieved 

by their clients. 

Reputations fade over time at a constant rate, given by the parameter fadingRate (line 4). The 

reputation of a consultant is incremented with each success achieved by one of its clients 

(line 5) and it receives an additional bonus of 10 for finding a best-so-far solution (lines 6-9). 

The reputation of a consultant cannot exceed a maximum value (lines 10-12) and the 

algorithm prevents the reputation of the best consultant, that is, the consultant that has found 

the best-so-far solution, from sinking below a given value (lines 13-17). The constant 

parameter initialReputation represents the reputation assigned to a consultant at the end of the 

sabbatical leave. 

Figure 5-14 details how the action mode of each virtual person is updated: consultants whose 

reputations have sunk below the minimum level are placed in sabbatical mode, while 

consultants whose sabbatical leave has finished are placed in normal mode. 

Figure 5-15 shows the actions taken to place a virtual person in sabbatical or in normal action 

mode. 
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1 procedure updateReputations() 
2  foreach p    do 

3   if actionMode[p] = normal then 

4    rep[p] ← rep[p] * (1 - fadingRate) 

5    rep[p] ← rep[p] + successCount[p] 
6    if cost(currGenSol[p]) < cost(bestSoFarSol) then 

7     bestSoFarSol  ← currGenSol[p] 
8     rep[p] ← rep[p] + 10   // reputation bonus 
9    end if 

10    if rep[p] > 10 * initialReputation then 
11     rep[p] ← 10 * initialReputation 
12    end if 
13    if p is the best consultant then 
14     if rep[p] < initialReputation then 
15      rep[p] ← initialReputation 
16     end if 

17    end if 
18   end if 

19  end foreach 

20 end procedure 

Figure 5-13. Procedure to update reputations. 

 

1 procedure updateActionModes() 
2  foreach p    do 

3   if actionMode[p] = normal then 

4    if rep[p] < 1 then 
5     setSabbaticalMode(p) 
6    end if 
7   else 

8    sabbaticalCountdown ← sabbaticalCountdown – 1 

9    if sabbaticalCountdown = 0 then 
10     setNormalMode(p) 
11    end if 
12   end if 
13 end procedure 

Figure 5-14. Procedure to update action modes. 

 

1 procedure setSabbaticalMode(p) 
2  actionMode[p] ← sabbatical 
3  bestStrategy[p] ← null 

4  bestStrategyCost[p] ← ∞ 

5  sabbaticalCountdown ← 20 

6 end procedure 
  

7 procedure setNormalMode(p) 
8  actionMode[p] ← normal 
9  rep[p] ← initialReputation 

10  strategy[p] ← bestStrategy[p] 

11 end procedure 

Figure 5-15. Procedures to set sabbatical and normal mode. 
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5.8.3. Strategy and solution construction 

The heuristic used during the sabbatical leave in order to build a new strategy is based on 

virtual distances between the supernodes in the global graph. We compute the virtual distance 

between two supernodes as the distance between the centers of mass of the two corresponding 

clusters. The choice of this heuristic is justified by the class of problems for which our 

algorithm is designed: symmetric instances with Euclidean distances, where the nodes of a 

cluster are spatially close one to the other. 

By introducing virtual distances between clusters, we have the possibility to use candidate 

lists in order to restrict the number of choices available at each construction step. For each 

cluster  , we consider a candidate list that contains the closest      clusters, where      is a 

parameter. This way, the feasible neighborhood of a person   when being at cluster   
represents the set of clusters in the candidate list of cluster   that person   has not visited yet. 

Several heuristic algorithms for the TSP use candidate lists during the solution construction 

phase (see [45] for examples of their use with Ant Colony Optimization algorithms), but 

candidate lists have not been widely used to construct solutions for the GTSP. Our algorithm 

uses candidate lists during both strategy construction and solution construction. 

The use of candidate lists may significantly improve the time required by an algorithm, but it 

could also lead to missing good solutions. Therefore, the choice of appropriate sizes and 

elements of the candidate lists is critical for the working of an algorithm. In the case of TSP, 

candidate lists with size 20 are frequently used, but other values between 10 and 40 are also 

usual [68]. For GTSP instances with clusters composed of nodes spatially close to each other, 

appropriate sizes for the candidate lists are considerably smaller. Our experiments show that 

values of 4 or 5 are adequate in this case. 

During the sabbatical leave, a consultant uses a random proportional rule to decide which 

cluster to visit next. For a consultant k, currently at cluster i, the probability to choose cluster j 

is given by formula (5.17): 

   
  

       
 

             
 

 (5.17) 

where: 

   
  is the feasible neighborhood of person k when being at cluster i. 

     is the virtual distance between clusters i and l. 
   is a constant parameter. 

As mentioned before, the feasible neighborhood   
  contains the set of clusters in the 

candidate list of cluster   that person   has not visited yet. If all the clusters in the candidate 

list have already been visited, the consultant can choose one of the clusters not in the 

candidate list, using a random proportional rule similar to that given by formula (5.17). 

Using virtual distances between clusters as a heuristic during the sabbatical leave, leads to 

reasonably good initial strategies. In general, however, a global tour that is optimum with 

respect to the virtual distances between clusters does not produce the optimum generalized 

tour after applying the cluster optimization procedure. Therefore, during the solution 

construction phase, the algorithm does not rely on the distances between clusters, although it 

still uses candidate lists in order to determine the feasible neighborhood of a cluster. 

At each step, a client receives a recommendation regarding the next cluster to be visited. This 

recommendation is based on the global tour advertised by the consultant. Let   be the cluster 

visited by the client   at a construction step of the current iteration. To decide which cluster to 
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recommend for the next step, the consultant finds the position at which the cluster   appears in 

its advertised global tour and identifies the cluster that precedes   and the cluster that succeeds 

  in this tour. If neither of these two clusters is already visited by the client, the consultant 

randomly recommends one of these two clusters. If only one of these two clusters is unvisited, 

this one is chosen to be recommended. Finally, if both clusters are already visited, the 

consultant is not able to make a recommendation for the next step. 

The client does not always follow the consultant’s recommendation. The rule used to choose 

the next cluster   to move to is given by formula (5.18): 

   
                
          

            
  (5.18) 

where: 

   is the cluster recommended by the consultant for the next step. 

   is a random variable uniformly distributed in [0,1] and    (      ) is a parameter.  

   
  is the feasible neighborhood of person   when being at cluster  . 

        is a function that randomly chooses one element from the set given as argument. 

Again, if all the clusters in the candidate list have already been visited, the feasible 

neighborhood   
  is empty. In this case, a client that ignores the recommendation of its 

consultant can choose one of the clusters not in the candidate list, using a random proportional 

rule similar to that given by formula (5.17). 

The personal preference of a client for a given consultant is computed as the inverse of the 

cost of the generalized tour corresponding to the global tour advertised by the consultant. In 

conjunction with the reputation, the personal preference is used by clients in order to compute 

the probability to choose a given consultant  : 

   
                         

 

                              
 (5.19) 

where   is the set of all available consultants. 

5.8.4. An algorithm variant using confidence 

In this subsection, we propose a variant of our algorithm based on the approach introduced in 

subsection 5.6.3, which correlates the recommendation of a consultant with a level of 

confidence. Each arc in the global tour advertised by a consultant has an associated strength. 

Strengths are updated each time the consultant adjusts its strategy. If an arc in the new 

advertised tour was also present in the old advertised tour, its strength will be incremented; 

otherwise, its strength is set to 0. The strength of an arc could be interpreted as the 

consultant’s confidence in recommending this arc to a client. A client is more likely to accept 

recommendations made with greater confidence. This idea is expressed in this algorithm 

variant by allowing the value of the parameter q0 from formula (5.18) to vary in a given 

range, at each construction step: 

    
       

         

    
          

               

  (5.20) 

where   is the strength of the recommended arc and     ,      and      are constant 

parameters. The use of confidence compensates somewhat for the absence of a heuristic 

during the solution construction phase. 
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5.8.5. Local Search 

The global tours built during the strategy construction and solution construction phase are 

improved using a local search procedure generically described in Figure 5-16.  

1 procedure applyLocalSearch(  ) 

2     ← clusterOptimization(  ) 

3  foreach   
   tourNeighborhood(  ) do 

4   if quickCheck(  
 ) then 

5       ← partialClusterOptimization(  
 ,  ) 

6    if cost(  ) < cost( ) then 

7        ←   
  

8       ←    

9    end if 

10   end if 

11  end foreach 

12 end procedure 

Figure 5-16. The local search procedure. 

   and   
  denote global Hamiltonian tours, that is, tours in the graph of clusters, while   and 

   denote generalized Hamiltonian tours. Our algorithm can be combined with any local 

search procedure conforming to the above algorithmic structure. The working of the 

clusterOptimization function (line 2) is explained in section 5.8.1. The cost function (line 6) 

computes the cost of a generalized Hamiltonian tour. The other functions referred in Figure 

5-16 are only generically specified and they must be implemented by each concrete 

instantiation of the local search procedure. 

The tourNeighborhood function (line 3) should return a set of global tours representing the 

neighborhood of the global tour    provided as argument. The quickCheck function (line 4) is 

intended to speed up the local search by quickly rejecting a candidate global tour from the 

partial cluster optimization, if this tour is not likely to lead to an improvement. 

The partialClusterOptimization function (line 5) starts with the generalized tour obtained by 

traversing the nodes of   in accordance with the ordering of clusters in the global tour   
 . 

Then, it reallocates some vertices in the resulting generalized tour, trying to improve its cost. 

Typically, this function considers only a limited number of vertices for reallocation and it has 

a lower complexity than the clusterOptimization function. 

The generalized tour constructed by the function partialClusterOptimization is accepted only 

if its cost is better than the cost of the current generalized tour (lines 6-9). 

We provide two instantiations of the generic local search procedure shown in Figure 5-16: 

one based on a 2-opt local search and one based on a 3-opt local search. We describe here 

only the 2-opt based variant. Except from the fact that it considers exchanges between 3 arcs, 

the 3-opt based local search is very similar to the 2-opt based variant. 

In the 2-opt based local search, the tourNeighborhood function returns a  set of global tours 

obtained by replacing a pair of arcs  (Cα, C ) and (Cγ, Cδ) in the original global tour with the 

pair of arcs (Cα, Cγ) and (C , Cδ). In order to reduce the number of exchanges taken into 

consideration, the set returned by our tourNeighborhood function includes only tours for 

which γ is in the candidate list of α. In other word, a pair of arcs is considered for exchange 

only if the center of mass of the cluster γ is close to the center of mass of the cluster α. 
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The partialClusterOptimization function used in this case is similar to the RP1 procedure 

introduced in [47]. Let (Cα, C ) and (Cγ, Cδ) be the two arcs from the original global tour    

that have been replaced with (Cα, Cγ) and (C , Cδ) in the neighbor global tour   
 , as shown in 

Figure 5-17. 

The vertices in clusters Cα, C , Cγ and Cδ can then be reallocated, in order to minimize the 

cost of the generalized tour. For this purpose, we have to determine the two node pairs 

(u’, w’) and (v’, z’) such that: 

                                            

                                             
(5.21) 

This computation requires                   comparisons.  

The quickCheck function permits the application of the partial cluster optimization only if the 

following inequality holds: 

                                                           

                                     (5.22) 

where             is the minimum distance between each pair of vertices from clusters    

and   . These minimum distances are computed only once, at algorithm startup. 

 

Figure 5-17. The 2-opt partial cluster optimization. 

5.8.6. Experimental setup 

We have implemented our algorithm as part of a software package written in Java, which is 

available online at http://swarmtsp.sourceforge.net/. At this address we provide all 

information necessary to reproduce our experiments. 

The parameters of the algorithm have been tuned using the paramILS configuration 

framework [59]. ParamILS executes an iterated local search in the parameter configuration 

space and it is appropriate for algorithms with many parameters, where a full factorial design 

becomes intractable. We have generated a set of 100 Euclidean TSP instances with the 

number   of cities uniformly distributed in the interval [200, 500] and with coordinates 

uniformly distributed in a square of dimension 10000 x 10000. These instances have been 

http://swarmtsp.sourceforge.net/


Emergent Phenomena in Agent-Based Systems 

89 

then converted to GTSP by applying the CLUSTERING procedure introduced in [47]. This 

procedure sets the number of clusters        , identifies the   farthest nodes from each 

other and assigns each remaining node to its nearest center. We have used the resulting GTSP 

instances as training data for paramILS. 

Before starting the tuning procedure, we have run our algorithm 10 times on each instance in 

the training set, using a default configuration. Each run has been terminated after  /10 

seconds and we have stored the best result obtained for each GTSP instance. During the 

tuning procedure, these best known results are used as termination condition for our 

algorithm. Each time paramILS evaluates a parameter configuration with respect to a given 

instance, we determine the mean time (averaged over 10 trials) needed by our algorithm in 

order to obtain a result at least as good as the best known result for this instance, using the 

given parameter configuration. 

The best parameter configuration found after 10 iterations of paramILS is given in Table 5-9. 

Table 5-9. Parameter configuration for the standard algorithm. 

Parameter Value Description 

m 8 number of virtual persons 

q0 0.8 see formula (5.18). 

initialReputation 6 reputation after sabbatical; see Figure 5-13 and Figure 5-15. 

reputationFadingRate   0.003 reputation fading rate; see Figure 5-13. 
candidateListSize 5 number of clusters in the candidate list. 

For the algorithm variant using confidence, we have used the same procedure as for the 

standard algorithm, but we have tuned only the values of the parameters qmin, qmax and smax. 

For the parameters m, initialReputation, reputationFadingRate and candidateListSize we have 

used the values from Table 5-9. The best parameter configuration found for the algorithm 

variant with confidence after 10 iterations of paramILS is given in Table 5-10: 

Table 5-10. Parameter configuration for the algorithm variant with confidence. 

Parameter Value Description 

qmin 0.7 
parameters used to compute the value of q0; 

see formulas (5.18) and (5.20). 
qmax 0.98 

smax 3 

5.8.7. Computational results 

The performance of the proposed algorithm has been tested on 18 GTSP problems generated 

from symmetric Euclidean TSP instances. These TSP instances, containing between 198 and 

442 nodes, are drawn from the TSPLIB [92] benchmark library. The corresponding GTSP 

problems are obtained by applying the CLUSTERING procedure introduced in [47]. For 16 of 

the considered GTSP instances, the optimum objective values have been determined by 

Fischetti et al. [47]. For the remaining 2 instances (45tsp225 and 56a280), the best known 

results from the literature are conjectured to be optimal. 

Currently, the memetic algorithm of Gutin and Karapetyan [55] clearly outperforms all 

published GTSP heuristics. Therefore, we use this algorithm as a yardstick to evaluate the 

performance of the different variants of our algorithm. We use the following acronyms to 

identify the algorithms used in our experiments: 

 GK: the memetic algorithm of Gutin and Karapetyan [55]. 

 CGS-2: the standard variant of our algorithm combined with 2-opt local search. 
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 CGS-3: the standard variant of our algorithm combined with 3-opt local search. 

 CGS-C-2: the variant of our algorithm using confidence combined with 2-opt local search. 

 CGS-C-3: the variant of our algorithm using confidence combined with 3-opt local search. 

For each GTSP instance, we run each algorithm 25 times and we report the average time 

needed to obtain the optimal solution. For the GK algorithm, we use the C++ implementation 

offered by its authors. The running times for GK differ from the values reported in [55], 

because we run our experiments on a 32-bit platform using an Intel Core2 Duo 2.2 GHz 

processor, while the results presented in [55] have been obtained on a 64-bit platform and 

using a faster processor (AMD Athlon 64 X2 3.0 GHz). 

The computational results are shown in Table 5-11. The name of each problem is prefixed by 

the number of clusters and it is suffixed by the number of nodes. Average times that are better 

than those obtained by the GK algorithm are in boldface. For each problem and for each CGS 

algorithm variant, we also report the p-values of the one-sided Wilcoxon rank sum tests for 

the null hypothesis (H0) that for the given problem there is no difference between the running 

times of the considered algorithm variant and the running times of the GK algorithm, and for 

the alternative hypothesis (H1) that the considered algorithm outperforms the GK algorithm 

for the given problem. Applying the Bonferroni correction for multiple comparisons, we 

obtain the adjusted α-level: 0.05 / 18 = 0.00278. The p-values in boldface indicate the cases 

where the null hypothesis is rejected at this significance level. 

Table 5-11. Times (in seconds) needed to finde the optimal solutions, averaged over 25 trials.
 

Problem 

instance 

Optimal 

cost 

GK CGS-C-3 CGS-C-2 CGS-3 CGS-2 

time time p-value time p-value time p-value time p-value 

40d198 10557 0.46 0.36 0.0004 0.33 0.0012  0.47 0.0034  0.45 0.0050 

40kroA200 13406 0.38 0.33 0.0000 0.25 0.0000  0.37 0.5711  0.30 0.0001 

40kroB200 13111 0.48 0.60 0.9460 0.37 0.0008  0.59 0.9689  0.60 0.6156 

41gr202 23301 0.71 0.64 0.0141 0.91 0.4674  1.35 1.0000  1.10 0.9101 

45ts225 68340 0.61 3.32 1.0000 4.06 0.9957  1.92 0.9999  2.67 1.0000 

45tsp225 1612 0.51 4.83 1.0000 3.25 0.9994  4.07 1.0000  2.28 0.9967 

46pr226 64007 0.28 0.13 0.0000 0.07 0.0000  0.13 0.0000  0.09 0.0000 

46gr229 71972 0.81 0.36 0.0000 0.33 0.0000  0.39 0.0000  0.37 0.0000 

53gil262 1013 0.83 1.22 0.1071 2.63 0.9999  1.63 1.0000  3.49 1.0000 

53pr264 29549 0.67 0.57 0.0070 0.49 0.0005  0.94 0.9482  1.08 0.9406 

56a280 1079 0.94 1.79 0.8215 3.71 0.9999  2.02 0.9998  4.46 1.0000 

60pr299 22615 1.10 3.54 0.9992 2.91 0.9992  3.23 1.0000  4.74 0.9999 

64lin318 20765 1.16 0.85 0.0000 2.68 0.9929  1.28 0.8946  3.81 1.0000 

80rd400 6361 2.57 10.30 0.9996 13.27 1.0000  87.96 1.0000  270.04 1.0000 

84fl417 9651 1.91 1.10 0.0000 1.59 0.0001  1.51 0.0012  2.27 0.0512 

87gr431 101946 6.01 8.16 0.8361 12.86 0.9916  477.38 1.0000  866.53 1.0000 

88pr439 60099 4.07 1.56 0.0000 1.32 0.0000  3.68 0.0104  10.71 0.9999 

89pcb442 21657 4.24 11.11 0.9980 13.53 1.0000 395.93 1.0000 1430.13 1.0000 

It can be observed that CGS-C-3 outperformed GK for 9 of the 18 instances and in 7 cases 

these results are significantly better. CGS-C-2 outperformed GK for 8 of the 18 instances and 

in all these 8 cases the results are significantly better. The algorithm variants without 

confidence perform poorer and for a few instances they need considerably more time to find 

the optimal solution. 

For several pairs of algorithms, we use the one-sided Wilcoxon signed rank test to compute 

the p-values for the null hypothesis (H0) that there is no difference between the running times 

of the first and the running times of the second algorithm, and the alternative hypothesis (H1) 
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that the running times of the first algorithm are better than the running times of the second 

algorithm. The p-values are given in Table 5-12, where the significant values (p < 0.05) are in 

boldface. 

Table 5-12. Performance comparison using the one-sided Wilcoxon signed rank test. 

First algorithm Second algorithm p-value 

GK CGS-C-3 0.1061 

GK CGS-C-2 0.0368 

GK CGS-3 0.0069 

GK CGS-2 0.0005 

CGS-C-3 CGS-C-2 0.0708 

CGS-C-3 CGS-3 0.0152 

CGS-C-2 CGS-2 0.0028 

It can be observed that GK outperforms our algorithms, but in the case of CGS-C-3, the 

differences are not statistically significant. Similarly, CGS-C-3 outperforms CGS-C-2, but not 

statistically significant. The fact that 3-opt local search does not significantly improve the 

results obtained with 2-opt local search could be a consequence of the greater complexity of 

3-opt. There are, however, significant differences between the running times of CGS variants 

with confidence and those without confidence. Due to the very poor results obtained in some 

cases by the algorithm variants without confidence, these differences are not only statistically, 

but also practically significant, thus indicating the importance of the confidence component. 

Figure 5-18 shows how the candidate list size affects the time needed by CGS-C-3 to find the 

optimal solution of the problem instance 64lin318. The results are averaged over 25 trials. 

 

Figure 5-18. The influence of the candidate list size on the time needed to find the optimal 

solution for problem 64lin318. 

It can be observed that the size of the candidate list has a huge influence on the time needed 

by the algorithm to find the optimal solution. Therefore, the use of candidate lists is a key 

component contributing to the success of our algorithm. 
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The best results are obtained for candidate lists of size 4 or 5, but we should note that the 

algorithm is able to find the optimum even for candidate lists with only 2 elements. However, 

in this case the time needed increases considerably. This is due to the fact that the probability 

to find the next cluster of the optimal tour in the candidate list of the current cluster is 

significantly smaller when using a candidate list with only 2 elements. For the 64lin318 

instance, only 44 of the 64 clusters are present in the candidate list of their precedent cluster 

when using candidate lists with 2 elements. In contrast, 59 of the 64 clusters are present when 

using candidate lists with 5 elements. The algorithm is able to find the optimal solution even 

for very small sized candidate lists, because during the construction phase a client may visit 

clusters not contained in the current candidate list, if all clusters in this candidate list are 

already visited or when the consultant recommends it. 

For candidate lists with a large number of elements, the algorithm performance in terms of 

running time worsens, due to the increase in the number of exchanges performed by the local 

search procedure. 

As seen, although there are no statistically significant differences, our algorithm variant with 

confidence is outperformed by the memetic algorithm of Gutin and Karapetyan (GK), which 

is currently the best published heuristic for the GTSP. The GK algorithm uses a sophisticated 

local improvement strategy that combines many local search heuristics. One goal of our future 

research is to adopt a similar approach for the local improvement part of our algorithm, but 

still using candidate lists for each local search heuristic considered. 

5.9. Conclusions and future work 

In this chapter, we have introduced Consultant-Guided Search (CGS), a novel metaheuristic 

for combinatorial optimization problems, based on the direct exchange of information 

between individuals in a population. The metaphor used by CGS is that of clients that receive 

advice from consultants in order to solve a given problem. This metaphor was inspired by the 

way in which agent interaction is modeled by the MetFrEm framework. 

We have applied the CGS metaheuristic to three classes of combinatorial optimization 

problems: the Traveling Salesman Problem (TSP), the Quadratic Assignment Problem (QAP) 

and the Generalized Traveling Salesman Problem (GTSP). For the TSP, we have devised the 

CGS-TSP algorithm, which is able to compete with the best ACO algorithms. Moreover, a 

variant of CGS-TSP that attaches confidence levels to the recommendations made by 

consultants, yields even better results. For the QAP, we have introduced the CGS-QAP 

algorithm and we have also proposed a few variants of this algorithm, which combine the 

basic variant with other techniques. The experimental results show that CGS-QAP 

outperforms MAX-MIN Ant System for unstructured QAP instances. For the GTSP, we have 

used a local-global approach and we have defined the virtual distance between two 

supernodes as the distance between the centers of mass of the two corresponding clusters. We 

have introduced candidate lists based on these virtual distances, in order to reduce the search 

space. This has led to an efficient algorithm, able to compete with the best GTSP algorithms. 

A drawback of the CGS algorithms proposed in this chapter is the large number of parameters 

to be tuned. We plan to devise variants of these algorithms that use only a small number of 

parameters. To this end, we will study the influence of the different components of CGS on its 

performance and we will try to identify parameters whose optimal value is not problem 

specific. These parameters can be subsequently removed by hard-coding their values in the 

algorithm. 
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An important goal of our future research is to apply CGS to other combinatorial optimization 

problems in order to identify classes of problems for which CGS could achieve state of the art 

performance. Furthermore, we plan to analyze the viability of a hybrid approach that 

combines CGS and ACO, thus benefiting of both direct communication and stigmergy. 

Another research goal is to adapt the CGS metaheuristic to continuous optimization problems. 

One possible way to achieve this is to follow the approach used by the      [102] algorithm, 

which is an extension of ant colony optimization to continuous domains. In both CGS and 

ACO, at each construction step, a solution component is chosen from a finite set of available 

components, based on the probabilities associated with each of the components. For 

continuous optimization problems, the set of components to choose from is infinite. The idea 

of      is to replace the discrete probability distribution with a probability density function, 

constructed as a weighted sum of several one-dimensional Gaussian functions. In order to 

compute the parameters of this probability density function,      maintains an archive of 

good solutions found during the search. To each Gaussian function, there is a corresponding 

solution in the archive. Based on these solutions,      determines the weights of the 

Gaussian functions and the values of their parameters. Having computed the probability 

density function,      can sample a value that will be used as the solution component for the 

current construction step. The CGS algorithms presented in this chapter implement the 

strategy of a consultant as a solution advertised to its clients, which means that these 

algorithms already keep track of a number of good solutions. Therefore, it seems easy and 

natural to apply the ideas of      to CGS in order to adapt it for continuous optimization 

problems. Of course, thorough research is needed to test the viability of this approach. 

As mentioned before, in our current instantiations of CGS, we have represented the strategy 

of a consultant as a solution recommended to its clients. This is a somewhat disappointingly 

way to implement a strategy, because it is very basic and it is probably not what most people 

would expect when thinking of a strategy. It is therefore interesting to fully use the 

possibilities offered by CGS, by conceiving algorithms where the strategy of a consultant has 

a different representation than that of the solution. One could for example represent the 

strategy as a set of rules, as a finite state machine or even as a genotype. In each case, the 

challenge is to find the right method to adjust the strategy each time one of the clients 

achieves a success. 

The results presented in this chapter are mainly of experimental nature. This is not surprising, 

taking into account that CGS is a new metaheuristic. For almost all existing metaheuristics, 

the initial work has been purely experimental. Theoretical studies were carried out only after 

empirical evidence had shown the merits of a metaheuristic. CGS has been applied until now 

to only three classes of problems and more experimental research is needed in order to assess 

the full potential of this metaheuristic. However, the successes already obtained by CGS show 

that the theoretical study of this metaheuristic is an important future research direction. This 

implies investigating the computational properties of CGS in order to obtain answers to 

questions concerning convergence, expected optimization time, importance of different 

components of this metaheuristic or impact of the parameters’ values on its performance. As 

in the case of other metaheuristics [86], a theoretical analysis of CGS is not amenable in the 

general case. Instead, it will be necessary to derive theoretical results for particular CGS 

algorithms and, most probably to algorithm variants simpler than those presented in this 

chapter.  
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6. CONCLUSIONS 

The main motivation for the research presented in this thesis was the problem of engineering 

emergent behavior. This is a difficult and very general problem, for which no universally 

applicable methodology is currently known. We have explored in this dissertation a few 

aspects of this issue, starting from theoretical approaches and gradually moving toward more 

practical ones. 

In order to build our research on a scientific foundation, we have begun by developing a 

mathematical formalism of emergence. This task was complicated by the absence of a unique 

definition of emergence and by the fact that most definitions are based on subjective factors 

such as the surprise element or the perceived novelty. We have been able to offer a definition 

of emergence that is both objective and suitable for practical purposes by taking an 

unconventional perspective on emergence. Instead of focusing on the properties of 

emergence, we have argued that a definition should rely only on the processes that produce 

emergent phenomena. Although the properties of emergence are not part of our definition, 

they represent a main subject of interest. One of the main reasons for developing our 

mathematical formalism of emergence was the possibility to derive truths concerning the 

properties of emergence in a rigorous way. The approach proposed in this thesis is an 

empirical one: such truths should be first identified by performing computational experiments 

and they can be then expressed, analyzed and proved using our mathematical formalism, in 

order to establish theoretical results.  

The above mentioned approach implies the existence of a general setting for the study of 

emergence, which must be compatible with our mathematical formalism. Therefore, we have 

designed a meta-framework called MetFrEm, which can be used to describe various 

algorithmic frameworks comprising a population of interacting agents. We have identified a 

number of open questions that could be addressed by performing computational experiments 

with agent-based systems modeled in our meta-framework. One of the hypotheses guiding our 

research was that, in order to engineer a desired emergent behavior, it is preferable to use 

heterogeneous systems with agents that follow only simple rules instead of considering 

homogeneous systems with complex agents. Consequently, we have designed MetFrEm to 

allow describing systems comprising a great number of agent types without the need to 

explicitly state the interaction rules between each pair of agent types. In our framework, an 

agent of a given type may know how to interact with agents of other types without even being 

aware of the existence of these other types. 

The goal of being able to describe agent rules in a generic manner has led to a particular way 

in which agent interactions should be modeled in MetFrEm. In turn, this particular way of 

interacting has led us to the idea of a new metaheuristic for combinatorial optimization 

problems, which we have called the Consultant-Guided Search (CGS). This metaheuristic has 

proved very successful, being able to produce state-of-the art results for all classes of 

problems to which we have applied it: the traveling salesman problem, the quadratic 

assignment problem and the generalized traveling salesman problem. 
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Currently, there are many open questions related to the problem of engineering emergent 

behavior. Although our research does not give definitive answers to these questions, we 

believe that it points the way toward a theory of emergence. An argument in favor of this 

assumption is given by the state-of-the-art results obtained by our CGS algorithms. Since the 

CGS metaheuristic reflects the way in which agent interactions take place in MetFrEm, and 

since MetFrEm is compatible with our mathematical formalism of emergence, we believe that 

the work presented in this thesis represents a step in the right direction. We view the 

mathematical formalism introduced in this thesis as the theoretical foundation for the problem 

of engineering emerging behavior, and the MetFrEm meta-framework as a major tool for the 

experimental study of emergence. Our future work will further concentrate on investigating 

appropriate methods to tackle this open-ended research topic. 
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APPENDIX A. AGSYSLIB - A SOFTWARE TOOL FOR 

AGENT-BASED PROBLEM SOLVING 

Many complex phenomena that arise in physical and biological systems can be naturally 

described using agent-based models [115][112][46][21]. These models are able to capture the 

complex behavior that emerges from the interactions between agents governed by simple 

rules. It is tempting to use agent-based approaches not only to describe existing phenomena, 

but also to solve complex problems that cannot be tackled with conventional techniques. 

Consequently, in recent years, there has been a growing interest in designing algorithms that 

take advantage of the emergent behavior exhibited by systems composed by interacting 

agents [103]. 

While conceiving a new agent-based algorithm, one can benefit from the various software 

libraries and frameworks available nowadays for agent-based modeling and simulation 

(ABMS) [80]. However, ABMS software is not able to assist in all aspects related to the 

design, implementation and tuning of agent-based algorithms. In this chapter, we identify the 

difficulties encountered during these activities and we discuss how a software tool can help in 

overcoming them. We illustrate our ideas by presenting AgSysLib, a Java tool that we have 

developed in order to facilitate the tasks associated with agent-based problem solving. 

The main difficulty in designing agent-based algorithms is to find the set of rules that produce 

the desired emergent behavior. At present, there is no generally accepted methodology for 

designing agent-based algorithms. Some of these algorithms are nature inspired. They adopt 

mechanisms found in biological systems such as colonies of ants [45] and bees [69], flocks of 

birds [88] or immune systems [32]. When no inspiration is found in nature, the task of finding 

an appropriate set of rules for the agents becomes more difficult, because the emergent 

behavior is often surprising and counterintuitive. Therefore, the design of an agent-based 

algorithm is frequently a trial-and-error process that could benefit from the help provided by a 

software tool. 

While ABMS offers mainly qualitative insights, agent-based problem solving is concerned 

with producing high performance results in terms of both solution quality and running time. 

Turning a proof-of-concept simulation into a state-of-the-art implementation for solving a 

real-world problem is a very tedious task, for which ABMS software does not typically 

provide support. Since currently no tools are offering assistance with this task, we have 

developed AgSysLib in order to help algorithm designers and engineers in implementing 

agent-based solutions for complex problems. 

A.1. The AgSysLib framework and library 

AgSysLib is both a framework and a library. It is implemented in Java and it is available as an 

open source project at http://agsyslib.sourceforge.net/. AgSysLib offers an API (Application 

Programming Interface) that should be implemented by any agent-based algorithm and it 

provides a set of utility classes that help performing various tasks associated with agent-based 

http://agsyslib.sourceforge.net/


Emergent Phenomena in Agent-Based Systems 

97 

problem solving. For many of the interfaces specified by the API, AgSysLib offers default 

implementations or abstract classes that can be easily instantiated, extended and customized. 

AgSysLib features a component-based architecture, which permits to build algorithms in a 

modular way and facilitates the experimentation and analysis of different variants of an 

algorithm. A new variant of an algorithm can be obtained by simply replacing a particular 

component of a base implementation with another component. AgSysLib also allows 

executing batches of runs, in order to apply repeatedly an algorithm to the same problem, to 

different problems, or using different parameter values. 

As mentioned before, currently available ABMS software packages offer many features that 

are also useful for agent-based problem solving. AgSysLib does not try to provide yet another 

implementation of these features. Instead, it is concerned with those aspects of designing, 

implementing and tuning of agent-based algorithms that are not covered by ABMS software. 

However, in order to give users the possibility to still benefit from features available in 

ABMS software, AgSysLib can act as a wrapper for such libraries. This way, AgSysLib can 

transform an ABMS package into a tool able to assist in agent-based problem solving. 

A plethora of ABMS packages has been developed in the last years, differing in their 

purposes and capabilities. In a recent survey, Allan [2] discusses 31 of the most commonly 

used toolkits for agent-based modeling and simulation, while in another survey, Nikolai and 

Madey [87] consider 53 such toolkits. AgSysLib is able to wrap around many of these 

packages, but in its default configuration, it integrates the MASON library. MASON (Multi-

Agent Simulator of Neighborhoods) [79] is a discrete-event multi-agent simulation 

environment implemented in Java, allowing models with a large number of agents to be 

executed fast a large number of times. Some of its main features include: 

 checkpointing – simulations can be serialized to disk. A serialized simulation can 

be later recovered with or without visualization, and it can be migrated on a 

different platform. 

 model / view decoupling – models are completely independent of their 

visualizations. Different types of visualizations can be defined for the same model 

and they can be dynamically added and removed. 

 media – various 2D and 3D visualizations, charts and graphs are available, with 

the possibility to save them as snapshots (in PNG format) or as Quicktime movies. 

 duplicability – MASON simulations are able to produce identical results across 

different platforms. 

 high quality random number generator – many agent-based algorithm are 

stochastic and they need a robust random number generator in order to produce 

valid results. MASON provides an efficient implementation of Mersenne 

Twister [81], which is a high quality random number generator. 

A.2. Agent-based problem solving with AgSysLib 

In this section, we identify a series of issues related to agent-based problem solving and we 

show how AgSysLib can assist in overcoming them. We introduce first a simple problem that 

will help us illustrate the use of AgSysLib. 

A.2.1. The “Strange Collisions” problem 

The problem considers a number of particles in a two-dimensional universe represented as a 

toroidal grid. These particles move horizontally, vertically or diagonally and they randomly 

change their direction from time to time. The time is discrete and at each step, each particle 
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moves one position in its current direction. At start, all particles have the same initial energy 

E0. When two or more particles collide, their energies multiply according to the number of 

particles involved in the collision. In the absence of collisions, the energy of a particle varies 

in time according to a linear function. We let the universe evolve for 1000 steps and then we 

count the number of particles with energies in the interval [0.5∙E0, 1.5∙E0]. A pseudocode 

description of this scenario is given below: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

foreach agent do 

 pos[agent] ← random position 

 dir[agent] ← random direction 

 energy[agent] ← E0 

end foreach 

for step = 1 .. 1000 do 

 foreach agent do 

  pos[agent] ← move one position according to dir[agent] 

  with probability p: dir[agent] ← random direction 

  k ← total number of agents at pos[agent] 

  if k > 1 then 

   energy[agent] ← k * energy[agent] 

  else 

   energy[agent] ← a + b * energy[agent] 

  end if 

 end foreach 

end for 

count ← │{agent | energy[agent]   [0.5∙E0, 1.5∙E0]}│ 

Fig. A.1. Pseudocode of the “strange collisions” problem. 

For a given initial energy E0, a given dimension of the toroidal grid, a given number of 

particles and a given probability   of changing the move direction (line 9), the problem 

consists in finding the coefficients   and   (line 14) that maximize the value of       (line 

18). In order to exclude some trivial solutions (such as a=0.5∙E0, b=0) and for exemplification 

purposes, we add the constraints: a   [-10, 10], b   [0.7, 1.2]. 

This is not a real-world problem and the law governing the modification of energy during 

collisions (line 12) bears no similarity with the laws governing real physical systems (hence 

the name ―strange collisions‖). However, this simple problem allows us to exemplify the 

difficulties encountered in solving real-world problems and to illustrate the use of AgSysLib 

in order to overcome them. 

The source code of the classes implementing the universe described by this problem, along 

with all other classes and configuration files mentioned in this paper, is available in the 

AgSysLib package. In the next paragraphs, we present only fragments of code or 

configuration necessary to understand the working of AgSysLib. 

A.2.2. Configuration 

Agent-based problem solving is typically a trial-and-error process requiring experimentation 

at various levels. One type of experiments involves assessing different variants of an 

algorithm. Frequently, switching to a new algorithm variant is achieved by commenting out 

portions of the original code and replacing them with new code, or by using flags in various 

parts of the program in order to activate the portions of code corresponding to the given 

algorithm variant. Such a practice clutters the source code, making it hard to read and to 

maintain. A component-based architecture allows a clear separation of the portions of code 
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specific to each algorithm variant, but it usually still requires some changes in the original 

code, in order to specify which component should be used. AgSysLib allows specifying all 

components of an agent-based system in a configuration file. This way, no code changes or 

additional flags are needed in order to switch between different algorithm variants. 

Another type of experiments involves comparing the results obtained by a given algorithm 

with different sets of parameters or even with different formulas. If parameter values or 

algorithm formulas are hard-coded into the program, this leads again to code cluttering. 

Therefore, AgSysLib provides a large set of utility functions for reading various types of 

values and lists of values, as well as mathematical formulas from a configuration file. 

Moreover, AgSysLib allows providing lists of values for parameters and executing batches of 

runs for each combination of these parameter values. Finally, it is possible to specify in the 

configuration file that the value of a parameter should be computed based on a given formula 

using the values of other parameters. 

In order to exemplify the use of configuration files with AgSysLib, let us consider that we 

already have implemented the classes needed to emulate the ―strange collisions‖ problem and 

we want to configure a universe consisting of 100 particles with the initial energy E0=100, 

moving on a 50 x 50 toroidal grid and having at each step a probability of 0.03 to change their 

direction. For our first experiment we consider that in the absence of collisions, the energy of 

a particle changes according to the formula: 7.77 + 0.77 * energy. The corresponding 

configuration file is presented below: 

initializer.class = net.sourceforge.agsyslib.collision.ParticleSystemInitializer 
system.evolution.class = 
net.sourceforge.agsyslib.collision.ParticleSystemEvolution 
maxTickCount = 1000 
gridWidth = 50 
gridHeight = 50 
particleCount = 100 
normalEnergy = 100 
directionChangeProbability = 0.03 
energyFormula = 7.7 + 0.77 * energy 

Fig. A.2. AgSysLib configuration file (variant 1). 

An AgSysLib configuration file is a Java properties file containing entries for at least the 

following two mandatory properties: initializer.class and system.evolution.class. These 

properties specify the names of the Java classes implementing two high-level interfaces of the 

AgSysLib API: Initializer and AgentSystemEvolution. The Initializer interface has a single, 

parameterless method, called getNextAgentSystem, which is called before starting a new run 

in a batch, in order to retrieve the agent-based system for the new run. In the case of our 

―strange collisions‖ problem, this agent-based system is represented by the universe of the 

colliding particles. The AgentSystemEvolution interface declares methods that should 

implement the actions performed at the beginning and end of each run in a batch, and at the 

beginning, at the end and during each step in a run. It also declares a method that should 

implement the termination condition of a run. For both interfaces, AgSysLib offers abstract 

methods implementing the base functionality usually needed by any concrete implementation. 

Instances of the classes declared in the configuration file for the two interfaces mentioned 

before are created through Java reflection. Since this operation is done only once, at program 

start, it has no impact on the performance of the application. 
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In its basic formulation, the ―strange collisions‖ problem specifies that the result is obtained 

after a number of 1000 steps in the evolution of the universe. However, as observed in Fig. 

A.2, we do not hard code this number in our algorithm. Instead, we make it configurable by 

means of the parameter maxTickCount, in order to be able to generalize the problem for an 

arbitrary number of steps. Similarly, we do not hard code the rule governing the energy 

modification in the absence of collision as a linear function. We offer instead the possibility to 

specify a formula for the energy modification rule, in order to allow using more complex, 

non-linear functions. This way, we are able to experiment with any formula that can be 

expressed using the functions provided by java.lang.Math, without needing to make changes 

in our code. A few such possible formulas are given for exemplification below: 

energyFormula = 100 - log(1 + energy) 
energyFormula = 30 + 40 * exp(1 + 1 / energy) 
energyFormula = 70 - 20 * cos(sqrt(abs(100 - energy))) 
 

A number of other features related with parameters and formulas in configuration files are 

presented in subsection A.2.4, where we also describe the AgSysLib utility classes and 

methods used to retrieve the associated values, and we provide technical details about their 

implementation. 

A.2.3. Listeners 

During experimentation with an agent-based algorithm, it is frequently necessary to inspect 

the evolution of various quantities handled by the application, or aggregate values of them, in 

order to gain insight about the behavior emerging in the system. Similar information is 

required during tuning and debugging activities. The statements needed to output this 

information usually clutter the source code. Moreover, they may affect the performance of the 

algorithm, although they are usually no longer needed in the final application. The AgSysLib 

API introduces evolution listeners in order to allow keeping these statements separated from 

the main source code, while also permitting the quick activation or deactivation of these 

portions of code. An evolution listener provides methods that can be triggered by the 

following events: 

- the start of the processing for a batch of runs 

- the end of the processing for a batch of runs 

- the start of the processing for a run in a batch 

- the end of the processing for a run in a batch 

- the start of an evolution step in a run 

- the end of an evolution step in a run 

- the end of the operations performed by an agent during a step. 

 

The evolution listeners active during the execution of an application can be specified in a 

configuration file. This way, there is no need to make changes in the application code in order 

to add or remove a listener. In Fig. A.3, we show how a listener can be used in our ―strange 

collisions‖ application. Differences from the configuration file presented in Fig. A.2 are in 

boldface. 

The purpose of the listener used in this example is to aggregate the results obtained by the 

algorithm in a batch of runs. It writes its output to a separate file, in order to keep it apart from 

the application’s standard output. The size of the batch is specified by the parameter repeat. 



Emergent Phenomena in Agent-Based Systems 

101 

initializer.class = net.sourceforge.agsyslib.collision.ParticleSystemInitializer 
system.evolution.class = net.sourceforge.agsyslib.collision.ParticleSystemEvolution 
system.evolution.listener.class.1 = \ 

net.sourceforge.agsyslib.collision.NormalEnergyCountListener 
result.file = result.txt 
repeat = 50 
seed = 1234567654321  
maxTickCount = 1000 
gridWidth = 50 
gridHeight = 50 
particleCount = 100 
normalEnergy = 100 
directionChangeProbability = 0.03 
energyFormula = 7.7 + 0.77 * energy 

Fig. A.3. AgSysLib configuration file (variant 2). 

The application uses a stochastic algorithm, because the particles are initialized with random 

positions and directions and they may also randomly change their direction with a given 

probability. Therefore, the results differ from run to run and they should be averaged over a 

number of runs in order to be statistically meaningful. By default, AgSysLib’s random 

generator is initialized with a seed based on the current system time, but a particular value for 

the seed can be specified in the configuration file, in order to make the experiments 

duplicable. Running the algorithm with the configuration from Fig. A.3, produces the 

following output: 

energyFormula: 7.7 + 0.77 * energy, averageCount:  12.66 (12.66 %), 
bestCount:  27, worstCount:   5, stdev: 4.27, particleCount: 100 

A.2.4. Experimentation and tuning 

As mentioned in subsection A.2.2, AgSysLib allows specifying lists of values in the 

configuration files, in order to run an algorithm with all possible combinations of these 

parameter values. An example of using value lists is given in Fig. A.4, where differences from 

the configuration file presented in Fig. A.3 are in boldface. In the configuration from Fig. A.4, 

value lists are specified for parameters prm.a and prm.b. The parameter names must be 

prefixed with the text ―value.list‖ followed by a number indicating the order in which the 

value lists have to be handled. For each of the 5 x 6 = 30 possible combination of values for 

the parameters prm.a and prm.b, AgSysLib will execute a batch of 50 runs and it will report 

the aggregate results of each batch, by means of the configured listener. 
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initializer.class = net.sourceforge.agsyslib.collision.ParticleSystemInitializer 
system.evolution.class = net.sourceforge.agsyslib.collision.ParticleSystemEvolution 
system.evolution.listener.class.1 = \ 

net.sourceforge.agsyslib.collision.NormalEnergyCountListener 
result.file = result.txt 
repeat = 50 
seed = 1234567654321  
maxTickCount = 1000 
gridWidth = 50 
gridHeight = 50 
particleCount = 100 
normalEnergy = 100 
directionChangeProbability = 0.03 
value.list.1.prm.a = -10, -5, 0, 5, 10 
value.list.2.prm.b = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2   
energyFormula = a + b * energy 

Fig. A.4. AgSysLib configuration file (variant 3). 

AgSysLib reads the content of a configuration file in a variable of type 

MultivaluedProperties. This utility class provides methods for accessing parameters of 

various types, with values that can be simple, computed or taken from a list. Let us consider 

that the configuration file from Fig. A.4 has been read in a variable named props. Then, the 

value of the particleCount parameter can be retrieved using: props.getInt("particleCount"). 
Similarly, the value of the parameter prm.a for the current batch is given by: 

props.getDouble("prm.a"). 

AgSysLib also offers a number of utility classes that permit the evaluation of mathematical 

formulas appearing in a configuration file. The code needed to create an evaluator object for 

the energyFormula from Fig. A.4 is: 

String energyFormula = props.get("energyFormula"); 
this.energyEvaluator = new ExtPropsEvaluatorDoubles( 

props, energyFormula, "prm", "energy"); 

In the above code, the constructor is instructed to create an evaluator that retrieves the 

coefficients of its formula from parameters prefixed with ―prm‖ and accepts an argument 

called ―energy‖. It can be observed in Fig. A.4 that in the energyFormula, the parameters are 

referred simply as a and b, but they should be prefixed with ―prm‖ in the entry lines 

specifying their values. 

The energyEvaluator can be used then to update the energy of a particle after a move not 

involving a collision: 

double updatedEnergy = this.energyEvaluator.evaluate(energy); 

AgSysLib does not use an interpreter to evaluate formulas, because this would have a 

negative impact on the performance of an algorithm. Instead, it generates on-the-fly a Java 

class for each formula and creates an instance of it. The dynamically generated class contains 

a method that accepts as arguments the variables present in the given formula and returns the 

value corresponding to its evaluation. The on-the-fly class generation takes place only once, 

at program start. This way, the evaluation of a formula is performed as fast as if it would have 

been hard-coded in the algorithm code. In a series of experiments aimed to assess the 
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performance of our evaluator implementation, we have determined that the time needed to 

evaluate a formula using a Groovy interpreter is in average about 15 times longer than that 

needed by our evaluator. 

AgSysLib also uses evaluators in order to obtain the values of computed parameters. These 

are parameters whose values depend on the values of other parameters. Examples of 

computed parameters are given later in this subsection. 

Comparing the aggregate results obtained for each batch of 50 runs executed by AgSysLib 

using the configuration presented in Fig. A.4, it is possible to select the best performing 

combination and use it as a solution to our problem. While solutions obtained using this 

approach are of reasonably good quality, they are usually not close to the optimum solution. 

In order to obtain high-quality solutions, a more elaborated tuning procedure should be 

applied. One such tuning procedure offered by AgSysLib is based on genetic algorithms and 

it uses the JGAP library [82]. An example configuration file for this type of tuning is shown 

in Fig. A.5, where the differences from the configuration file presented in Fig. A.4 are in 

boldface. 

initializer.class = net.sourceforge.agsyslib.collision.ParticleSystemInitializer 
system.evolution.class = net.sourceforge.agsyslib.collision.ParticleSystemEvolution 
system.evolution.listener.class.1 = \ 

net.sourceforge.agsyslib.collision.NormalEnergyCountListener 
result.file = result.txt 
repeat = 50 
seed = 1234567654321  
maxTickCount = 1000 
gridWidth = 50 
gridHeight = 50 
particleCount = 100 
normalEnergy = 100 
directionChangeProbability = 0.03 
fitness.provider.class = net.sourceforge.agsyslib.collision.ParticleFitnessProvider 
ga.max.evolutions = 10 
ga.population.size = 1000 
gene.0 = prm.a, double, -10, 10  
gene.1 = prm.b, double, 0.7, 1.2 
energyFormula = a + b * energy 

Fig. A.5. AgSysLib configuration file (variant 4). 

Instead of using lists of values, the tuning configuration specifies value ranges for the 

parameters to be tuned. Each parameter is associated with a gene. In our example, the gene 

associated with the prm.a parameter has alleles of type double, with values between -10 and 

10. Similarly, the gene associated with the prm.b parameter has alleles of type double, with 

values between 0.7 and 1.2. The configuration also instructs the genetic algorithm to use a 

population of 1000 potential solutions and to evolve for 10 generations. 

There is only one interface provided by the AgSysLib API that must be implemented in order 

to perform the genetic algorithm tuning. This is the FitnessProvider interface, which offers 

two methods: getCurrentResult and getFitness. The first one is called at the end of each run 

and should return a value representing the result of the current run. The second one is called at 

the end of each batch of runs and it should return a fitness value computed by aggregating the 

results of all runs in the given batch. 
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In our example, the result of a run is the number of particles having energy in the range 

[0.5∙E0, 1.5∙E0] at the end of this run. The fitness of a batch is computed as the average 

number of particles with energy in this ―normal‖ range. The implementation of the methods 

declared by the FitnessProvider interface is given below: 

public double getCurrentResult(AgentSystem system) { 
return ((ParticleSystem) system).getNormalEnergyCount(); 

} 
 
public double getFitness(AgentSystem system, double[] results) { 
 double fitness = 0; 
 for(double result : results) { 
  fitness += result; 
 } 
 return fitness / results.length; 
} 

Using the configuration from Fig. A.5, AgSysLib has run the genetic algorithm for 10 

generations and it has found the following combination of parameters: 

prm.a=9.748942613581587; prm.b=0.8064227099345613. We have then adjusted the 

configuration from Fig. A.3 based on these parameter values and AgSysLib has produced the 

following result: 

energyFormula: 9.748942613581587 + 0.8064227099345613 * energy, 
  averageCount:  96.40 (96.40 %), bestCount: 100, worstCount:  89,  
  stdev: 2.97, particleCount: 100 

The result above shows that the tuning procedure has been able to find a high-quality solution 

to our problem. 

We change now the configuration from Fig. A.5, in order to instruct the tuning procedure to 

take into consideration only values having up to two decimal points while searching for a 

good combination of parameters. This example also allows us to show the use of computed 

parameter values. The fragment of the configuration file relevant for the tuning procedure is 

shown in Fig. A.6, where differences from the configuration file presented in Fig. A.5 are in 

boldface. 

fitness.provider.class = net.sourceforge.agsyslib.collision.ParticleFitnessProvider 
ga.max.evolutions = 10 
ga.population.size = 1000 
gene.0 = xa, int, -1000, 1000  
gene.1 = xb, int, 70, 120 
value.computed.1.prm.a = xa / 100.0 
value.computed.2.prm.b = xb / 100.0 
energyFormula = a + b * energy 

Fig. A.6. Fragment of an AgSysLib configuration file (variant 5). 

In this case, the alleles have integer values (xa and xb), representing the value of their 

corresponding parameter multiplied by 100. The parameters prm.a and prm.b are then 

computed based on the values of xa and xb. Using the configuration from Fig. A.6, AgSysLib 

has found the following combination of parameters: prm.a=9.5; prm.b=0.81. We have then 
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adjusted the configuration from Fig. A.3 based on these parameter values and AgSysLib has 

produced the following result: 

energyFormula: 9.5 + 0.81 * energy, averageCount:  96.40 (96.40 %), 
bestCount: 100, worstCount:  89, stdev: 2.97, particleCount: 100 

It can be observed that this solution leads to the same average number of particles with energy 

in the required range as the solution found using the configuration from Fig. A.5, but the 

current solution uses more accessible parameter values. 

The question arises whether the above solution also produces high-quality results for other 

dimensions of the toroidal grid. In Fig. A.7 we show a configuration file used to experiment 

with square grids having sizes between 20 and 100. Differences from the configuration file 

presented in Fig. A.3 are in boldface. The widths of the grid are given as a list of values, 

while the grid height is a computed parameter with a value identical to that of the grid width. 

The number of particles is also a computed parameter, its value depending on the grid 

dimensions. 

initializer.class = net.sourceforge.agsyslib.collision.ParticleSystemInitializer 
system.evolution.class = net.sourceforge.agsyslib.collision.ParticleSystemEvolution 
system.evolution.listener.class.1 = \ 

net.sourceforge.agsyslib.collision.NormalEnergyCountListener 
result.file = result.txt 
repeat = 50 
seed = 1234567654321  
maxTickCount = 1000 
value.list.1.gridWidth = 20, 30, 40, 50, 60, 70, 80, 90, 100 
value.computed.1.gridHeight = gridWidth 
value.computed.2.particleCount = round(gridWidth * gridHeight / 25) 
normalEnergy = 100 
directionChangeProbability = 0.03 
energyFormula = 9.5 + 0.81 * energy 

Fig. A.7. AgSysLib configuration file (variant 6). 

The results obtained by AgSysLib using the above configuration are presented in Table A.1. It 

can be observed that the combination of parameters found by the tuning procedure produces 

high-quality results for all considered grid sizes. 

Table A.1. Results of the “strange collisions” problem for different grid sizes. 

grid size 
number of 

particles 

average number of particles with 

energy in the required range 

20 x 20 16 14.98  (93.63 %) 

30 x 30 36  34.42  (95.61 %) 

40 x 40 64  61.50  (96.09 %) 

50 x 50 100  95.80  (95.80 %) 

60 x 60 144 138.90  (96.46 %) 

70 x 70 196 187.86  (95.85 %) 

80 x 80 256 246.26  (96.20 %) 

90 x 90 324 311.76  (96.22 %) 

100 x 100 400 385.08  (96.27 %) 
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The genetic algorithm tuning is able to find good combinations of parameters for many 

problems. However, in some cases, more sophisticated tuning procedures are required in 

order to obtain high-quality results. A number of software packages for automatic parameter 

configuration are currently available, for example: ParamILS [59], F-Race [14] or SPOT [6]. 

AgSysLib enables an easy integration with these tools, thus offering many possibilities to tune 

the performance of an algorithm. 

A.2.5. Debugging 

Agent-based applications are usually very adaptive, thus being the best choice for solving 

real-world problems in complex, dynamic environments. However, detecting flaws in such 

applications is more difficult, because in many cases, even a buggy implementation is able to 

solve the problem, although not as efficient as possible. In addition, when designing a new 

agent-based heuristic, one does not know in advance how efficient an implementation could 

be, therefore bugs that only affects the algorithm performance may remain unnoticed, since 

the developer has only limited knowledge about what to expect from the algorithm. Because 

many agent-based algorithms are stochastic, reproducing an unusual behavior may also prove 

difficult. 

Investigating problems related to agent-based applications often requires a detailed analysis of 

the dynamic of the internal program state. AgSysLib offers a GUI component that allows 

connecting via RMI (Remote Method Invocation) to a running application and interrogating, 

watching or changing its internal state. This GUI component is called the remote control 

console. Since it can establish a connection not only at program start-up, but at any moment, 

the remote control console can be also used to investigate unexpected behavior appearing in a 

program not actually under debugging. 

Access to the internal state of a program is provided by means of scripts written in the Groovy 

programming language. Therefore, it is possible to make complex queries on the internal 

program state or to make multiple state changes, such as altering in some way the state of 

each agent, by using only a few lines of code. The scripts can be also registered, in order to be 

executed at the end of each step. In addition, the results of internal state queries can be used to 

set complex conditional breakpoints. 

We use the ―strange collisions‖ problem to illustrate the working of the remote control 

console. Suppose we want to check whether the combination of parameters found by the 

tuning procedure still produces high-quality results after a large number of steps. Therefore, 

we adjust the energyFormula in the configuration from Fig. A.3 and we set maxTickCount to a 

large value, for example 1000000. Since in this case the execution needs a long time to finish, 

we may want to check from time to time how the system evolves. To this end, we start the 

remote control console and query the internal program state, as shown in Fig. A.8. 

After introducing the script code in the upper text area and pressing the ―Evaluate‖ button, the 

results are displayed in the lower text area of the console. Scripts can be also saved to and 

loaded from a file. We can change the script in order to log the output into a file and register it 

for execution. By pressing the ―Run‖ button, the information queried by the string is written 

to the log file at the end of each step. 
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Fig. A.8. The remote control console. 

Suppose now that we want to interrupt the execution of the program if the energy of a particle 

exceeds a given value, for example 1000. To do this, we add the following statements to our 

script, in order to set a conditional breakpoint: 

if(maxEnergy > 1000) { 
    control.pause() 
} 

When the breakpoint condition is satisfied, the program is interrupted and its internal state can 

be queried in the remote control console. 

A.3. Conclusions 

We have identified a number of issues involved in the process of solving a real-world 

problem using agent-based techniques and we have introduced AgSysLib, a software tool 

developed by us in order to overcome these issues. AgSysLib is both a framework and a 

library and it facilitates many tasks related with agent-based problem solving. It can act as a 

wrapper around existing ABMS software packages, thus seamless integrating their 

capabilities. 

The various examples of AgSysLib usage presented in this paper show that it is a valuable 

tool for all people involved in agent-based problem solving. 
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