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1. INTRODUCTION 

1.1. Motivation 

Emergence is one of the most intriguing phenomena exhibited by complex systems. It consists 

in the appearance of system-level features that do not characterize the elements composing the 

considered system. Therefore, these new features are sometimes described as unexpected or 

surprising. An emergent phenomenon occurs when the system components are governed by 

simple rules, but the macroscopic behavior resulting from their interaction is complex. In 

many cases it is very difficult or even impossible to predict this behavior by analyzing the 

system components. Often, the concept of emergence is summarized by the phrase “the whole 

is greater than the sum of its parts”. Emergence is exhibited by decentralized systems having 

no global control structure, where the observed behavior is a consequence of the local 

interactions between independent entities, generically called agents. 

A classic example of emergence is offered by a colony of social insects, such as ants, termites 

or bees. Such a colony can be seen as a highly adaptive macro-organism, although each 

individual is an unintelligent insect, which uses only simple rules to respond to stimuli in the 

environment. Some species of termites are able to build mounds reaching a height of several 

meters. Due to a complicated system of tunnels and chambers that provides passive cooling, 

the temperature inside these mounds remains almost constant, regardless of the outside 

temperature. Architects and engineers have taken inspiration from this model in order to 

design buildings that regulate the temperature and humidity using only natural means [1]. 

However, a termite mound is not designed by architects and the building process is not 

coordinated by engineers. Each termite acts according to a simple algorithm, but at the colony 

level the result is simply amazing. 

Emergent phenomena can be observed in a large variety of systems. Examples include the 

formation of ripple patterns in a sand dune, the occurrence of traffic jams, the price setting in 

a decentralized market, the growth of a snowflake or the formation of a hurricane. However, 

the most striking instances of emergence can be found in biological systems: a living cell 

emerges from the interaction of its constituent molecules; the immune system, which is able 

to protect the organism against diseases, emerges from the combined action of several types 

of lymphocytes; brain cells self-organize into a complex neural network, which produces 

intelligence and even consciousness. 

All matter in our universe is composed of elementary particles. Therefore, even the most 

complex phenomena are ultimately the result of the interaction of a few types of elementary 

particles. How is this possible? How can these elementary particles self-organize into 

increasingly higher structures? How can life emerge from inanimate matter? How can goal-

directed behavior emerge from particles that have no goals? And how can intelligence and 

consciousness emerge from particles that possess no intelligence?  

While these questions are significant enough to justify the study of emergence, there is 

another driving force behind the research presented in this thesis: the problem of engineering 

emergent behavior. Due to the growing number of decentralized, agent-based applications, 

this represents an important issue, for which no generally accepted methodology is currently 

available. Traditional software engineering does not take advantage of the emergent behavior 

exhibited by agent-based applications. Most agent-oriented methodologies regard emergent 

phenomena as undesired and try to suppress the “unexpected” behavior by constraining the 

actions of individual agents. Of course, it would be preferable to design applications that 
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make use of the emergent behavior instead of avoiding it, but this is a difficult task, taking 

into consideration the apparent unpredictability of emergent phenomena.  

In the last years, researchers have taken inspiration from nature in order to design algorithms 

that produce certain desired emergent behavior. Many natural systems are able to adapt to 

dynamical environments and can perform efficiently certain tasks for which no feasible 

conventional algorithms are known. It is therefore tempting to mimic such natural systems in 

order to obtain a similar behavior. An example is offered by Ant Colony Optimization [11], 

which is a heuristic method inspired by ant foraging. In their way back from a food source, 

ants deposit small amounts of chemicals called pheromones. These pheromones can be sensed 

by other foragers, which are more likely to follow the trails having a stronger concentration of 

pheromones. This simple foraging strategy leads eventually to the discovery of the shortest 

path between the nest and the food source. In other words, the shortest path emerges from the 

interaction between ants and their environment. Ant Colony Optimization is inspired by this 

emergent phenomenon. It has been successfully applied to many combinatorial optimization 

problems and it has been also adapted for continuous optimization problems. 

Although nature is a powerful source of inspiration, it is not always possible to find a natural 

system that exhibits a particular emergent behavior. Moreover, it is not sufficient to identify 

an appropriate natural system, but it is also necessary to understand its working, in order to 

mimic it. Therefore, an important question is how to design an agent-based system that 

exhibits a desired emergent behavior, when no source of inspiration can be found in nature. In 

this thesis, we explore both theoretical and practical approaches to tackle this problem.  

We are mainly interested in engineering complex, adaptive behavior, similar to that exhibited 

by living organisms, because it is very difficult to obtain such behavior using traditional 

software engineering techniques. A main hypothesis that guides our research is that in order 

to engineer such behavior, it is preferable to focus on heterogeneous systems with simple 

agents than to consider homogenous systems with complex agents. 

1.2. Original contributions 

There are three main contributions of this thesis: 

 A mathematical formalism of emergence in agent-based systems. Emergent 

phenomena are often described as unexpected, surprising or hard to predict. Therefore, 

many definitions of emergence involve a certain degree of subjectivity. Other 

definitions give a rigorous description of the properties characterizing emergent 

phenomena, but they may not capture all aspects of emergence, or they may require 

very complex computations in order to decide whether or not a certain behavior is 

emergent. We take a different view on emergence, which allows us to provide a 

definition that is both objective and suitable for practical purposes. Our formalism is 

based on the idea that a definition of emergent phenomena should only be concerned 

with how these phenomena arise and it should not address the properties of the 

emergent phenomena.  

 MetFrEm – a meta-framework for the study of emergence. In order to study 

emergent phenomena in a rigorous manner, we introduce a meta-framework called 

MetFrEm, which allows the modeling of various algorithmic frameworks comprising 

a population of interacting agents. MetFrEm favors the modeling of highly 

heterogeneous decentralized systems with agents that follow simple rules. 

 The Consultant-Guided Search (CGS) metaheuristic. We propose a swarm 

intelligence metaheuristic that makes use of the emergent behavior exhibited by a 

population of interacting virtual persons. We apply this metaheuristic to several 
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classes of combinatorial optimization problems and report the experimental results, 

which show that CGS is able to achieve state-of-the-art performance: 

 the Traveling Salesman Problem (TSP) - Our experiments with and without 

local search show that CGS clearly outperforms the two best performing Ant 

Colony Optimization algorithms for the TSP: Ant Colony System [10] and 

MAX-MIN Ant System [32]. 

 the Quadratic Assignment Problem (QAP) - Our CGS algorithm for the QAP is 

significantly better than MAX-MIN Ant System [31], which is currently the 

best Ant Colony Optmization algorithm for this class of problems. 

 the Generalized Traveling Salesman Problem (GTSP) - Computational results 

show that there is no statistical significant difference between our algorithm 

and the memetic algorithm of Gutin and Karapetyan [12], which is currently 

the best published heuristic for the GTSP. 

In addition, the work presented in this thesis has led to the creation of three open source 

software packages, which are of practical importance for the research community: 

 AgSysLib (http://agsyslib.sourceforge.net/). AgSysLib is a software tool for agent-

based problem solving. It assists users in all aspects related to the design, 

implementation, debugging and tuning of agent-based algorithms. AgSysLib is both a 

framework and a library and it features a component-based architecture, which permits 

to build algorithms in a modular way and facilitates the experimentation and analysis 

of different variants of an algorithm. 

 SwarmTSP (http://swarmtsp.sourceforge.net/). SwarmTSP is a Java library of swarm 

intelligence algorithms for the Traveling Salesman Problem (TSP) and for the 

Generalized Traveling Salesman Problem (GTSP). It implements all Consultant-

Guided Search algorithms for the TSP and GTSP proposed in this thesis, as well as 

several Ant Colony Optimization algorithms: Ant System, Ant Colony System, MAX-

MIN Ant System, Elitist Ant System, Rank-Based Ant System and Best-Worst Ant 

System. 

 SwarmQAP (http://swarmqap.sourceforge.net/). SwarmQAP is a Java library of 

swarm intelligence algorithms for the Quadratic Assignment Problem (QAP). It 

implements all Consultant-Guided Search algorithms for the QAP proposed in this 

thesis, as well as the MAX-MIN Ant System algorithm. 

1.3. Scientific publications in connection with this thesis 

Iordache, S. Consultant-Guided Search - A New Metaheuristic for Combinatorial 

Optimization Problems. In: GECCO 2010: Proceedings of the 12th Genetic and Evolutionary 

Computation Conference, Portland, Oregon, USA, ACM Press, 2010, pp. 225-232 [19] 

(nominated for best paper award). 

Iordache, S. Consultant-Guided Search Algorithms with Local Search for the Traveling 

Salesman Problem. In: 11th International Conference Parallel Problem Solving from Nature - 

PPSN XI. LNCS 6239, Krakow, Poland, Springer, 2010, pp. 81-90 [17]. 

Iordache, S. Consultant-Guided Search Algorithms for the Quadratic Assignment. In: Hybrid 

Metaheuristics - 7th International Workshop, HM 2010. LNCS 6373, Vienna, Austria. 

Springer, 2010, pp. 148-159 [15]. 

Iordache, S., Moldoveanu, F. AgSysLib - A Software Tool for Agent-Based Problem Solving. 

In: Scientific Bulletin of "Politehnica" University of Bucharest, C Series (Electrical 

Engineering), vol. 73, issue 2, ISSN 1454-234x, 2011 [20]. 

http://agsyslib.sourceforge.net/
http://swarmtsp.sourceforge.net/
http://swarmqap.sourceforge.net/
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Iordache, S. A Framework for the Study of the Emergence of Rules in Multiagent Systems, In: 

Katalinic, B. (Ed.), Proceedings of the 20th International DAAAM Symposium, Vienna, 

Austria, ISSN 1726-9679, 2009, pp, 1285-1286 [14]. 

Iordache, S., Pop, P.C. An Efficient Algorithm for the Generalized Traveling Salesman 

Problem. In: A. Quesada-Arencibia et al. (Eds.), Proceedings of the 13-th International 

Conference on Computer Aided Systems Theory (EUROCAST 2011), Las Palmas de Gran 

Canaria, Spain, ISBN: 978-84-693-9560-8, 2011, pp. 264-267 [21]. 

Iordache, S. Consultant-Guided Search algorithms for the quadratic assignment problem. In: 

GECCO 2010 companion: Proceedings of the 12th annual conference companion on Genetic 

and evolutionary computation. ACM Press, 2010, pp. 2089-2090 [16].  

Iordache, S. Consultant-Guided Search combined with local search for the traveling 

salesman problem. In: GECCO 2010 companion: Proceedings of the 12th annual conference 

companion on Genetic and evolutionary computation. ACM Press, 2010, pp. 2087-2088 [18]. 

Pop, P.C., Iordache, S. A Hybrid Heuristic Approach for Solving the Generalized Traveling 

Salesman Problem. In: GECCO 2011: Proceedings of the Genetic and Evolutionary 

Computation Conference, Dublin, Ireland, ACM Press, 2011 (accepted) [28]. 

1.4. Thesis outline 

Chapter 2 outlines the main concepts and techniques relevant to the content of this thesis. 

After a short introduction of agent-based systems, we present different aspects of the notion 

of emergence and we discuss several emergent phenomena exhibited by cellular automata. 

Then, we introduce Ant Colony Optimization, as an example of a problem solving technique 

that makes use of emergent behavior. 

In Chapter 3, we develop a mathematical formalism for the study of emergence, which puts 

emergence in an agent-oriented context, consistent with the frame imposed by the problem of 

engineering emergent behavior. 

In Chapter 4, we propose a meta-framework for the study of emergence, called MetFrEm, 

which can be used to describe various algorithmic frameworks comprising a population of 

interacting agents. The design goals of our meta-framework reflect the main objectives and 

hypotheses of this thesis. After an intuitive description of the concepts and structure of 

MetFrEm, we provide a formal description of this meta-framework. Then, we illustrate by 

means of a few case studies how various systems can be modeled in MetFrEm. 

In Chapter 5, we introduce Consultant-Guided Search, a new metaheuristic for combinatorial 

optimization problems, inspired by the possibility to view the interactions in MetFrEm from 

the perspective of clients that receive advice from consultants. We apply this metaheuristic to 

a few classes of problems (the traveling salesman problem, the quadratic assignment problem 

and the generalized traveling salesman problem) and we compare the results with those 

obtained by state-of-the-art algorithms. 

Appendix A describes AgSysLib, a software tool that we have developed in order to assist in 

agent-based problem solving. We identify the difficulties encountered during the design, 

implementation, debugging and tuning of a new agent-based algorithm and we show how this 

tool helps in overcoming them. AgSysLib is both a library and a framework and it has played 

a major role in the development of the algorithms presented in Chapter 5. 
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2. BACKGROUND 

2.1. Agent-based systems 

Put simply, an agent-based system is a system of interacting agents. Therefore, in order to 

define an agent-based system, it is necessary to clarify what is meant by the notion of agent. 

There is, however, no generally accepted definition for this term. Agent-based systems play a 

central role in various fields and, usually, the meaning ascribed to the term agent differs from 

field to field and even within the same field.  

Most research concerned with agent-based systems can be subsumed under the field of 

artificial intelligence. This is a vast research field and it is difficult to define the concept of 

agent in such a general context. However, Russel and Norvig [30] offer the following 

definition: “An agent is anything that can be viewed as perceiving its environment through 

sensors and acting upon that environment through effectors”. 

In the context of Agent-Based Modeling and Simulation (ABMS), Macal and North [24] 

consider that the defining characteristics of an agent are: 

 an agent is autonomous and self-directed. 

 an agent is modular or self-contained. 

 an agent is social, interacting with other agents. 

Most systems considered in ABMS are complex adaptive systems (CAS) [25]. These are 

systems that “change and reorganize their component parts to adapt themselves to the 

problems posed by their surroundings” [13]. In the context of CAS, “agents are semi-

autonomous units that seek to maximize their fitness by evolving over time” [8].  

A large number of definitions for the concept of agent have been offered in the field of 

multi-agent systems (MAS). They differ, sometimes significantly, in the characteristics 

ascribed to an agent. In general, these definitions impose more capabilities than in the case of 

ABMS and, frequently, the main abstraction used is that of an intelligent agent. 

Wooldridge [34] proposes the following definition: 

An agent is a computer system that is situated in some environment, and that is 

capable of autonomous action in this environment in order to meet its design 

objectives. 

In the absence of a generally accepted definition, it is necessary to specify what we mean by 

agent in the context of this thesis. Since we are mainly interested in the complex behavior that 

emerges from the interaction of agents governed by only simple rules, we need a definition 

that imposes very few restrictions on the agents. In our research, we regard as agents even 

very simple entities, such as the cells of a cellular automaton. The only requirement we 

impose to an agent is to act autonomously, that is, to decide by itself what actions to take, 

without receiving commands from an external entity. In chapter 3, we develop a formalism 

for the study of emergence, which allows us to give rigorous definitions for the major 

concepts related to agent-based systems. 
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2.2. Emergence 

Emergence consists in the appearance of system-level features that do not characterize the 

elements composing the considered system. Examples include the emergence of life from 

inanimate matter or the emergence of consciousness from the interaction of a large number of 

neurons. Another example is an ant colony, where pheromone trails corresponding to the 

shortest paths between nest and food sources emerge from the collective behavior of 

individual ants. 

Different people ascribe different meanings to this term, but, in general, they fall into two 

distinct classes: strong emergence and weak emergence. For Chalmers [4], a system exhibits 

strong emergence if a “high-level phenomenon arises from the low-level domain, but truths 

concerning that phenomenon are not deducible even in principle from truths in the low-level 

domain”. Consciousness is often presented as a potential instance of strong emergence. 

However, the possibility of strong emergence is a subject of debate, and most scientists reject 

this kind of emergence. Chalmers [4] considers that a system exhibits weak emergence if a 

“high-level phenomenon arises from the low-level domain, but truths concerning that 

phenomenon are unexpected given the principles governing the low-level domain”. 

In our research, we are interested in engineering emergent behavior, that is, in designing 

agent-based systems that produce certain desired behavior. In this context, we are mainly 

concerned with weak emergence, but we attach a broader meaning to this term, because, for 

our purposes, it is not relevant whether the exhibited behavior is perceived as unexpected or 

not. We are only concerned with the difficult task of finding sets of simple rules for agents, in 

order to obtain a desired system behavior. Our own definition of emergence is given in 

chapter 3, where we develop a mathematical formalism for the study of emergence in agent-

based systems. 

2.3. Cellular automata 

Emergent phenomena can be observed even in simple computational systems such as cellular 

automata. These are deterministic, discrete-time systems, characterized by only local 

interactions. The cells of a cellular automaton are placed on a regular grid. At each time step, 

the cells update simultaneously their state, based on a given rule. The number of possible 

states is finite and the update rule is the same for all cells. For a given cell, the update rule 

takes into consideration the state of a number of nearby cells. 

An infinite number of types of cellular automata can be obtained by combining different 

values for the factors that characterize a cellular automaton. Some of these factors are: 

 the number of dimensions: most frequently studied are one- and two-dimensional 

cellular automata, which can be visualized graphically in a natural way. 

 the number of states: the most simple cellular automata have only two states (usually 

denoted by 0 and 1), which can be represented graphically using two different colors 

(usually black and white). 

 the neighborhood: the cells taken into consideration by the update rule in order to 

determine the new state of a given cell constitute its neighborhood. If the update rule 

also takes into account the current state of the given cell, the neighborhood includes 

the cell itself. 

 the update rule: this is the function that computes the new state of a cell based on the 

current states of the cells in its neighborhood. The update rule is frequently 

represented in a tabular form. 
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 the cellular universe type: in the case of a finite grid, it is necessary to specify how to 

apply the update rule at the edges. One possibility is to consider that outside the grid 

exist virtual cells, which remain always in a constant given state. Another possibility 

is to consider a circular or toroidal arrangement of the cells. 

Elementary cellular automata are the simplest cellular automata. They have only two states 

(labeled 0 and 1) and the cellular universe is infinite, that is, the cells are arranged on a line 

that extends infinitely in both directions. The neighborhood of a cell is given by its two 

adjacent cells and by the cell itself. Although extremely simple, elementary cellular automata 

can exhibit complex behavior, and it has been proved [5] that one of the 256 possible 

elementary cellular automata is computation universal. 

An example of engineering emergent behavior with cellular automata is offered by Mitchell et 

al. [26], which use genetic algorithms that evolve a population of cellular automata in order to 

solve a particular problem.  

2.4. Ant colony optimization 

Emergent phenomena can be observed in many natural systems, and scientists often take 

inspiration from nature in order to design algorithms that make use of the emergent behavior 

exhibited by these systems. One example is offered by ant colony optimization (ACO), which 

takes inspiration from the behavior of foraging ants. 

In their way to a food source and back to the nest, ants deposit on the ground small amounts 

of chemicals called pheromones. These pheromones can be sensed by other foragers, which 

are more likely to follow the trails having a stronger concentration of pheromone. Although 

very simple, this foraging strategy proves to be very effective. The interactions between ants 

are mediated by pheromones. This indirect form of communication, where traces left in the 

environment by an individual influence the subsequent actions of other individuals or even of 

the individual itself, is called stigmergy [33]. ACO algorithms are based on the observation 

that a pheromone trail corresponding to the shortest path between the nest and the food source 

emerges from the stigmergic interactions of ants.  

The traveling salesman problem has been the first problem solved using this technique. ACO 

algorithms use a population of artificial ants, which mimic to some degree the behavior of real 

ants. Each artificial ant constructs at each iteration a solution to the problem. In order to avoid 

visiting a city more than once, each ant keeps a list of the nodes already visited in the current 

iteration. Usually, at the start of a new iteration each ant is placed on a randomly chosen city. 

At each construction step, an artificial ant has to decide which city to visit next. For this 

purpose, it uses a stochastic rule that takes into account the pheromone concentration on the 

arcs to the potential next cities, as well as some heuristic information. Most algorithms use as 

heuristic information the inverse of the distance to the potential next node. At the end of each 

iteration, the pheromone concentration on each arc is updated. The update rule is based on 

two factors that affect the pheromone concentration in the case of real ants: the pheromone 

evaporation and the pheromone accumulation on the traversed paths. 

The first ACO algorithm, called Ant System, has been introduced by Marco Dorigo [9]. Many 

extensions of this algorithm have been proposed, among which Ant Colony System [10] and 

MAX-MIN Ant System [32] are currently the best-performing. 

 



Emergent Phenomena in Agent-Based Systems 

9 

3. A DIFFERENT VIEW ON EMERGENCE 

The research presented in this thesis is driven by the issue of engineering emergent behavior. 

This is a difficult problem, because the mechanisms behind emergence are not completely 

understood and emergent phenomena are characterized by their apparent unpredictability. In 

this chapter, we develop a mathematical formalism for the study of emergence, in order to 

gain insight into the principles of emergent behavior. Our formalism puts emergence in an 

agent-oriented context, consistent with the frame imposed by the problem of engineering 

emergent behavior. 

There are many definitions for emergence in the literature, ranging from intuitive to formal 

and differing in the aspects of emergence they are able to capture. Many formal definitions 

start from a preliminary intuitive definition and try to express it in a rigorous manner. In 

doing this, they are usually concerned with the aspects that distinguish emergent properties or 

behaviors from non-emergent ones. In some cases, this distinction can be easily formalized, 

but there is no general procedure that allows to decide whether a given phenomenon is 

emergent or not. One example is Darley’s definition [7], which states that a “true emergent 

phenomenon is one for which the optimal means of prediction is simulation”. In other cases, it 

is more difficult to express formally the defining characteristics of an emergent phenomenon, 

and the definitions actually formalize a procedure for detecting emergence. This is, for 

example, the approach taken by Bonabeau and Dessalles [2]. In many definitions, emergence 

is detected by means of an observer. In some cases, this leads to a subjective description, 

putting emergence “in the eye of the observer”. Examples include the Turing test for 

emergence [3] or the use of an observer that relies on the surprise element [29]. There are, 

nevertheless, several attempts to provide an objective definition of emergence. One example 

is the approach taken by Crutchfield [6], which introduces the notion of intrinsic emergence, 

characterized by an increase in intrinsic computational capability. Besides their theoretical 

importance, objective definitions are appealing because they offer in principle a way to 

automatically detect emergent phenomena. However, they usually involve very complex 

computations, making them unsuitable for practical purposes. 

In this thesis, we take a different view on emergence, which allows us to provide a definition 

that is both objective and suitable for practical purposes. We argue that a definition of 

emergent phenomena should only be concerned with how these phenomena arise and it 

should not address the properties of the emergent phenomena. In our view, these properties 

should be the subject of an entire research field and not part of the definition of emergence. 

From this perspective, a definition should be given only in terms of the processes that produce 

emergent phenomena. We propose an informal definition that represents the starting point in 

developing our formalism: 

Definition 3.1 An emergent behavior is the behavior exhibited by a decentralized agent-based 

system. 

Obviously, the above definition is objective, because it does not depend on the way an 

observer perceives the behavior. It is also suitable for practical purposes, because it eliminates 

the need to detect emergent phenomena. However, one may argue that this definition is too 

broad, because it also considers “uninteresting” behavior as emergent. In order to defend our 

position, we take an example from computational complexity theory, by considering the 

Traveling Salesman Problem (TSP), which is known to be NP-hard. An instance of TSP with 

a cost matrix containing only zeros is trivial to solve and it is of no interest for a researcher 
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studying this class of problems, but it nonetheless represents an instance of this class of 

NP-hard problems. One researcher may be interested in non-trivial TSP instances for which 

exact algorithms are able to find solutions within reasonable time. Another researcher may 

find interesting those TSP instances that are intractable for exact algorithms, but for which 

heuristic algorithms obtain very good results. Yet, another researcher may consider that a TSP 

instance is interesting only if no exact algorithm or heuristic is able to find a good solution 

within reasonable time. In our view, defining emergence in terms of the characteristics of the 

exhibited behaviors is like arguing that only “interesting” instances of the TSP should be 

considered as members of this class of problems. For this reason, we consider that our 

approach to exclude the behavior properties from the definition of emergent behavior is a 

necessary step toward a theory of emergence. 

One of the most interesting aspects of emergence is that even very simple rules are able to 

produce complex behavior. The question is how to express the notion of simple rules in a 

formal way. Using algorithmic complexity concepts such as Kolmogorov complexity [22] is 

not practical, because Kolmogorov complexity is not computable. Therefore, we take a 

pragmatic approach and we propose to use abstract syntax trees (AST) in order to assess the 

complexity of agent rules. Assuming that a method to represent agent rules as ASTs has been 

agreed upon, we measure the complexity of the rules of an agent as the number of leaves in 

the corresponding AST. This is, of course, not an ideal measure, because it depends on the 

language used to express the rules and because the same rules can be expressed in many 

ways. Nevertheless, it is a useful measure for practical purposes. 

We are ready now to give a formal definition of agent-based models. The notations that 

appear in the next paragraphs use upper indices to denote agents and lower indices to denote 

time steps. 

Definition 3.2 An agent-based model is a discrete-time dynamical system described by a tuple 

        , where: 

   is the state space. 

   is the language used to describe agent rules, together with a definite method of 

representation as AST. 

    is the initial finite set of agents. An agent is a tuple           , where: 

-      is the initial state. 

-          is the selection function, which returns the set of agents with which 

this agent interacts. (  denotes the set of all possible agents, that is, the set of all 

possible tuples          . The notation    denotes the power set of  .) 

-         is the interaction rule, which computes the new state of the agent 

based on the states of the agents with which it interacts.   is described in the 

language  . 

-         is the transformation rule that decides if the agent should die and/or 

other agents should be created. The return value of   is the agent itself, if the 

agent continues to exist and no new agents are created; it is the empty set, if the 

agent dies and no new agents are created; it is a finite set of agents (possibly 

containing the agent itself), if new agents are created.   is described in the 

language  . 

 The interaction between agents is reflexive in the sense that if an agent   interacts 

with an agent   at a given moment  , then   also interacts with   at the moment  : 

                          
           

   

 The state of an agent evolves over time according to the following rule: 
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In the above equation,       denotes the preliminary state of the agent at the moment 

   , that is, the state before applying the transformation rule. The definitive 

configuration of the agent-based model at the moment     is: 

           
   
 

 

    

 

Next, we provide a definition for a decentralized agent-based model, which is a formalization 

of the definition 3.1: 

Definition 3.3 An agent-based model is decentralized iff: 

       
                    . 

In studying emergence, it is interesting to analyze and compare the behaviors obtained in a 

variety of agent-based models, ranging from centralized to strongly decentralized. Therefore, 

it is useful to have a measure of how decentralized an agent-based model is. Let us first notice 

that the condition imposed by the definition 3.3 can be alternatively expressed as: 

       
                     . 

Based on this observation we provide the following definition: 

Definition 3.4 The centralization level of an agent-based model is a quantity   given by: 

     
   

   
    

      
     

    
 

Using the above measure, a strongly decentralized agent-based model can be defined as a 

model with a very low centralization level: 

Definition 3.5 An agent-based model is strongly decentralized iff     . 

Emergent phenomena can also appear in agent-based models that are only partially 

decentralized. We offer the following definition for this concept: 

Definition 3.6 An agent-based model is partially decentralized iff: 

                                 
                     

As mentioned before, we are mainly interested in emergent phenomena exhibited by agents 

that follow only simple rules. Therefore, we need a measure for the complexity of agent rules. 

Definition 3.7 Given a function   described in a language    that specifies a definite method 

of representation as AST, the rule complexity of   relative to the language  , noted      , is 

given by the number of leaves in the AST representation of g associated with the language  . 

Using this measure, we introduce a definition for the rule complexity of an agent-based 

model: 

Definition 3.8 The rule complexity of an agent-based model is a quantity   given by: 

     
   

   
    

     
       

     

There is a large class of agent-based models for which the set of agents does not change over 

time: agents do not die and no new agents are created. In such models, the transformation rule 

of each agent is the identity function, which has a rule complexity of 1. Since the set of agents 
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does not change over time, the rule complexity of the model is determined by the initial set of 

agents. In this case, we can write: 

     
    

     
       

Definition 3.9 The dynamic of a decentralized agent-based model, expressed in terms of 

system-level properties, is called pure emergent behavior. 

Definition 3.10 The dynamic of a partially decentralized agent-based model, expressed in 

terms of system-level properties, is called partially emergent behavior. 

The formalism introduced in this chapter is a first step towards an Emergent Behavior Theory 

(EBT). It is consistent with our view that emergent phenomena should be defined only in 

terms of the computational models able to produce them, while the characteristics of these 

phenomena should represent an entire research topic of EBT. From this perspective, EBT 

should identify and analyze different classes of emergent behavior, such as: 

 emergent behavior characterized by an increase in complexity; 

 emergent behavior characterized by pattern formation; 

 chaotic emergent behavior; 

 emergent behavior characterized by attractors; 

 emergent behavior for which simulation is the shortest way to predict it. 

There are many questions to which EBT should find an answer. The list below contains only a 

few of them: 

 How is pure emergent behavior different from partially emergent behavior? For 

practical purposes, is it the mixed approach offered by partially emergent behavior 

preferable to the pure approach? 

 In what respects is the emergent behavior exhibited by homogenous agent-based 

systems different from the emergent behavior exhibited by heterogeneous systems? 

Which type of system should be preferred when engineering emergent behavior? 

Homogenous or heterogeneous? 

 How affects the centralization level the emergent behavior? Is there a threshold that 

must be exceeded in order to be able to obtain a certain behavior? Is there an optimum 

value of the centralization level? 

 Is there a minimum number of agents needed to obtain a certain behavior? Is there an 

optimal number? 

 How does relate the complexity of agents’ rules and the number of agent types needed 

to achieve a desired behavior? 

 What is the best methodology to engineer emergent behavior? 

One of the main reasons for developing our mathematical formalism of emergence is the 

possibility to derive truths concerning the properties of emergence in a rigorous way. The 

approach proposed in this thesis is an empirical one: such truths should be first identified by 

performing computational experiments and they can be then expressed, analyzed and proved 

using our mathematical formalism, in order to establish theoretical results. This approach 

implies the existence of an experimental framework for the study of emergence, which must 

be compatible with our mathematical formalism. A meta-framework designed by us to meet 

these requirements makes the subject of the next chapter. 
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4. METFREM – A META-FRAMEWORK FOR THE STUDY 

OF EMERGENCE 

In order to study emergent phenomena in a rigorous manner, we need a framework that allows 

the modeling of virtually any agent-based system in a unified way. For this purpose, we 

develop a Meta-Framework for Emergence, called MetFrEm, which can be used to describe 

various algorithmic frameworks comprising a population of interacting agents. MetFrEm is a 

meta-framework, because it is typically used to model abstract, high-level algorithms such as 

metaheuristics, which are themselves frameworks allowing to describe specific algorithms. 

By modeling different high-level algorithmic specifications in the same meta-framework, we 

can make a rigorous comparison of the methods considered. MetFrEm provides a set of 

concepts and rules that must be used to model the desired systems and it imposes a general 

algorithmic structure for these systems. The main design objectives of MetFrEm are: 

 to allow the modeling of virtually any agent-based algorithmic framework. 

 to favor the modeling of strongly decentralized systems. 

 to favor the modeling of systems with agents that follow only simple rules. 

 to facilitate the modeling of algorithmic frameworks with highly heterogeneous agents. 

 to offer a unitary approach to the modeling of direct communication and stigmergy. 

4.1. Concepts and structure of MetFrEm 

Universe 

We denote as universe an agent-based model represented in MetFrEm. It is a discrete time 

model that has no environment. Environment elements can be represented as ordinary agents, 

which are called mechanisms in MetFrEm’s terminology. A metamodel in MetFrEm involves 

only one universe, which in turn contains all metamodel’s mechanisms. 

Mechanism 

We use the term mechanism to denote an agent in MetFrEm. An important characteristic of 

mechanisms in MetFrEm is that they know how to interact with any other mechanisms, 

without needing to know what types of mechanisms exist in the universe. 

Property 

The internal state of a mechanism is characterized by the values of its internal properties. 

The set of properties that characterizes a mechanism is a subset of a finite global set of 

properties defined in the given universe. Each property has a numeric value that can change 

over time. In general, a mechanism does not fully expose its state to other mechanisms. 

Moreover, in different contexts, a mechanism can expose different sets of properties, by using 

the appropriate view for the given context. 

View 

A view represents a set of properties exposed by a mechanism to other mechanisms. This set 

of properties can be a subset of the internal properties or it can involve properties whose 

values aggregate the values of some internal properties. The properties exposed by a view 

must also be a subset of the global set of properties of the universe. Each mechanism provides 

three views: the observable view, the active view and the reactive view. Each of the three 

views has a corresponding view function, which is used to compute the values of the exposed 
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properties. Accordingly, these view functions are: the observable view function   , the active 

view function    and the reactive view function   . We call observable state of a mechanism 

the set of values returned by the observable view function   . 

Neighborhood 

At each time step, a mechanism can initiate an interaction with a subset of mechanisms. This 

subset is selected from a family of potential subsets, which represents the neighborhood of the 

mechanism at the given time step. Each mechanism has an associated neighborhood 

function  , which returns the neighborhood of the mechanism at a given time step, based on 

the observable states of the other mechanisms in universe. 

Evaluation function 

In order to choose the subset of mechanisms with which it initiate an interaction at a given 

time step, a mechanism has to evaluate each subset in its neighborhood. This operation is 

performed by using an evaluation function  , which returns a numerical value indicating how 

suitable a given subset is. The suitability of a subset is computed based on the values of the 

properties exposed by the observable view of each of the mechanisms in the subset. 

Selection function 

Based on the suitability values returned by the evaluation function, a mechanism selects the 

subset of mechanisms with which it initiates an interaction, by using a selection function  . 

Interaction functions 

In MetFrEm, one of the mechanisms involved in an interaction plays an active role and it is 

called the initiator of the interaction. The other mechanisms, which are determined by the 

selection function  , represent the target of the interaction and play a reactive role. During the 

interaction, the initiator exposes its state to the target mechanisms by means of its active view, 

while a target mechanism exposes its state to the initiator and to other target mechanisms by 

means of its reactive view. In general, the state of a mechanism changes as a result of the 

interaction. This change is reflected by changes in the values of the internal properties of the 

mechanism. The new internal state is computed by applying an interaction function. Each 

mechanism has two associated interaction functions: an active interaction function    and a 

reactive interaction function   . Which function is used depends on the role played by the 

mechanism in interaction: the initiator mechanism computes its new state by using the active 

interaction function, while the target mechanisms compute their new states by using the 

reactive interaction function. 

Transformation function 

As a result of an interaction, a mechanism may continue to exist, it may die or it may create 

new mechanisms. These operations are performed by a transformation function  , which 

replaces the mechanism with a set of other mechanisms. If the mechanism continues to exist 

and no new mechanisms are created, this set is represented by the mechanism itself. If the 

mechanism dies and no new mechanism are created, the transformation function returns an 

empty set. If new mechanisms are created, the transformation function returns a finite set of 

mechanisms, which also contains the mechanism itself, if it continues to exist. 

4.2. A formal description of MetFrEm 

In this section, we give a formal description of the concepts presented in the above 

paragraphs. We first introduce the set of global properties of a universe: 
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where     is the number of global properties. 

Each element    of the set   identifies a measurable property. For example, a universe that 

models microscopic particles could involve properties such as: mass, position and velocity. In 

MetFrEm, the value of a property is a dimensionless quantity expressed as a real number. 

We denote by   the infinite set of all possible mechanisms. A universe in MetFrEm is a 

tuple ( ,   ), where   is the global set of properties and      is the initial finite set of 

mechanisms. 

A mechanism is defined as a tuple (  ,   ,   ,   ,   ,   ,   ,   ,  ,  ,  ,  ,   ,   ), where: 

      is the set of internal properties; 

      is the set of observable view properties; 

      is the set of active view properties; 

      is the set of reactive view properties; 

          is the initial internal state, that is, the initial set of values of the internal 

properties; 

                 is the observable view function, which computes the set of values 

representing the observable state of the mechanism; 

                 is the active view function, which computes the set of values 

exposed during an interaction initiated by this mechanism; 

                 is the reactive view function, which computes the set of values 

exposed during an interaction in which this mechanism is a target; 

          
 is the neighborhood function, which returns a family of subsets of 

mechanisms with which this mechanism could initiate an interaction. The return value 

is computed based on the observable states of all mechanisms in the universe. 

         is the evaluation function, which computes the suitability of a subset of 

mechanisms from the family of potential subsets, based on their observable states. 

          is the selection function, which chooses the subset of mechanisms with 

which this mechanism initiates an interaction, based on the suitability of each potential 

subset. 

         is the transformation function, which returns a set of mechanisms 

reflecting the transformation undergone by this mechanism at the end of an 

interaction: it may continue to exist, it may die and/or it may create new mechanisms. 

            is the active interaction function used by the initiator mechanism in 

order to compute its new internal state, based on its current state and on the values of 

the reactive properties of the target mechanisms. 

            is the reactive interaction function used by a target mechanism in order 

to compute its new internal state, based on its current state, on the values of the active 

properties of the initiator mechanism, and on the values of the reactive properties of 

the other target mechanisms. 

In the next paragraphs, we show how the dynamic of the universe results from the application 

of the functions associated with the mechanisms. The neighborhood of a mechanism  , that is, 

the set of potential subsets of mechanisms with which it can initiate an interaction at a time 

step  , is computed as: 

  
 

          
   

    

 

 
(4.1) 
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where    is the set of all mechanisms that exist at time step   and   
  is the internal state of 

the mechanism   at time step  . 

The set of suitability values corresponding to each potential subset is given by: 

  
 

        
    

  

   

 

    

 

 
(4.2) 

The actual subset of mechanisms with which a given mechanism   initiates an interaction is: 

  
 

       
 
  

 (4.3) 

In MetFrEm, a mechanism can interact with other mechanisms in an active or in a reactive 

way. The set of all mechanisms with which a mechanism interacts must therefore include the 

mechanisms involved in either of these types of interactions. For a given mechanism  , this 

set is: 

  
 

   
 
               

    
 (4.4) 

In MetFrEm, it is possible that at a given time step  , a mechanism is the subject of several 

interactions: it may be the initiator in one of these interactions and the target in the others. The 

new state after an interaction in which the mechanism acts as initiator is computed using the 

active interaction function   . The new state after an interaction in which the mechanism acts 

as target is computed using the reactive interaction function   . The final state of the 

mechanism is obtained by successively applying these functions for each interaction of the 

given mechanism. If we denote by   the initiator mechanism, its preliminary state after the 

interaction, that is, the state before applying the transformation rule, is given by: 

     
 

   
 
    

 
       

    
         

 
 ) 

 (4.5) 

The preliminary state of a target mechanism   after the interaction is: 

     
    

 
    

        
 
   

 
        

    
         

 
     ) 

 
(4.6) 

The definitive configuration of the universe at time step     is: 

           
   
 

 

    

 

 

(4.7) 

4.3. The algorithmic structure 

The evolution of a universe in MetFrEm is presented in pseudocode in the figure below: 
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1 procedure MetFrEm () 

2  M ← initializeUniverse () 
3  while (termination condition not met) do 

4   executePreliminaryActions (M)  // optional 
5   foreach initiator   M do 

6    neighborhood ← getNeighborhood (initiator) 
7    suitabilities ← evaluateNeighborhood(neighborhood) 
8    targets ← selectTargets (neighborhood, suitabilities) 
9    initiator.state ← activeInteraction (initiator, targets) 

10    replacement  ← transform(initiator) 
11    M ← (M \ {initiator)}   replacement 

12    foreach target   targets do 

13     target.state ← reactiveInteraction (target, initiator, targets) 
14     replacement  ← transform(target) 
15     M ← (M \ {target)}   replacement 

16    end foreach 

17   end foreach 

18   executeFinalActions (M)   // optional 
19  end while 

20 end procedure 

Figure 4-1. Pseudocode of the evolution of a universe in MetFrEm. 

During the initialization phase (line 2), the initial set of mechanisms is created and the state of 

each mechanism is configured. The algorithm enters then the main loop (lines 3-19). In order 

to allow modeling of systems that do not perfectly fit the formal structure specified by 

MetFrEm, the algorithm offers two optional procedures: executePreliminaryActions (line 4) 

and executeFinalActions (line 18). Typically, these procedures perform global operations that 

cannot be modeled as decentralized actions, but the meta-framework does not impose any 

restriction on what operations they can execute. For example, in some Ant Colony 

Optimization algorithms, only the best-so-far ant is allowed to update the pheromone trails. 

This operation requires global knowledge about the solutions constructed by all ants and 

could be therefore implemented by one of these optional procedures. 

While MetFrEm does not specify the actions performed by the optional procedures, the 

working of the other procedures referred in the pseudocode above is completely determined 

by the underlying functions and views introduced by the formal description. The 

getNeighborhood procedure (line 6) uses the neighborhood function   in order to determine 

the set of potential subsets of mechanisms with which the initiator could interact, in 

accordance with formula 4.1. The evaluateNeighborhood procedure (line 7) uses the 

evaluation function   in order to compute the suitability value of each set of mechanisms in 

the neighborhood, in accordance with formula 4.2. The selectTargets procedure (line 8) uses 

the selection function   in order to choose the set of target mechanisms, in accordance with 

formula 4.3. The activeInteraction procedure (line 9) uses the active interaction function    in 

order to compute the state of the initiator after the interaction, in accordance with formula 4.5. 

The reactiveInteraction procedure (line 13) uses the reactive interaction function    in order 

to compute the state of a target mechanism after the interaction, in accordance with formula 

4.6. The transform procedure (lines 10 and 14) uses the transformation function   in order to 

determine the set of mechanisms that replaces a given mechanism, in accordance with 

formula 4.7. 
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5. THE CONSULTANT-GUIDED SEARCH 

METAHEURISTIC 

The meta-framework introduced in the previous chapter has been designed to allow modeling 

of highly heterogeneous systems, with agents that know how to interact with any type of 

agent, without needing to know what types of agents exist in the system. For this reason, an 

interaction in MetFrEm is performed in two steps. First, the initiator chooses a set of targets 

from a family of potential sets, and then it interacts with the chosen targets. For simplicity, let 

us consider that the set of targets contains only one element, that is, there is only one target 

mechanism with which the initiator interacts. The initiator changes its state as a result of the 

interaction. The new state is computed based on the values present in the reactive view 

exposed by the target. Since the reactive view provides values that are in general not available 

in the observable view, these additional values can be regarded as private information offered 

by the target mechanism. The initiator gets this information only because it has chosen to 

interact with this specific target. We can see the target mechanism as a consultant that has 

expert knowledge, which it makes available to the mechanisms that are willing to interact 

with it. Similarly, the initiator can be seen as a client that chooses one of the available 

consultants, in order to get useful information. Viewed from this perspective, the interaction 

in MetFrEm has led us to the idea of a new heuristic method, which we call the Consultant-

Guided Search (CGS), and which constitutes the subject of this chapter. 

5.1. The CGS Metaheuristic 

Consultant-Guided Search (CGS) is a population-based metaheuristic for combinatorial 

optimization problems that takes inspiration from the way people make decisions based on 

advice received from consultants. An individual of the CGS population is a virtual person, 

which can simultaneously act both as a client and as a consultant. As a client, a virtual person 

constructs at each iteration a solution to the problem. As a consultant, a virtual person 

provides advice to clients, in accordance with its strategy. Usually, at each step of the solution 

construction, there are several variants a client can choose from. The variant recommended by 

the consultant has a higher probability to be chosen, but the client may opt for one of the other 

variants, which will be selected based on some heuristic. 

At the beginning of each iteration, a client chooses a consultant based on its personal 

preference and on the consultant’s reputation. The reputation of a consultant increases with 

the number of successes achieved by its clients. A client achieves a success, if it constructs a 

solution better than all solutions found until that point by any client guided by the same 

consultant. Each time a client achieves a success, the consultant adjusts its strategy in order to 

reflect the sequence of decisions taken by the client. Because the reputation fades over time, a 

consultant needs that its clients constantly achieve successes, in order to keep its reputation. If 

the consultant’s reputation sinks below a minimum value, it will take a sabbatical leave, 

during which it will stop offering advice to clients and it will instead start searching for a new 

strategy to use in the future. 

The pseudocode that formalizes the CGS metaheuristic is shown in Fig. 5.1. During the 

initialization phase (lines 2-5), virtual people are created and placed in sabbatical mode. 

Based on its mode, a virtual person constructs at each iteration either a solution to the 
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problem (line 13) or a consultant strategy (line 9). A local optimization procedure (line 17) 

may be applied to improve this solution or consultant strategy. 

After the construction phase, a virtual person in sabbatical mode checks if it has found a new 

best-so-far strategy (lines 20-22), while a virtual person in normal mode checks if it has 

achieved a success and, if this is the case, its consultant adjusts its strategy accordingly (lines 

24-29). 

1 procedure CGSMetaheuristic() 
2  create the set   of virtual persons 

3  foreach p    do 

4   setSabbaticalMode(p) 
5  end foreach 

6  while (termination condition not met) do 

7   foreach p    do 

8    if actionMode[p] = sabbatical then 

9     currStrategy[p] ← constructStrategy(p) 
10    else 

11     currCons[p] ← chooseConsultant(p) 
12     if currCons[p] ≠ null then 

13      currSol[p] ← constructSolution(p, currCons[p]) 
14     end if 

15    end if 

16   end foreach 

17   applyLocalOptimization()     // optional 

18   foreach p    do 

19    if actionMode[p] = sabbatical then 

20     if currStrategy[p] better than bestStrategy[p] then 

21      bestStrategy[p] ← currStrategy[p] 

22     end if 

23    else 

24     c ← currCons[p] 

25     if c ≠ null and currSol[p] is better than all solutions  

26             found by a client of c since last sabbatical then 

27       successCount[c] ← successCount[c] + 1 

28       strategy[c] ← adjustStrategy(c, currSol[p]) 
29     end if 

30    end if 

31   end foreach 

32   updateReputations() 

33   updateActionModes() 
34  end while 

35 end procedure 

Fig. 5.1. The CGS Metaheuristic. 

Reputations are updated based on the results obtained by clients (line 32): the reputation of a 

consultant is incremented each time one of its clients achieves a success and it receives an 

additional bonus when a client obtains a best-so-far result.  Each consultant is ranked based 

on the best result obtained by any client working under its guidance. For a number of top-

ranked consultants, CGS prevents their reputations from sinking below a predefined level. 

Finally, the action mode of each virtual person is updated (line 33): consultants whose 

reputations have sunk below the minimum level are placed in sabbatical mode, while 

consultants whose sabbatical leave has finished are placed in normal mode. 
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5.2. CGS applied to the Traveling Salesman Problem 

In this section, we propose a CGS algorithm for the traveling salesman problem, which we 

refer to as CGS-TSP. In order to apply CGS to a particular class of problems, one must define 

the different concepts used by this metaheuristic (e.g. strategy, result, personal preference) in 

the context of the given class of problems. Then, one must decide how to implement the 

actions left unspecified by the CGS metaheuristic (e.g. constructStrategy, constructSolution, 

chooseConsultant). 

Constructing a solution for the TSP means building a closed tour that contains each node of 

the graph only once. To avoid visiting a node several times, each virtual person in CGS-TSP 

keeps a list of the nodes already visited in the current iteration. The strategy of a consultant is 

represented by a tour, which it advertises to its clients; the result of a tour is computed as the 

inverse of its length. Since both solution construction and strategy construction imply 

building a tour, the type of decision a virtual person has to make at each step is the same in 

both cases: it has to choose the next city to be visited. However, the rules used to make 

decisions in each of these two cases are different. 

To restrict the number of choices available at each construction step, CGS-TSP uses candidate 

lists that contain for each city i the closest cand cities, where cand is a parameter. This way, 

the feasible neighborhood of a person k when being at city i represents the set of cities in the 

candidate list of city i that person k has not visited yet. 

During the sabbatical leave, consultants build strategies using a heuristic based only on the 

distances between the current city and the potential next cities: with probability    (where    

is a constant parameter), the person moves to the closest city in its feasible neighborhood, 

while with probability        it performs an exploration of the neighbor cities, biased by 

the distance to the city i. 

At each step of the solution construction, a client receives from its consultant a 

recommendation regarding the next city to be visited. This recommendation is based on the 

tour advertised by the consultant. Let i be the city visited by the client k at a construction step 

of the current iteration. To decide which city to recommend for the next step, the consultant 

finds the position at which the city i appears in its advertised tour and identifies the city that 

precedes i and the city that succeeds i in this tour. If neither of these two cities is already 

visited by the client, the consultant recommends the one that is closest to city i. If only one of 

these two cities is unvisited, this one is chosen to be recommended. Finally, if both cities are 

already visited, the consultant is not able to make a recommendation for the next step.
 

The client does not always follow the consultant’s recommendation. A pseudorandom 

proportional rule based on two constant parameters    and    is used to decide which city to 

visit at the next step: if a recommendation is available, the client moves with probability    to 

the city recommended by its consultant; with probability          it moves to the closest 

city in its feasible neighborhood; with probability              it performs an 

exploration of the neighbor cities, biased by the distance to the city i.  

The two factors that influence the choice of a consultant are: consultant’s reputation and 

client’s personal preference. In CGS-TSP the personal preference is given by the result of the 

consultant’s advertised tour, that is, by the inverse of the advertised tour length. 

Each time a client achieves a success (i.e., it finds a tour shorter than the tour advertised by its 

consultant), the consultant updates its strategy, replacing its advertised tour with the tour 

constructed by the client. 
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In experiments with and without local search, CGS-TSP has been able to outperform the best-

performing Ant Colony Optimization algorithms. 

5.3. CGS applied to the Quadratic Assignment Problem 

In this section, we discuss how the CGS metaheuristic can be applied to the Quadratic 

Assignment Problem (QAP), and we introduce the CGS-QAP algorithm, which hybridizes 

CGS with a local search procedure. Given a set of facilities and a set of locations, a flow 

matrix specifying the flows between each pair of facilities and a distance matrix specifying 

the distances between each pair of locations, the Quadratic Assignment Problem consists in 

finding an assignment of facilities to locations, which minimizes the sum of the flows 

multiplied by the corresponding distances. 

In CGS-QAP, the strategy is implemented as a solution advertised by the consultant. It is 

represented by an assignment of facilities to locations, which is constructed during the 

sabbatical leave. In the proposed algorithm, the sabbatical leave lasts only one iteration. In 

order to construct a new strategy, a consultant generates a random assignment and improves it 

by using a local search procedure. The personal preference for a consultant is determined by 

the cost of its advertised assignment. Together with the reputation, it is used to compute the 

probability to choose a given consultant. 

At each construction step, a client places a not yet assigned facility to a free location. In CGS-

QAP, the order in which facilities are assigned to locations is random. At each step, a client 

receives from its consultant a recommendation regarding the location to be chosen. The 

recommended location is the one corresponding to the given facility in the assignment 

advertised by the consultant. In order to decide whether to follow the recommendation, the 

client uses a pseudorandom proportional: with probability   , a client places the given facility 

to the location recommended by its consultant; with probability        it randomly places 

the facility to one of the free locations. The value of the parameter    is critical for the 

performance of CGS-QAP. A large value for    leads to an aggressive search, focused around 

the assignment advertised by the consultant. A small value for    favors the exploration of the 

search space, allowing the algorithm to escape from local optima. 

Every time a client achieves a success (i.e., it finds an assignment better than that advertised 

by its consultant), the consultant updates its strategy, replacing its advertised assignment with 

the assignment constructed by the client. 

At the end of each iteration, the algorithm applies a local search procedure in order to improve 

the assignments constructed by clients. Similar to other algorithms for the QAP, CGS-QAP 

can use 2-opt local search, short runs of tabu search or simulated annealing as the local search 

procedure. 

Experimental results show that CGS-QAP performs better than MAX-MIN Ant System 

(MMAS) for unstructured QAP instances. Our future research will investigate if CGS-QAP is 

still able to compete with MMAS for structured QAP instances. 

 

5.4. CGS applied to the Generalized Traveling Salesman Problem 

The generalized traveling salesman problem (GTSP) is an NP-hard problem that extends the 

classical traveling salesman problem by considering a related problem given a partition of the 

nodes of a graph into clusters. The problem consists in finding the shortest closed tour visiting 
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exactly one node from each cluster. We propose a hybrid algorithm that combines the 

consultant-guided search technique with a local-global approach for solving the GTSP. Most 

GTSP instances of practical importance are symmetric problems with Euclidean distances, 

where the clusters are composed of nodes that are spatially close one to the other. Our 

algorithm takes advantage of the structure of these instances. 

The local-global approach has been introduced by Pop [27] in the case of the generalized 

minimum spanning tree problem.  In the case of the GTSP, the local-global approach aims at 

distinguishing between global connections (connections between clusters) and local 

connections (connections between nodes from different clusters). Given a sequence in which 

the clusters are visited (i.e. a global Hamiltonian tour), there are several generalized 

Hamiltonian tours corresponding to it. The best corresponding (with respect to cost 

minimization) generalized Hamiltonian tour can be determined either by using a layered 

network or by using integer programming. We call global graph the graph obtained by 

replacing all nodes of a cluster with a supernode representing it. 

In our proposed algorithm, a client constructs at each iteration a global tour, that is, a 

Hamiltonian cycle in the global graph. The strategy of a consultant is also represented by a 

global tour, which the consultant advertises to its clients. The algorithm applies a local search 

procedure in order to improve the global tour representing either the global solution of a client 

or the strategy of a consultant in sabbatical mode. Then, using a cluster optimization 

procedure, the algorithm finds the best generalized tour corresponding to the global tour 

returned by the local search procedure.  

In order to compare the strategies constructed during the sabbatical leave, a consultant uses 

the cost of the generalized tour corresponding to each strategy. Similarly, the success of a 

client is evaluated based on the cost of the generalized solution. 

The heuristic used during the sabbatical leave in order to build a new strategy is based on 

virtual distances between the supernodes in the global graph. We compute the virtual distance 

between two supernodes as the distance between the centers of mass of the two corresponding 

clusters. The choice of this heuristic is justified by the class of problems for which our 

algorithm is designed: symmetric instances with Euclidean distances, where the nodes of a 

cluster are spatially close one to the other. By introducing virtual distances between clusters, 

we have the possibility to use candidate lists in order to restrict the number of choices 

available at each construction step.  

Experimental results show that our algorithm is able to compete with the best GTSP 

algorithms. 
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APPENDIX A. AGSYSLIB - A SOFTWARE TOOL FOR 

AGENT-BASED PROBLEM SOLVING 

Many complex phenomena that arise in physical and biological systems can be naturally 

described using agent-based models. These models are able to capture the complex behavior 

that emerges from the interactions between agents governed by simple rules. It is tempting to 

use agent-based approaches not only to describe existing phenomena, but also to solve 

complex problems that cannot be tackled with conventional techniques. Consequently, in 

recent years, there has been a growing interest in designing algorithms that take advantage of 

the emergent behavior exhibited by systems composed by interacting agents. 

While conceiving a new agent-based algorithm, one can benefit from the various software 

libraries and frameworks available nowadays for agent-based modeling and simulation 

(ABMS) [24]. However, ABMS software is not able to assist in all aspects related to the 

design, implementation and tuning of agent-based algorithms. In this chapter, we identify the 

difficulties encountered during these activities and we discuss how a software tool can help in 

overcoming them. We illustrate our ideas by presenting AgSysLib, a Java tool that we have 

developed in order to facilitate the tasks associated with agent-based problem solving. 

The main difficulty in designing agent-based algorithms is to find a set of rules that produce 

the desired emergent behavior. At present, there is no generally accepted methodology for 

designing agent-based algorithms. Therefore, the design of such algorithms is frequently a 

trial-and-error process that could benefit from the help provided by a software tool. 

While ABMS offers mainly qualitative insights, agent-based problem solving is concerned 

with producing high performance results in terms of both solution quality and running time. 

Turning a proof-of-concept simulation into a state-of-the-art implementation for solving a 

real-world problem is a very tedious task, for which ABMS software does not typically 

provide support. Since currently no tools are offering assistance with this task, we have 

developed AgSysLib in order to help algorithm designers and engineers in implementing 

agent-based solutions for complex problems. 

AgSysLib is both a framework and a library. It is implemented in Java and it offers an API 

that should be implemented by any agent-based algorithm and it provides a set of utility 

classes that help performing various tasks associated with agent-based problem solving. For 

many of the interfaces specified by the API, AgSysLib offers default implementations or 

abstract classes that can be easily instantiated, extended and customized. 

AgSysLib features a component-based architecture, which permits to build algorithms in a 

modular way and facilitates the experimentation and analysis of different variants of an 

algorithm. A new variant of an algorithm can be obtained by simply replacing a particular 

component of a base implementation with another component. AgSysLib also allows 

executing batches of runs, in order to apply repeatedly an algorithm to the same problem, to 

different problems, or using different parameter values. 

As mentioned before, currently available ABMS software packages offer many features that 

are also useful for agent-based problem solving. AgSysLib does not try to provide yet another 

implementation of these features. Instead, it is concerned with those aspects of designing, 

implementing and tuning of agent-based algorithms that are not covered by ABMS software. 

However, in order to give users the possibility to still benefit from features available in 
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ABMS software, AgSysLib can act as a wrapper for such libraries. This way, AgSysLib can 

transform an ABMS package into a tool able to assist in agent-based problem solving. 

A plethora of ABMS packages has been developed in the last years, differing in their 

purposes and capabilities. AgSysLib is able to wrap around many of these packages, but in its 

default configuration, it integrates the MASON library. MASON [23] is a discrete-event 

multi-agent simulation environment implemented in Java, allowing models with a large 

number of agents to be executed fast a large number of times. 

Configuration 

Agent-based problem solving requires experimentation at various levels. One type of 

experiments involves assessing different variants of an algorithm. Frequently, switching to a 

new algorithm variant is achieved by commenting out portions of the original code and 

replacing them with new code, or by using flags in various parts of the program in order to 

activate the portions of code corresponding to the given algorithm variant. Such a practice 

clutters the source code, making it hard to read and to maintain. A component-based 

architecture allows a clear separation of the portions of code specific to each algorithm 

variant, but it usually still requires some changes in the original code, in order to specify 

which component should be used. AgSysLib allows specifying all components of an agent-

based system in a configuration file. This way, no code changes or additional flags are needed 

in order to switch between different algorithm variants. 

Another type of experiments involves comparing the results obtained by a given algorithm 

with different sets of parameters or even with different formulas. If parameter values or 

algorithm formulas are hard-coded into the program, this leads again to code cluttering. 

Therefore, AgSysLib provides a large set of utility functions for reading various types of 

values and lists of values, as well as mathematical formulas from a configuration file. 

Moreover, AgSysLib allows providing lists of values for parameters and executing batches of 

runs for each combination of these parameter values. Finally, it is possible to specify in the 

configuration file that the value of a parameter should be computed based on a given formula 

using the values of other parameters. 

Listeners 

During experimentation with an agent-based algorithm, it is frequently necessary to inspect 

the evolution of various quantities handled by the application, or aggregate values of them, in 

order to gain insight about the behavior emerging in the system. Similar information is 

required during tuning and debugging activities. The statements needed to output this 

information usually clutter the source code. Moreover, they may affect the performance of the 

algorithm, although they are usually no longer needed in the final application. The AgSysLib 

API introduces evolution listeners in order to allow keeping these statements separated from 

the main source code, while also permitting the quick activation or deactivation of these 

portions of code. An evolution listener provides methods that can be triggered by the 

following events: 

- the start of the processing for a batch of runs 

- the end of the processing for a batch of runs 

- the start of the processing for a run in a batch 

- the end of the processing for a run in a batch 

- the start of an evolution step in a run 

- the end of an evolution step in a run 

- the end of the operations performed by an agent during a step. 
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The evolution listeners active during the execution of an application can be specified in a 

configuration file. This way, there is no need to make changes in the application code in order 

to add or remove a listener.  

Experimentation and tuning 

As mentioned before, AgSysLib allows specifying lists of values in the configuration files, in 

order to run an algorithm with all possible combinations of these parameter values. This way, 

it is possible to perform a basic form of tuning. In addition, AgSysLib offer a more elaborate 

tuning procedure, based on genetic algorithms and it also enables an easy integration with 

software packages for automatic parameter configuration. 

AgSysLib offers a number of utility classes that permit the evaluation of mathematical 

formulas appearing in a configuration file. AgSysLib does not use an interpreter to evaluate 

formulas, because this would have a negative impact on the performance of an algorithm. 

Instead, it generates on-the-fly a Java class for each formula and creates an instance of it. The 

dynamically generated class contains a method that accepts as arguments the variables present 

in the given formula and returns the value corresponding to its evaluation. The on-the-fly 

class generation takes place only once, at program start. This way, the evaluation of a formula 

is performed as fast as if it would have been hard-coded in the algorithm code. 

Debugging 

Agent-based applications are usually very adaptive, thus being the best choice for solving 

real-world problems in complex, dynamic environments. However, detecting flaws in such 

applications is more difficult, because in many cases, even a buggy implementation is able to 

solve the problem, although not as efficient as possible. In addition, when designing a new 

agent-based heuristic, one does not know in advance how efficient an implementation could 

be, therefore bugs that only affects the algorithm performance may remain unnoticed, since 

the developer has limited knowledge about what to expect from the algorithm. Because many 

agent-based algorithms are stochastic, reproducing unusual behavior may also prove difficult. 

Investigating problems related to agent-based applications often requires a detailed analysis of 

the dynamic of the internal program state. AgSysLib offers a GUI component, called the 

remote control console, which allows connecting via RMI (Remote Method Interface) to a 

running application and interrogating, watching or changing its internal state. Since it can 

establish a connection not only at program start-up, but at any moment, the remote control 

console can be also used to investigate unexpected behavior appearing in a program not 

actually under debugging. 

Access to the internal state of a program is provided by means of scripts written in the Groovy 

programming language. Therefore, it is possible to make complex queries on the internal 

program state or to make multiple state changes, such as altering in some way the state of 

each agent, by using only a few lines of code. The scripts can be also registered, in order to be 

executed at the end of each step. In addition, the results of internal state queries can be used to 

set complex conditional breakpoints. 
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