
“POLITEHNICA” University of Bucharest

Faculty of Automation and Computer Science

New techniques for computing and
information processing

Quantum Computing

Doctorand: Lucian Dragne

Adviser: Prof. dr. ing. Florica Moldoveanu,
 Computer Science Department, Faculty of Automation and Computer Science, UPB

- 2 -

Summary .. 4
1. Basic concepts ... 6

1.1. Church – Turing postulate ... 6
1.2. Church – Turing – Deutsch postulate .. 7
1.3. Quantum information theory ... 8

1.4. Quantum cryptography .. 9
1.5. Quantum information representation .. 9
1.6. Practical implementations of quantum computing systems 10
1.7. Quantum computing – quantum gates ... 10
1.8. The impossibility of copying a qubit .. 12

2. Quantum computing efficiency ... 14
2.1. Quantum parallelism ... 14

2.2. Deutsch’s algorithm .. 16
2.3. Deutsch-Jozsa algorithm ... 17

2.3.1. Deutsch-Jozsa problem .. 17
2.3.2. Probabilistic Deutsch-Jozsa problem ... 18
2.3.3. Deutsch-Jozsa quantum circuit .. 19

2.4. Super-dense coding ... 21
2.5. Quantum teleportation ... 23

3. Graphical representations .. 27
3.1. Trace of an operator .. 27

3.2. The operators’ vector space... 27
3.3. Pauli matrices .. 28
3.4. Graphical representation of qubits .. 28

3.4.1. Qubits in pure state – Bloch sphere ... 28

3.4.2. Qubits in mixed states – Bloch ball ... 29
3.5. Rotation operators ... 31

3.5.1. Rotation operator zR .. 32

3.5.2. Rotation operator xR .. 33

3.5.3. Rotation operator yR .. 34

3.5.4. Generic rotation operator nR ... 36

3.6. Decomposing unitary operators on one qubit ... 37
3.6.1. Z-Y decomposition of one qubit unitary operators .. 37
3.6.2. X-Y decomposition of unitary operators on one qubit 38

4. Controlled quantum circuits .. 39

4.1. Controlled-U operator on one qubit .. 39
4.1.1. Definition and notations ... 39
4.1.2. Implementing the Controlled-U operator on one qubit...................................... 39

4.2. The Controlled-U operator on multiple qubits .. 40
4.3. The Controlled-U operator with two control qubits .. 40

4.3.1. Implementation using controlled gates on 1 qubit ... 40
4.3.2. Implementation using only CNOT gates and one qubit gates 41

4.4. Quantum implementation of universal reversible classical gates 43

4.4.1. Implementing Toffoli gate ... 43
4.4.2. Implementing the Fredkin gate by using Toffoli gates 43

5. Controlled operators implementation .. 46
5.1. The linear implementation of the controlled operators ... 46

5.2. Exponential implementation of the controlled operators .. 47
5.2.1. Implementing controlled operators on 3 qubits ... 47

- 3 -

5.2.2. Implementing controlled operators. Generalization .. 48
5.3. Quadratic implementation of controlled operators.. 48

5.3.1. Implementing the generic CNOT by using Toffoli.. 48
5.3.2. Implementing controlled operators without working qubits 51

6. Universal quantum gates ... 53

6.1. Gates controlled by qubits ... 53
6.2. Infinite sets of universal quantum gates .. 53

6.2.1. Level matrices .. 54

6.2.2. Decomposing matrices using level factors ... 54

6.2.3. Implementing unitary matrices of level .. 57
6.2.4. Complexity evaluation ... 58

6.3. Discrete sets of universal quantum gates .. 59

6.3.1. Basic circuit for the non-elementary rotation .. 59
6.3.2. Circuit for the elementary rotation, with unitary probability 60

6.3.3. Approximating unitary operators ... 61
6.3.4. Approximating the rotation operator ... 61

7. The Fourier Transform .. 63
7.1. Quantum Fourier Transform (QFT) .. 63

7.2. Implementing the quantum Fourier transform .. 65
7.3. Complexity evaluation .. 67

8. Phase estimation .. 68
8.1. Quantum procedure for phase estimation.. 68
8.2. Quantum circuit for phase estimation ... 68

8.3. Performance evaluation ... 69

8.4. Quantum algorithm for phase estimation .. 70
9. Applications for quantum algorithms.. 71

9.1. Order finding and factorization ... 71

9.2. Order finding ... 71
9.2.1. Result interpretation from the quantum phase estimation algorithm 73

9.2.2. The performance of the order finding algorithm ... 74
9.3. Applications: factoring natural numbers ... 76

9.3.1. Steps for factorization .. 76

9.3.2. The quantum factoring algorithm .. 77
9.4. Languages for quantum programming .. 77

9.4.1. Quantum programs... 78
9.4.2. Quantum programming languages ... 79

9.4.3. High level quantum programming languages .. 82
10. Contributions and further research .. 85

10.1. Contributions ... 85
10.2. Further research ... 86

11. Selective Bibliography .. 89

- 4 -

Summary
Chapter 1. describes the base theoretical concepts that constitute the foundation of the

quantum computing paradigm, including the main assumptions that guide the developments

in this field of research. This chapter also presents the Church-Turing conjectures that have

been driving the algorithm theory from its conception, the how they are now disputed under

the new quantum computing paradigm.

Chapter 2. presents in extended detail the main problem addressed in quantum information

processing and the very reason this approach took off: maximizing the efficiency of

computing processes. The author conceived a few demonstrations for some known examples

that prove the power of quantum computing and quantum information processing, explaining

how they are deeply linked to physical processes. The author analyzed Deutsch-Jozsa

problem and its generalization to Boolean functions extended to – dimensional finite

spaces, and conceived a classical probabilistic algorithm for solving this problem. The

performances of quantum algorithm and the classical probabilistic ones were analyzed and

compared, proving the increased time efficiency of the quantum algorithm.

In chapter 3. a set of theorems together with their formal demonstrations, designed by the

author, were presented in order to justify the graphical representations of qubits using three

dimensional unit spheres and to provide for the quantum operations modeling through three

dimensional rotations, only around the coordinate axes. Therefore it was proved there is an

interesting conceptual relationship between the spherical rotations on one hand, and the one

qubit unitary operations on the other.

Chapters 4. and 5. present in detail the theory of quantum circuits together with a few

quantum circuits designed by the author:

- a circuit that offers a minimal implementation of the generic controlled operator on two

qubits, this implementation using only one qubit gates and CNOT gates

- a circuit that implements the Fredkin gate using only one Toffoli gate and two CNOT

gates

- a circuit that implements the Fredkin gate using only six gates, each on two qubits

- a circuit that implements the generalized Toffoli gate, without using working qubits. This

circuit has a polynomial complexity of the second grade

- a circuit that implements a generic controlled operator on an arbitrary number of qubits,

without using working qubits. This circuit too has a polynomial complexity of the

second grade

Chapter 6. presents a rigorous analysis on the universality of quantum gates. The author

analyzes the exact universality of infinite sets of gates on one qubit, and how complicated

circuits can be decomposed into simpler ones. This chapter also includes the complexity

evaluations, as conceived by the author. Then, the author provides a proof based on

construction for an approximate universality, with arbitrary small error, using a discrete set of

quantum gates: Hadamard, phase, CNOT and Toffoli.

In the last three chapters, a few known algorithms are analyzed, under some new light; these

algorithms are a proof for the increased efficiency of the quantum computers, with respect to

the temporal complexity, as compared to the corresponding known algorithms from classical

computing.

Quantum Fourier Transformation: considering a natural number , the quantum

Fourier transformation is defined as:

- 5 -

| 〉 | 〉

→

√
∑

 | 〉

As demonstrated in Chapter 7. it is possible to implement this transform with a quantum

circuit containing gates.

Phase estimation: consider the unitary operator and one of its singular states | 〉 with the

corresponding singular value . As it is described in Chapter 8., it is possible to design an

algorithm that efficiently computes the | ̃〉| 〉 state, where ̃ is an approximation of on

 ⌈

 ⌉ bits. The algorithm returns the correct result with a probability of at least

 .

Order determination: The order of an integer number modulo is the smallest positive

integer such that . Chapter 9. shows how this number can be computed on a

quantum computer using operations by using the quantum phase estimation algorithm

applied to the integer numbers on bits: and .

Factorization: The prime factors of a positive integer on bits, , can be determined using

 operations by reducing this problem to the previous one: computing the order of a

purely random number , co-prime with .

In the last chapter, the author provides an analysis of the current languages for quantum

computing, both at low and high level. The author also proposes a new language, built around

.Net framework architecture, which extends from the C# language and uses both imperative

and functional programming paradigms. The architecture for the compiler of this new

language is described in both local environments and on an architecture based on cloud

computing.

- 6 -

1. Basic concepts
Quantum computing represents the study of the information processing tasks that can be

realized using systems behaving according to the quantum mechanics laws, as they are

currently formulated in the mainstream science. The unit of quantum information is called

quantum bit, or shortly, qubit [37].

As the standard, classical (as opposed to quantum) hardware components become smaller and

smaller, at a fast pace, according to the Moore’s law, which is more or less surprisingly still

relevant, it is envisaged that not very far away in the future the quantum dimensions [11] will

come into play. And when that happens, the classical methods of implementing computing

systems will hit a barrier which will slow down their development, as the electronic

components will start suffering from quantum interferences, and their design and physical

implementation will become increasingly difficult.

One of the proposed solutions to overcome these problems is to try and change the computing

paradigm, and switch to one based on quantum information processing technologies that are

based on the somehow strange laws of quantum mechanics [4][20]. It has been proven that

although any classical computer can in theory be used for simulating a quantum computer,

this simulation cannot be performed efficiently, i.e. the increase in processing time depends at

most polynomial on the input size. Therefore, the quantum computers may provide a

significant advantage in the processing speed [8]. This advantage is so great that, according to

some scientists, the classical computers will never be able reach the same level of

performance as the quantum computers. But, such powerful quantum computers are still a

distant way from being physically ready for processing significant problems, with relevant

input sizes. For now, all that is available are just promising prototypes.

1.1. Church – Turing postulate

The theoretical basis for classical computer science were developed by Alan Turing in 1936,

who introduced a model of information processing machine, now widely known under the

name of Turing Machine. He also proved the existence of a Universal Turing Machine, which

is capable of simulating any other Turing Machine [52]. Furthermore, he postulated that this

Universal Turing Machine can implement any process defined in an algorithmic manner.

That is, if a problem has an algorithm that can be implemented by a physical system (such us

a modern computer for example), then there is an equivalent algorithm for a Universal Turing

Machine that can resolve exactly the same problem [73]. This is known as the Church-Turing

postulate:

Any algorithmic process can be simulated using a Turing Machine.

Starting from the idea that, not only a Turing Machine can simulate any algorithmic process,

but in addition, it can do this in an efficient way, a stronger version of this postulate has been

formulated:

Any algorithmic process can be efficiently simulated using a Turing Machine.

So, any problem that can be resolved efficiently in any arbitrarily chosen computing model

can also be efficiently implemented on a Turing Machine. If this assumption (postulate) is

correct, it follows that regardless of the machine used to run an algorithm, that machine can

be efficiently simulated by a Turing Machine. This implies that for analyzing if a

- 7 -

computational process can be efficiently implemented, it is sufficient to analyze that problem

using the model based on Turing Machines.

A first possible provocation to the strong postulate above was raised from an analogic

computing perspective. It was noted that some types of analogical computers can resolve

efficiently some problems that are believed to have no efficient solution on Turing Machines.

At a first glance these analogical computers seem to violate the strong postulate, but in the

end it was proven that their efficiency fades away if one takes into account a real working

environment, that includes noise.

This lesson – that the noise effects within realistically limits must be taken into account when

evaluating the efficiency of a computing model – is one of the biggest provocations that the

quantum computing paradigm must face. For dealing with the noise problems, there are two

directions of research: quantum errors correction and robust quantum computing. So, unlike

the analogic computing, the quantum computing paradigm can, at least in theory, tolerate

finite noise levels, without losing its advantage in computational efficiency.

The first major provocation to the strong Church – Turing postulate came in the 70s, when

Robert Solovay and Volker Strassen showed that it is possible to verify that a number is

prime or not, by using a probabilistic algorithm that manipulated purely random numbers; the

solution was of course obtained only with finite probability. Therefore, this implies that if a

computer has access to a real (as opposed to pseudo) random number generator, it can

perform computations with efficiency greater than the one known for a classical,

deterministic, Turing Machine.

Yet, this type of provocation can be easily resolved by integrating the probabilistic concepts

into the postulate:

Any algorithmic process can be efficiently simulated using a probabilistic Turing Machine.

Or, to use the formulation from the complexity theory:

Any computing model can be simulated using a probabilistic Turing Machine by adding at

most a polynomial number of operations.

The question that was then raised was: isn’t possible in the future another computing model

who could resolve problems even more efficiently than a probabilistic Turing Machine? Isn’t

possible to come up with a single, generic model that can be rigorously proved to efficiently

simulate any other computing model?

1.2. Church – Turing – Deutsch postulate

Starting from these questions, in 1985 David Deutsch tried to find a method to deduct an

even stronger version of the Church – Turing postulate, starting from the physical laws [19].

So, as long as the respective physical laws are considered valid, this new version of the

postulate would be also valid. More precisely, Deutsch tried to find a computational model

that is capable of emulating any physical process; hence, any computing machine which is

built using these physical processes can be emulated by that model. The physical laws chosen

by Deutsch were the quantum mechanics laws, which is debatable if they really are the

ultimate laws of physics. And the computing machine that would be built according to these

quantum laws is now obviously called quantum computer.

It is not clear yet though if Deutsch’s notion on universal quantum computer is enough to

emulate any arbitrarily chosen physical system. Confirming or infirming this hypothesis is

one of the great challenges confronting the scientific community working in this area. It

could be possible, for example, that some computing process defined based on quantum

- 8 -

fields theory, or relativity theory, or string theory, or some other physical theory, to overcome

the capabilities of the universal quantum machine, providing then an even more powerful

computing model.

The quantum computing model proved to be a provocation for the strong Church-Turing

postulate, because Deutsch proved that it is possible for a quantum computer to resolve

efficiently computing problems that have no known efficient solution on a classical

computer, simulated by a probabilistic Turing Machine. Therefore, following these results,

the new Church – Turing – Deutsch postulate can be formulated as [20]:

Any physical algorithmic process can be simulated efficiently using a Quantum Machine.

These Deutsch’s first results were improved with more examples in the next decades. From

these, the most important are Peter Shor’s results on factoring numbers and the discrete

logarithm problem. Both problems have no efficient solution on classical probabilistic

computers, but have probabilistic efficient solutions in the quantum computing model [44].

Another result that demonstrates the power of quantum computers was proved by Lov Grover

[36], which tackled a very important problem: searching in an unstructured space. This

problem too can be solved more efficiently on a quantum computer than on a classical one (as

far as the known classical algorithms go), but the obtained speed up it is not as dramatic as in

the case of factoring numbers.

During the same time, other researchers proved an idea introduced by Richard Feynman back

in 1982: the simulation of quantum mechanical systems on classical computers suffers from

fundamental performance issues. Yet these can be eliminated by moving the respective

simulations on quantum computers.

If there still are other types of problems that could be resolved more efficiently by algorithms

for quantum computers is still a big open question. Discovering new such algorithms is

difficult firstly because they require a special kind of thinking, oriented towards quantum

mechanics principles, and secondly because they have to outperform all known algorithms

from the classical, including probabilistic, computing [21].

1.3. Quantum information theory

The information communication theory, as developed by Claude Shannon in 1948 is another

aspect that would require some modifications when switching to the quantum models of

computation [43]. There are two main problems addressed by Shannon’s theory:

- the resources required for transmitting of information across a communication

channel,

- the ways to protect the sent information against corruption from the noise, which

inevitably existent across the channel.

For resolving these two problems, Shannon proposed and proved two fundamental theorems:

- the theorem for information transmission across an ideal (i.e. noiseless) channel: this

quantifies the resources that are required to store the received information.

- the theorem for information transmission across a real (i.e. noisy) channel: this

quantifies the information that can be sent across a noisy communication channel and

provides error correction codes for protecting this information against the noise.

The quantum theory of information was developed in a similar way [6]. In 1995, Ben

Schumacher presented the quantum analogue for the first Shannon theorem: information

transmission across a noiseless quantum channel, by defining the notion of quantum bit as a

physical resource. But, an equivalent for the second theorem, transmission across a noisy

channel, is yet to be discovered. Yet, there already is a quantum computing theory for errors

- 9 -

correction that was used for developing prototypes of quantum computers that operate in the

presence of noise.

In 1992, Charles Bennett and Stephen Wiesner presented another application of the quantum

information concepts: transmission of classical information (i.e. bits) through a quantum

communications channel [7]. They proved the concept of supra-dense codification: how one

can transmit two bits of classical information by sending just one qubit form the source to the

destination.

Another open issue is the theory of interconnecting several quantum communication

channels, and the development of quantum communication networks, that should contain

quantum repeaters, switches, etc.

1.4. Quantum cryptography

Currently, the widest available cryptographic systems are based on public key cryptography,

which are based on the hardly reversible mathematical functions. This kind of systems

doesn’t have to deal with the keys distribution problem. But many of them are based on the

assumption that factorization is a computable-hard problem, which is not the case anymore as

soon as one changes the paradigm and switches to quantum computers.

Another kind of cryptographic systems use secret keys, but they have to address the problem

of distributing these keys across unsecured channels. And one way to address this is to use

quantum communication channels.

The idea is based on the principle of measuring in quantum mechanics: observing a quantum

system leads to inevitably and irreversible disturbing it [46]. This principle guarantees that if

a key is compromised, the interested parties know about it. But this principle solves a

problem and raises another: it is very difficult, if at all possible, to introduce a repeater in

such a quantum communication channel; which means the channel has a quite limited length.

Yet, some quantum cryptographic systems are already making their ways into the commercial

applications.

1.5. Quantum information representation

The bit is the fundamental concept in the classical information and computing theory.

Quantum computing and quantum information processing uses a similar fundamental

concept: the quantum bit, or qubit [22].

Abstracting away the physical implementation of qubits, they are defined as mathematical

entities. Using the Dirac notation, two possible states of a qubit, correspondents of the

classical bit states 0 and 1, are denoted as 0 and 1 – which are named as computational

basis states. Unlike a classical bit though, a qubit can be in infinity of other states. More

precisely, it can be in any normal state, defined as a complex linear combination of the

computational basis states. This state, noted with  is called superposition:

10   ,

where  and  are complex numbers, satisfying the normality relation: 1
22
 

Therefore, the qubit state is represented by a normed vector in a bi-dimensional complex

vector space, where the two computational basis states form an orthonormal basis.

By measuring this qubit one can obtain the result 0 with probability
2

 , or the result 1 ,

with probability
2

 .

- 10 -

A conceptual example of a qubit is represented by an electron that orbits a nucleus, according

to the Hydrogen atom model, with the two computational basis states being represented by

the basis and the excited states:

Figure 1. The Hydrogen atom model

Because  and  can have an infinity of values, it may look like a qubit can represent an

infinite quantity of information. But this is not true, because what matters are the values that

can be observed, and these are just two of them. Furthermore, after measuring the qubit its

state will collapse into 0 or .1 The only way to measure  and  with infinite precision is

to make an infinity of measurements on a an infinity of identically prepared qubits, which is

not possible.

For representing systems of more than one qubits, the tensor products are used. So, the state

of a system on n qubits, any qubit being in the state i , is represented by the normed

vector:

n 21

1.6. Practical implementations of quantum computing systems

There are two main issues that have to be considered when talking about practical

implementations of such systems:

- the real environments contain noise and this may affect the computing system

- quantum mechanics may not be the theory that correctly and completely describes the

physical reality

Regarding the first issue, it has been proved that noise doesn’t represent problem of principle

in physical implementation of quantum computers (like it did for analog computers). That is,

if the noise can be kept under a fixed value, the quantum correction codes can be used to

decrease the noise even further; and this correction process can be repeated indefinitely

without fundamentally affecting the efficiency.

Yet, until now, quantum computers were only implemented on small scales, of just a few

qubits.

1.7. Quantum computing – quantum gates

The quantum computing studies the transformations performed on qubits’ quantum states. In

the same way as a classical computer is built from electronic circuits containing

interconnected logical gates, a quantum computer is built from quantum circuits containing

interconnected quantum gates. The mathematical formalism used for describing the

transformations applied by the quantum circuits on the qubits is the theory of linear operators.

Since the state of a qubit is a normed vector in a bi-dimensional complex space, a quantum

circuit processing that qubit is a unitary linear operator on that same vector space. This

definition is extended to circuits processing more than one qubits. The operator describing a

0
1

- 11 -

circuit has to be unitary so that at the circuit exit we find a transformed qubit, but still a qubit.

That means that after applying the operator, the state vector is still normed.

Because any unitary operator is bijective and reversible (its inverse operator being its

adjoint), it follows that all circuits are reversible: knowing the states of the qubits at the

circuit’s exit, one can calculate the states of the qubits at the entrance in the circuit.

This property doesn’t hold for all classical circuits. Consider for example the NAND gate.

And yet this doesn’t confer to the classical circuits any computing advantage. This is because

there is a reversible gate on three bits (the universal Toffoli gate) which can implement any

classical circuit.

Figure 2. The classical Toffoli gate and its quantum correspondent

The Toffoli gate flips the third bit if and only if the first two bits are set.

Another very important gate in quantum computing is the two qubit variant of the Toffoli

gate, named CNOT (conditional NOT) gate:

Figure 3. CNOT classical gate and its quantum correspondent

Hence the CNOT gate is said to implement addition modulo 2 on two bits. Here is a circuit

that implements the addition modulo 4 on 2 bits:   4mod0101010101 yyxxxxyyxx  ,

where  1,0,,, 0101 yyxx

Figure 4. The quantum circuit for implementing addition modulo 4

It is very important to mention that measuring one or more qubits is not a unitary operation.

Therefore a physical device performing the measurement cannot be represented by a quantum

circuit. After performing the measurement, the state of the respective qubits is not relevant

any more, what is relevant is the information obtained from the measurements – this

information being represented by classical probabilistic bits.

Figure 5. The representation of a measurement on a qubit

Here are a few examples of quantum gates on one qubit:

 b

001 yxy 

1x

0y

1y

0x

0x

1x

00 yx 

0011 yxyx 

c

ct 

c

t

c

t

c

ct
 CNOT

1b

2b

3b

1b

2b

213 bbb 

 T
2c

21cct 

1c

2c

t

1c

- 12 -

Figure 6. NOT gate

Figure 7. Hadamard gate

It is worth noting that the lines in quantum circuits don’t represent physical lines in a

quantum computer (like electrical wires or anything similar). They represent the life of a

qubit during time. This is why it is not accepted for the quantum circuits to have loops. They

are always direct acyclic graphs.

1.8. The impossibility of copying a qubit

In classical computing paradigm, there is a very simple circuit for copying an arbitrary bit.

Figure 8. Classical circuit for copying a bit

One of the most striking differences between the classical circuits and the quantum ones is

the fact that it is impossible to build a quantum circuit for copying exactly a qubit in an

arbitrary state [59]. This is known as the non-cloning theorem for qubits.

The only quantum circuits that can be built for exactly copying qubits, are just the ones for

duplicating two orthonormal states of a qubit.

Indeed, if one supposes there is such a quantum circuit on two qubits, this would lead to

contradictions with some fundamental physical principles: the possibility of distinguishing

through measurement of the un-orthogonal states, or even the possibility of transferring

information with the speeds greater than the speed of light.

Such a quantum circuit would need to transform the initial state t in the state  ,

for any state  , using only unitary transformations. So, there would exist the unitary

transformationU , such that  tU , for any  . Suppose the circuit would copy

states 1 and 2 :









222

111





t

t

U

U

Calculating the scalar product of the above relations it results:

    21212

†

1221121 ,,   tttt UUUU

Considering U is a unitary operator, and t is a normed state, it follows:

  01212121
2

21  

Which means this is one of the following two cases:

 121  , that is the states to be copied are identical: 21  

or

 021  , that is the states to be copied are orthonormal: 21  

b

0

b

bb 0

 CNOT

H 10  

 2

10

2

10 





X 10  

01  

- 13 -

Yet, the CNOT quantum circuit can be used to copy a qubit whose state is c , where

 1,0c .

Figure 9. Quantum circuit for copying orthonormal states 0 or 1

Even if unitary transformations are accepted, it still remains valid that only orthogonal states

can be copied. It has been proved that a quantum circuit for copying un-orthogonal states can

be developed only if one accepts approximate copies.

c

cc 0

c

0

- 14 -

2. Quantum computing efficiency

2.1. Quantum parallelism

Quantum parallelism is a fundamental characteristic of most of the quantum computing

algorithms.

For example, considering a function   1,01,0: f that takes a bit into another bit. The

purpose is to find a way to compute the two values this function takes, by using a quantum

circuit on two qubits, a data qubit and a destination qubit. Such a circuit would perform the

transformation fU described by  xfyxyx  ,, , where yx,

is a computational basis

state:

 

 

 

 1,111

1,110

0,001

0,000

f

f

f

f









Because   1,01,0: f there are four possible such functions   4221,01,0  :

  xf00  xf01  xf10  xf11

0x 0 0 1 1

1x 0 1 0 1

For each such function, its transformation matrix is:

















































































0100

1000

0001

0010

;

1000

0100

0001

0010

;

0100

1000

0010

0001

;

1000

0100

0010

0001

11100100 ffff UUUU

These can be put in a single, parameterized matrix definition:





























jj

jj

ii

ii

U
ijf

00

00

00

00

which is a unitary matrix: 4IUU
ijij

f
T
f

 and therefore it can be implemented by a quantum

circuit:

Figure 10. Quantum circuit for evaluating f

The circuit provides the following succession of states:

fU

x

x

x

y

 xfy

H



0

0

- 15 -

   











 


2

1,10,0
 0

2

10
 00

ff
fUH

The two terms in the final state contain information about both values the function can take,

 0f and  1f , and yet the function f was applied only once. So, this looks as if f has been

evaluated simultaneously for both input values. This characteristic is known as quantum

parallelism, and is different from the parallelism in the classical computing paradigm. This

new kind of parallelism makes use of the quantum computers capability of being in a

superposition of states.

This procedure can be easily generalized to functions on any number of bits, using a general

Walsh-Hadamard transformation, implemented with n Hadamard gates, performing in

parallel on n qubits. This transformation is noted as nH  .

Figure 11. Walsh-Hadamard transformation on n qubits

Applying this transformation on a set of n qubits, each in state 0 , the final state is:

 




 

n
x

n

nn
x

H

1,02

1
0

Therefore, the Walsh-Hadamard transformation produces a balanced superposition of all the

computational basis states. Furthermore, this is done in a very efficient way, by producing a

superposition of n2 states and using only n gates.

Quantum parallel evaluation of a function    1,01,0: n
f can be then done as following.

One prepares a state on 1n qubits: 00
n

 then the Walsh-Hadamard transformation is

applied on the first n qubits followed by the quantum circuit implementing fU . The sequence

of states is:

 

 
 



















 

nn
x

n

f

x
n

nn
xfx

U
x

H

1,01,0 2

1
 0

2

1
 00

Although it looks like the quantum parallelism allows for evaluating all the possible values of

a binary function f , by applying the function only once, this is not necessarily useful solely

by itself. This is because to find these values, measurements need to be made, and each

measurement can reveal only one value. For example, for the two bit case measuring the final

state will return a final state that is  0,0 f or  1,1 f ! Similarly, in the generic case,

measuring state  
 



n
x

xfx

1,0

 returns only  xf for a single x value. This is not very

H

H

H

0

0

0

 



n
x

n
x

1,02

1

 n gates

- 16 -

different for what a classical computer could do. So, something more than the mere quantum

parallelism is required in order to make the quantum computing more efficient that the

classical correspondent. It is necessary to find a way to extract the desired information in an

efficient way. One example for achieving this is Deutsch’s algorithm.

2.2. Deutsch’s algorithm

A simplified version of this algorithm can be used to demonstrate the way quantum

computers can outperform the classical counterparts. The algorithm, implemented by the

quantum circuit below, uses quantum parallelism combined with quantum interference.

Figure 12. Quantum circuit implementing Deutsch algorithm

The two qubits in the circuit start in the computational basis state:

100 

After applying the Hadamard gate, the state becomes:








 







 


2

10

2

10
1

By defining the transformation  xfyxyx fU
 ,, the following equation follows:

   

 

 

   







 





















 









 










 








 

2

10
1

1 if ,
2

10

0 if ,
2

10

2

10

2

10

x

xfx

xfx

xfxf
xx

xf

U f

Applying this transformation to the state
1 the new state becomes:

0

1

0

1 2

3

fU

x

y

 xfy

H

H

H

H

x

- 17 -

       

         

   

   


















 







 









 







 











 











 








 











 




10 if ,
2

10

2

10

10 if ,
2

10

2

10

2

10

2

110
1

2

10

2

1101

2

10

0

10

2

ff

ff

ff

f

ff





The final Hadamard gates take the qubits in the state:

   

   










10 dacă ,11

10 dacă ,10
3

ff

ff


And by using the summation modulo 2, this final state can be written as:

    1103 ff 

So, by measuring the first qubit, one can evaluate directly the sum modulo 2:    10 ff  .

This means the quantum circuit above computes a global propriety of the input function

    1,01,0:, fxf , namely    10 ff  , by performing just one evaluation of the function

 xf . This is twice as fast as it is possible with a classical computing machine, as this would

need at least two evaluations:  0f and  1f .

One can also deduce an important difference between the quantum parallelism and the

classical probabilistic algorithms. At a first glance, one could assume the quantum state

   

2

1100 ff 
 corresponds closely to a classical probabilistic computer that evaluates

 0f with probability
2

1
, or  1f with probability

2

1
. But the fundamental difference is that in

the classical case, the two cases are mutually exclusive, while in the quantum computer the

two cases are interfering with each other to produce the global propriety. The essence of

many quantum algorithms consists in the proper choosing of the desired function and of the

final transformations.

2.3. Deutsch-Jozsa algorithm

This is the generalized version of the previous algorithm, tackling the following problem.

2.3.1. Deutsch-Jozsa problem

Consider a function    1,01,0: n
f which is either constant or balanced [29]. Find an

efficient deterministic algorithm that decides the type of the function.

f is constant iff it satisfies one of the two conditions:

      01,0  xfx
n

      11,0  xfx
n

f is balanced iff there exist sets  n
A 1,0 and  n

B 1,0 that simultaneously satisfy the

following properties:

 n
BA 1,0

    0 xfAx

    1 xfBx

- 18 -

12  nBA

Using a classical algorithm, this problem can be solved like this: generate sequentially the

elements  n
x 1,0 and for each of them compute  xf . If at the current step the value

obtained is different from the previous one, the function is balanced. If after 12 1 n were

computed, the same value was obtained, the function is constant. The classical algorithm is:

1. choose  n
x 1,0

2. initialize    xA
n
 1,0

3. initialize  xB 

4. initialize  xfy 0

5. if 12  nB then return „ f constant”

6. choose Ax

7. compute  xfy 

8. if 0yy  then return „ f balanced”

9. yy 0

10.  xAA 

11.  xBB 

12. go to step 5.

So, in the worst case, when f is constant, this algorithm has exponential complexity

)12(1 nO . The problem can be formulated in probabilistic terms, in which case it has a

more efficient solution.

2.3.2. Probabilistic Deutsch-Jozsa problem

Consider a function    1,01,0: n
f which is known to be either constant or balanced.

0 , error probability, find an efficient probabilistic algorithm that decides the type of the

function with probability at least 1 .

The classical probabilistic algorithm is similar with the deterministic one presented above.

The main difference is the way of choosing Ax :

- in the deterministic case, the elements are chosen sequentially (note A is an ordered

set:   xyyxAyx  or ,)

- in the probabilistic case, the elements are chosen purely at random

Also, in the probabilistic case, because an exact output answer is not required, it is not

necessary to compute all the 12 1 n values for f , but instead, a smaller number, dependent

on : 12 1  nM . Therefore, step 5. from the deterministic classical algorithm above is

replaced in the probabilistic case by:

5. if 1 MB then return „ f constant”

.....

Note this probabilistic algorithm never returns the wrong answer if the function is constant.

But if the function is balanced, there is a non-zero probability that this algorithm will return

the wrong answer. This can happen when at all the M steps, the same value for f was

computed.

- 19 -

When f is balanced, at the first pass through step 7. in the algorithm, the probability of

obtaining the value  1,00 y when evaluating  00 xfy  where  n
x 1,00  is

n

n

p
2

2 1

0



 .

At the second pass, the probability to obtain again  1,001  yy when evaluating

 11 xfy  where    01 1,0 xx
n
 is

12

12 1

01







n

n

pp . After M passes, the error

probability is therefore:





Mn

n

n

n

n

n

M

M
p

M
2

1

2

1
...

2

1

2

1

12

12
...

12

12

2

2
111

1
















And this means that:

 M2log




1
log2M

So, by running the algorithm for


1
log2 evaluations of the input function, the correct answer

is obtained with the chosen error probability. Hence the complexity of the classical

probabilistic algorithm is 










1
log2O – which doesn’t depend on the size of the input, only on

the chosen error probability.

2.3.3. Deutsch-Jozsa quantum circuit

The generic deterministic Deutsch-Jozsa problem can be solved by the quantum circuit

below.

Figure 13. Quantum circuit that implements the generic Deutsch-Jozsa algorithm

The data register is on n qubits, because    1,01,0: n
f . The initial state is:

100
n



Then, by applying the Hadamard gates, the new state is:

 







 














  





2

10

2

1
 10

1,0

10
n

x
n

nn
x

HH


n
0

1

0

1 2

3

fU

x

y

 xfy

H

nH 

H

x

nH 

- 20 -

So, the data register is in a balanced superposition of the computational basis states and the

target register is in another type of balanced superposition of 0 and 1 .

And because,

   







 








 

2

10
1

2

10
xx

xfU f

After passing the linear quantum circuit fU , the state becomes:

 

   

 







 






















 














 


2

10
1

2

1

2

10

2

1

1,0
n

2

1,0

1
n

f

n
x

xfU

x
n

xx 

And because

 
 

2

1
1,0








z

zx
z

xH it implies

 
 

n

z

zx

n
n

z

xH
2

1

1,0












Using these formulas, the new state can be computed as:

   

 

   

 







 
















 






 




























2

10
1

2

1

2

10
1

2

1

1,0
n

3

1,0
n

2

HxH

HH
x

n

n

x

xfn

n

x

xf





   

  

1
2

1

1,0 1,0

3












 
  

 



n n
z x

n

xfzx
z



Because this is a quantum state, the amplitudes of the computational basis states forming the

interference in the data register, has to satisfy the relation: the sum of all probabilities must be

1, so: 




12,0

2
1

ni

iA .

The amplitude of state
n

0 is
   

 






n
x

n

xf

A

1,0

0
2

1
 and there are two cases:

I. function f is constant. If 0)(xf then 10 A ; if 1)(xf then 10 A . In

both sub-cases, the probability of obtaining 0 for each qubit when measuring

state 3 is exactly 1.

II. function f is balanced. Then    

 

001 0

1,0




A
n

x

xf
. So, the probability

of obtaining 0 for each qubit when measuring state 3 , is exactly 0.

In conclusion, the generic Deutsch-Jozsa problem can be resolved by measuring the first n

qubits from state 3 . If all qubits are 0 then f is constant, if at least one qubit is 1 then

f is balanced.

It has to be mentioned that in this quantum algorithm, the evaluation of f was performed

only once. This means an exponential improvement in the worst case, in comparison to the

deterministic classic algorithm, which may evaluate f , 12 1 n times.

- 21 -

2.4. Super-dense coding

Suppose Alice holds a classical information on two bits (coded as usual as 11 ,10 ,01 ,00), and

she wants to send it to Bob using a communication channel. It is shown that this can be

achieved by transferring only one qubit, if initially Alice and Bob share a pair of qubits in an

EPR state:
2

1100
0


 . Alice holds the first qubit and Bob holds the second. Note this

is an initial fixed state, and it doesn’t depend on the information to be sent. There is no need

to transfer any qubits through the communication channel to prepare this state.

Figure 14. Initial state required for super-dense coding

Then, depending on the classical information she wants to send, Alice applies a Pauli

operator on her qubit:

- for sending 00 , apply 1100 I , the combined state being

2

1100

2

1100
000







IIII
II 

- for sending 01 , apply 0110 X , the combined state being

2

1001

2

1100
001







IXIX
IX 

- for sending10 , apply 1100 Z , the combined state being

2

1100

2

1100
010







IZIZ
IZ 

- for sending11, apply 0110 iY , the combined state being

Figure 15. Combined state after applying one Pauli operator

Because ztxyztxy ,  , states xy (known as Bell state, Bell basis or EPR pairs) are

orthonormal, hence they form an orthonormal state in the state space  .

Next, Alice sends her qubit to Bob.

Alice Bob

qubit 1 qubit 2

 

2

110 yy
x

xy




Alice Bob

qubit 1 qubit 2

2

1100
0




- 22 -

Figure 16. Bob holds now both qubits

Having both qubits, Bob can now perform a projective measurement in Bell basis, using for

measurement operators (projections):

xyxyxyP  , where 1,0x and 1,0y

Assuming state xy is the real one, the probability of obtaining result xy is in this case:

  1 xyxyxy Pxyp  ;

while if the real state is tz , the probability of obtaining xy is:

    xytzPxyp tzxytz  ,0

So, bob can precisely calculate value xy which represents the very information Alice wanted

to send him.

Because the projective measurement doesn’t in this case actually change the state of the

system at all:

 
xy

xyxyxyxyxy

xyp

P



 

1
1

it means the received information can be read as many times as necessary. It is guaranteed

each time the same value will be read.

A generalization for this protocol is possible: for sending n2 bits of information, Alice and

Bob must share an entangled state on n2 qubits: n qubits are in Alice’s possession and the

other n qubits are Bob’s. each time Alice wants to send two bits of information, she applies a

Pauli operator upon one qubit and sends the resulted qubit to Bob. In turn Bob applies a

projective measurement on the state resulted from combining the received qubit with its

entangled pair.

Another characteristic of this protocol is related to its security. If Eve listens on the

communication channel used by Alice and Bob, she intercepts the qubit Alice sends and

wants to calculate the respective information.

Alice Bob

qubit 1

 

2

110 yy
x

xy




qubit 2

- 23 -

Figure 17. Eve intercepts the qubit

To achieve this, Eve will have to perform a measurement on the intercepted qubit. So, she

defines a set of positive operators mE to apply on qubit 1. Assuming the real state is xy ,

the probability of obtaining result m after such a measurement is in this case:

 
   

2

1100

2

110
,

2

110

mm

m
x

m
x

xymxy

EE

yEyEyy
IEmp

















 
 

So, the probabilities of obtaining each of the results are equal, regardless of the real state

before the measurement. In conclusion, because Eve can’t compute the information sent by

Alice, this protocol is guaranteed to be secure as long as Bob’s qubit is kept secret.

2.5. Quantum teleportation

Quantum teleportation [12] is a technique for transmitting quantum states that can be used

even without the need of a quantum communication channel between the sender and the

receiver.

Alice wants to send to Bob a qubit in an arbitrary state  . The restrictions Alice must obey

are:

- Alice doesn’t know the state to be sent. She can’t even find it out because she has

only one copy of the qubit to be sent, and therefore she can’t perform a measurement.

- Alice and Bob share only one digital classical communication channel. So no qubit

can be sent on it.

The solution is based again on the assumption that Alice and Bob share an initial a pair of

qubits in EPR state:
2

1100
00


 .

The steps of the communication protocol are [34]:

Pas 1. Alice and Bob initialize the EPR pair. Alice takes one qubit, Bob takes the

other one.

Pas 2. Alice combines the qubit to be sent, which is in state  with the first EPR

qubit. Alice obtains then one of the following results: 00, 01, 10, or 11.

Pas 3. Alice sends these two bits to Bob.

Alice Bob

qubit 2

 

2

110 yy
x

xy




qubit 1

Eve

- 24 -

Pas 4. Depending to the received bits, Bob performs a transformation (one of four

possible) on his own EPR qubit. The final state of this qubit will be the very initial

state  .

The quantum circuit representing this protocol is presented below.

Figure 18. Quantum circuit for qubit teleportation

Initially, Alice and Bob prepare an EPR pair, using a circuit with two gates: one Hadamard,

one CNOT acting on two qubits, each of them in the computational basis state 0 . The initial

state is:

000  

After applying Hadamard gate, the state becomes:

2

1000
0

2

10
1





 

Then, CNOT gate inverts the second qubit iff the first one is in state 1 . The next state is

therefore:

002
2

1100
 




Now, Alice and Bob share an EPR pair and therefore Alice and Bob can now move away

from each other, taking one qubit each. They can communicate form now only on the

classical digital channel. Until now, the target qubit to be sent was left untouched, in its initial

state:

10 ba 

The combined three qubit system state is:

      1100111000
2

1

2

1100
102 


 baba

Alice applies another CNOT gate, the new state being:

    0110111000
2

1
3  ba

Then, the target qubit goes through a Hadamard gate:

H

H

2m
X

1m
Z

1m

2m
0

0





Alice and Bob

Alice

Bob

Classical communication

channel

0

1 2

3 4 5

- 25 -

   

      011010110010
2

1

0110
2

10
1100

2

10

2

1

4

4



















ba

ba





which is equivalent to:

 101110001010111100011000
2

1
4 bbbbaaaa 

        0111101001011000
2

1
4 babababa 

Next, Alice performs a measurement on the two qubits she holds. The measurement is in the

base formed from orthonormal vectors 21mm , where  1,0, 21 mm , i.e. 11,10,01,00 .

According to the quantum measurement principles, projectors 212121
mmmmP mm  are

applied on Alice’s two qubits, obtaining the following results:

 00 with probability  
4

1
00 42004   IPp , resulting state being

 
 

 1000
00

00
4200

5 ba
p

IP








 01 with probability

 

4

1
01 42014   IPp , resulting state being

 
 

 0101
01

01
4201

5 ba
p

IP








 10 with probability

 

4

1
10 42104   IPp , resulting state being

 
 

 1010
10

10
4210

5 ba
p

IP








 11 with probability

 

4

1
11 42114   IPp , resulting state being

 
 

 0111
11

11
4211

5 ba
p

IP








Alice now sends to Bob the result from her measurement, as two bits 21mm , using the

classical communication channel. Depending on the Alice’s measurement result, Bob’s qubit

will be in one of the following states:

   100000 5 baB 

   010101 5 baB 

   101010 5 baB 

   011111 5 baB 

Depending on the two received qubits, Bob can now re-constitute the target qubit, in its

original state  :

 If 0021 mm , Bob doesn’t need to do anything because his qubit is already in state

 .

- 26 -

 If 0121 mm , Bob has to apply a X gate, because    1001 babaX .

 If 1021 mm , Bob has to apply a Z gate, because    1010 babaZ .

 If 1121 mm , Bob has to apply first a X gate, then a Z gate, because

     101001 babaZbaZX .

Or, shortly: if 21mm , Bob has to apply first 2m
X , then 1m

Z .

Note that this protocol doesn’t go against the special relativity principles because Bob can

reproduce state  only after he receives the two bits from Alice’s measurement, so the

information travels only with a limited speed.

Bob can’t reconstitute by himself the state  . To prove this, consider the density operator of

the whole system, just after the Alice’s measurement:

               1111
4

1
1010

4

1
0101

4

1
0000

4

1
55555555  AB

     

     0101111110101010

0101010110100000
4

1









babababa

babababaAB

Apply a partial trace on this system to find the density matrix for the Bob’s sub-system:

       

     

   

22

1100

4

112002

01011010

01011010
4

1

2

2222

I

baba

babababa

babababatr AB

A

B

















So, the state of Bob’s sub-system doesn’t depend at all on the target qubit state  .

Therefore, any measurement Bob would perform at this point will provide no information

about  .

Another fact to be noted is that the quantum teleportation protocol doesn’t produce any copy

of the target qubit. At any given moment, only one qubit is in state  . After the protocol

ends the target qubit, which was initially in state  , is now in one of the computational basis

states 0 or 1 , because a measurement is applied on it.

The quantum teleportation shows the possibility to inter-change of different resources,

demonstrating that one EPR pair together with two classical bits of communication is at least

identical to a qubit of communication. This fact is used for building robust to noise quantum

gates and for correcting the errors in quantum transmissions.

- 27 -

3. Graphical representations

3.1. Trace of an operator

Every operator A over the Hilbert vector spaceV of dimension n has an associated square

matrix of complex numbers  nnaij  , defined for an orthonormal base nvv ...1 like this

[10]:

njivAva jiij ,1,,  .

For two different orthonormal bases nvv ...1 and nww ...1 , the associated matrices are

ji
v
ij vAva  and respectively ji

w
ij wAwa  . These matrices are similar, being related by

a unitary matrix UAUA vw † where jiij wvu  .

The trace of a square matrix of order n is defined as:

  



n

i

iiaA
1

tr

The trace is cyclic:

   BAabbaAB
n

k

n

i

ikki

n

i

n

k

kiik trtr
1 11 1


  

 .

The trace is linear:

       AcaccacABAbabaBA
n

i

ii

n

i

ii

n

i

ii

n

i

ii

n

i

iiii tr)tr(;trtrtr
11111

 


and:

   




 













  AaaA

n

i

ii

n

i

ii trtr
11

†

Because trace is an invariant of the similarity transformation

     AAUUAUU trtrtr ††  ,

And because changing the base is equivalent to a similarity transformation [50], it means it

makes sense to define the trace of an operator over the vector spaceV as the trace of the

matrix associated to an orthonormal base.

If njj ,1,  is an orthonormal base inV , then:

kjnkj  şi ,1, :   1tr jj and   0tr kj and   nIn tr

3.2. The operators’ vector space

The set VL , containing all the linear operators defined over a Hilbert spaceV , is also a vector

space over the complex numbers [33]. Also, in this space one can define a scalar product:

   BABA †tr,


 . An orthonormal basis in this space is defined by the Hermite operators:

- 28 -

























njjj

kjnkj
jkikji

jknkj
kjjk

Ajk

,1 ,

 and ,1, ,
2

 and ,1, ,
2

3.3. Pauli matrices

With the above notations, if 2V is a bi-dimensional vector space, the vectors corresponding to

the computational basis states form an orthonormal basis, and the following Hermite

operators:

2

1100
00


B

2

1001
01


B

2

1001
10

ii
B




2

1100
11


B

form an orthonormal basis in
2VL .

Removing the requirement for the operators to be normal, one obtains the Pauli operators:

110020  I

10011  Xx

10012 iiYy 

11003  Zz

The Pauli matrices associated to Pauli operators for the computational basis states are:











10

01
20 I











01

10
1 Xx








 


0

0
2

i

i
Yy













10

01
3 Zz

Pauli matrices have the following properties:

- Hermite: 3,0,
†
k  kk

- unitary: 3,0,2
2†

k
†
k  kIkkk 

- if 3,1,  kj : 



3

1

2

l

ljkljkkj iI 

- iZXY  iXYZ  iYZX  iZYX  iXZY  iYXZ 

-   kjkjjkkjkj  şi 3,1, ,0, 2

-   



3

1

2,
l

ljklkj i 

-   2tr 0  and   0tr k , 3,1k

3.4. Graphical representation of qubits

3.4.1. Qubits in pure state – Bloch sphere

Using the well-established Dirac notation, the pure state of a qubit, defined as a linear

superposition of the computational basis states, it is represented by the following equation:

1,,,10
22
  C

- 29 -

where 0 and 1 are the computational basis states. So, a qubit in a pure state is represented

by a unit vector in a bi-dimensional complex vector space [48].

For the purpose of geometrical representation, it is more useful to use the polar coordinates

for complex numbers. Considering also the measuring principle from quantum mechanics

stating that measuring two quantum states that differ only by a global phase factor, provides

always the same result ( ie , R), the state of the qubit can be then expressed

as:

   


  2,0,,01e
2

sin0
2

cos 
i

This equation represents therefore the base starting point that provides for a geometrical

representation of qubit states, because it proves that there is a bijective mapping between the

set of measurable pure states of a qubit and the unit sphere in the Euclidean tridimensional

space. According to this mapping, each and every pure qubit state has an associated point P

on the unit sphere, a point having the spherical coordinates  ,P . The ⃗⃗⃗⃗ ⃗ vector, with the

origin in the center of the unit sphere, is called “Bloch vector” and has the following

coordinates in a tri-dimensional Euclidean space:

    cos,sinsin,sincos,, zyx ppp

Figure 18. Bloch Sphere

3.4.2. Qubits in mixed states – Bloch ball

As opposed to pure state qubits, where a state vector is used to represent their state, when the

qubit state is mixed, the density operator is used for representing that state. Actually, these

two representations are mathematically equivalent, but they have different, though similar,

physical interpretations. The principles that form the base for the quantum mechanics theory

can be formulated using either of the two approaches: state vectors or density operators.

Assuming a quantum system is in an unknown state, but the possible states form a finite and

discrete set, where the pure state i occurs with the probability ip , the density operator

associated with that system is defined by the following equation:

0

1

P







xp

yp

zp

x

y

z

- 30 -

1,10,  
i

ii

i

iii ppp 

The density operator is a self-adjoint (Hermite) positive operator, with unit norm:

According to the quantum mechanics formalism based on density operators, the pure states

are just a particular case that can be also represented by density operators. The density

operator of a pure state is defined as:

 

The trace of a general density operator satisfies the following inequality; with the equality

happening if and only if the respective density operator represents a pure state:

  1tr 2 
For the quantum system representing one qubit, the associated density operator  belongs to

the complex vector space defined by the set of all operators generated by the Pauli operators.

Therefore that density operator can be decomposed as a linear superposition of the Pauli

operators, using complex coefficients:

C  dcbadcbaI zyx ,,,,2 

The complex coefficients can be further refined by imposing the restrictions that apply to

density operators: self-adjoint, positive and unitary. Hence the equation above can be

transformed such that it allows for a geometrical representation:

     rIrrrI zzyyxx 22
2

1

2

1

whereas r is a vector in the real tri-dimensional Euclidian space. Considering the matrix

associated with this density operator in the computational basis state, and by forcing its

eigenvalues to be real positive numbers (this is allowed because the operator is itself

positive), it follows that the r vector is restricted to a unitary ball, centered in the origin:

 11
222

 rrrr zyx

Again, the equality happens if and only if the respective density operator represents a pure

state. The north and south poles of the ball represent two particular pure states: the

computational basis states.

    























i

i

i

iii

i

iii

i

ii

i

iii

i

iii

i

iii

i

iii

ppp

ppp

pp

1trtrtr

0
2

†







- 31 -

Figure 19. Bloch ball

When the density operator  represents a pure state, this state is represented using the real

unity vector     cos,sinsin,sincos,,  zyx rrrr . Then, the representation on the

Bloch sphere is a particular case of the representation on the Bloch ball.

Figure 20. Bloch sphere and ball

3.5. Rotation operators

The complex exponential function defined on the space of the square matrices nn can be

factored using the Taylor-Maclaurin series [13]:

00

11

r







xr
yr

zr

x

y

z

00

11



xr

yr

zr

x

y

z

- 32 -

 
 







0

!
exp

k

k

k

iAx
iAx

where A is any square matrix of complex numbers and x is any real number. If additionally, A

satisfies the relations:

NkAAIAIA k
n

k
n   ,; 1222 ,

the above equation becomes:

   
 

 
 

   AxiIxAx
k

iIx
k

iAx n

k

kk
n

k

kk
sincos

!12

1
1

!2

1
1exp

0

12

0

2 






























 










Therefore, because the Pauli matrices satisfy 2
2 Ik  , one can define the following operators

in the complex bi-dimensional space, which will be proved to be the very tri-dimensional

rotations across the coordinate’s axes:

  3,0,
2

sin
2

cos
2

exp 2 






 
 kiI

i
R k

k
k 




3.5.1. Rotation operator zR

For the k = 3case in equation (16), the operator and its associated matrix, according to the

computational basis state, defined by the following equation:

 























 




2

2

2

e0

0e

2
sin

2
cos

2
exp 




 i

i

z ZiI
Zi

R

has the following geometrical interpretation: for a qubit in a pure state, upon which an

operation defined by equation above is performed such that the qubit transformed state is:

  1e
2

sin0
2

cos 111
01


 i

zR 

and if the corresponding points on the Bloch sphere are P0 and P1, then P1 can be deducted

geometrically by rotating P0 with angle  around the z axis.

- 33 -

Figure 212. Geometrical representation of the rotation operator zR

This interpretation can be validated by simply applying the operator on the qubit in initial

state:

 
 

11
2

0

0

2

0

0

2

2

0 e

e
2

sin

2
cos

e

e
2

sin

2
cos

e0

0e

00

















































































i

i

i

i
i

i

zR

And from the figure above, the parameters for the transformed state:

  010110 şi PP

3.5.2. Rotation operator xR

In the same way, for the case xk 1 , the operator whose associated matrix in the

computational basis state is:

 



























 


2
cos

2
sin

2
sin

2
cos

2
sin

2
cos

2
exp 2 






i

i
XiI

Xi
Rx

has the following geometrical interpretation: for a qubit in a pure state, upon which an

operation defined by equation above is performed such that the qubit transformed state is

  1e
2

sin0
2

cos 111
01


 i

xR  ,

1P

  01

0

0P

0



01  

x

y

z

- 34 -

and if the corresponding points on the Bloch sphere are P0 and P1, then P1 can be deducted

geometrically by rotating P0 with angle  around the x axis.

Figure 22. Geometrical representation of the rotation operator xR

This interpretation can be validated by:

  











































 









 









2,0 unde ,e

e
2

sin

2
cos

e

e
2

sin
2

cos
2

cos
2

sin

e
2

sin
2

sin
2

cos
2

cos

11
1

1

00

00

0

10

0

i

i

i

i

i

x

i

i
R

3.5.3. Rotation operator yR

In the same way, for the case yk 1 , the operator whose associated matrix in the

computational basis state is:

 
























 


2
cos

2
sin

2
sin

2
cos

2
sin

2
cos

2
exp 2 




 YiI
Yi

Ry

has the following geometrical interpretation: for a qubit in a pure state, upon which an

operation defined by equation above is performed such that the qubit transformed state is:

  1e
2

sin0
2

cos 111
01


 i

yR  ,

1P

1

0

0P

0



1

 a

O

zP1

zP0

xP

   

    
    
   
   yaPPyPP

zaPPzPP

yaPPyPP

zaPPzPP

PPPPr

xxOP

xzx

xz

xzx

xz

xx

x

sinsinsin

coscos

sinsinsin

coscos

sincos1

sincossincos

1111

1111

0000

0000

0
2

0
2

10

1100

























x

y

z

- 35 -

and if the corresponding points on the Bloch sphere are P0 and P1, then P1 can be deducted

geometrically by rotating P0 with angle  around the y axis.

Figure 23. Geometrical representation of the rotation operator yR

For validating this last geometrical representation, one can make use of the two

representations demonstrated in the previous two chapters, for Rx and Rz. Any rotation with

angle  around the y axis can be factored out into three rotations made in the following

order:

- one rotation with angle
2


 around the z axis

- one rotation with angle  around the x axis

- one rotation with angle
2


 around the z axis

Then, according to the previous two geometrical representations, these three rotations can be

written using the respective operators:

1P

1

1

0



0

0P

x

y

z

   
















y
i

i

i

i

zxz R

i

i
RRR 






































































4

4

4

4

e0

0e

2
cos

2
sin

2
sin

2
cos

e0

0e

22

- 36 -

3.5.4. Generic rotation operator nR

Considering a unitary vector  zyx nnnn ,, in the real tridimensional space, there is a matrix

defined by:

zzyyxx nnnn   where   2

2
In 

And therefore it makes sense to define the generic rotation operator:

  





 







 niIniRn

2
sin

2
cos

2
exp 2

having the following geometrical interpretation: for a qubit transformed by the operator

 nR , such that

  1e
2

sin0
2

cos 111
01


 i

nR  ,

if 0P and 1P are points on the Bloch sphere corresponding to the states 0 and respectively

1 , then 1P can be obtained by rotating 0P , by the angle around the n axis.

Figure 24. Geometrical representation of the generic rotation operator nR

For demonstrating this, the rotation by angle around the n axis is decomposed in rotations

around the coordinate axes:

- align n axis over z :

o rotation by angle n around z

1

0

0

 1

x

z

0P

1P

y

n

n

n

- 37 -

o rotation by angle n around y

- perform the desired rotation:

o rotation by angle around z

- bring n axis back in the original position:

o rotation by angle n around y

o rotation by angle n around z

           nznyznynzn RRRRRR  

 

  




















nnnnn

nnnnn

ii

ii













cos
2

sin
2

cossinsinsincos
2

sin

sinsinsincos
2

sincos
2

sin
2

cos

The coordinates of vector n can be deducted from the angles n and n :

   nnnnnzyx nnnn  cos,sinsin,sincos,, 

It implies that:

   ZnYnXniIn
i

i
nnR zyxzyxn 































 











2
sin

2
cos

10

01

0

0

01

10
2




3.6. Decomposing unitary operators on one qubit

Because the set of Pauli operators ZYXI ,,,2 form an orthogonal basis in the vector space of

linear operators over the bi-dimensional complex space, any operator on one qubitU can be

decomposed in:

dZcYbXaIU  2

where dcba ,,, are complex numbers uniquely identified.

If, additionally, the U operator has to be unitary, then:  
n

i RU e , where  zyx nnnn ,, is

a unit vector and   ,0 .

3.6.1. Z-Y decomposition of one qubit unitary operators

If U is a unitary operator over the bi-dimensional complex space, whose associated matrix is:



























db

ca
U

dc

ba
U †

where a , b c and d are complex numbers. Then, using the polar coordinates of these

complex numbers, the matrix can be decomposed like this:

- if 100  dacb , then      dzyaz

i

RRRU

da





0e 2 



- if 100  cbda , then      0e 2
zycbz

i

RRRU

cb









- if 0a and 0b and 0c and 0d , then

     dczycaz

i

RaRRU

da













 

arccos2e 2

- 38 -

3.6.2. X-Y decomposition of unitary operators on one qubit

Considering U a unitary linear operator over the bi-dimensional complex space, it can be

decomposed in rotations X-Y:      
xyx

i RRRU e where the rotation angles can be

computed from:













































2
sin

2
sin

2
cos

2
cos

2
sin

2
cos

2
cos

2
sin

2
sin

2
cos

2
cos

2
sin

2
sin

2
sin

2
cos

2
cos

e






ii

ii

dc

ba i

- 39 -

4. Controlled quantum circuits
Using the decomposition of unitary operators on one qubit in a product of rotations, it is

possible to demonstrate the following result, very important in constructing unitary operators

that act on multiple qubits.

Corollary: Suppose is a unitary operator on one qubit. Then there exist unitary operators

 on one single qubit such that and where is a generic

phase factor.

Demonstration: According to the decomposition on one qubit, any unitary operator

can be decomposed using as:

The corollary can then be proved by using the unitary operators:

 (

)

 (

) (

)

 (

)

4.1. Controlled-U operator on one qubit

4.1.1. Definition and notations

Let a unitary operator on one qubit . A Controlled-U operator is defined as an operator on

two qubits – one control qubit and one data (or target) qubit – that obeys the following rules:

- the control qubit always remains unchanged,

- if the control qubit is set, then operator acts on the data qubit,

- if the control qubit is reset, the target qubit remains unchanged.

 | 〉| 〉

→ | 〉| 〉

 | 〉| 〉

→ | 〉| 〉

 | 〉| 〉

→ | 〉 | 〉

 | 〉| 〉

→ | 〉 | 〉

| 〉| 〉

→ | 〉 | 〉

The circuit that implements the operator is represented as [61]:

U

4.1.2. Implementing the Controlled-U operator on one qubit

Using the decomposition , it can be proved that:

Theorem: The circuit can be implemented using only one qubit gates and

the CNOT gate.

Demonstration: The circuit is the following one, where the phase gate is defined as:

 | 〉

→ | 〉 | 〉

 | 〉

→ | 〉 | 〉

- 40 -

C B A

S

4.2. The Controlled-U operator on multiple qubits

A particular example of such operator is implemented by the Toffoli gate.

In the general case, considering the computational basis state, given an operator on

qubits where the operator acts on qubits, the controlled operator by qubits is defined

as:

 | 〉| 〉 | 〉

 | 〉,
where the exponent is the binary product of the control bits . So, the controlled U

operator has the following properties:

- the control qubits always remain unchanged,

- if all the control qubits are set { } ⇒ , then the operator acts

on the data qubits ,

- if at least one control qubit is reset { } ⇒ , then all the data

qubits remain unchanged.

U

.

.

.

.

.

.

.

.

.

.

.

.

 c1⟩

 c2⟩

 cn⟩

 d2⟩

 d1⟩

 dk⟩

4.3. The Controlled-U operator with two control qubits

4.3.1. Implementation using controlled gates on 1 qubit

Theorem:
 can be decomposed in a product of

 operators.

- 41 -

Demonstration: The following circuit demonstrates this decomposition, where .

U V V † V

≡

 c1⟩

 c2⟩

 d ⟩

For the Toffoli gate: ≡ and ≡

 . Then it follows that reversible gates on

one qubit together with reversible gates on two qubits are enough to implement the Toffoli

gate. This proposition doesn’t hold for classical computing.

4.3.2. Implementation using only CNOT gates and one qubit gates

Theorem: Any operator
 can be implemented using at most 8 gates on one qubit and 6

CNOT gates.

Demonstration: Using the decomposition ⇒ , from the

previous theorems, the following circuit can be built

C B A

S

A † B † C †

S †

C B A

S

This circuit can be further simplified because , and :

C B

S

B †

S †

B A

S

The three cascaded CNOT gates produce: | 〉

→ | 〉| 〉

→ | 〉|

 〉| 〉

→ | 〉| 〉| 〉, and this state can be computed by using

just two CNOT gates:

- 42 -

≡

The circuit can be further simplified. According to the previous theorem the following circuit

identity holds:

S S †

eiαI2 e-iαI2

≡

And the effect of this circuit is:

| 〉

→ | 〉| 〉

→ | 〉| 〉| 〉

→ | 〉| 〉| 〉

→ | 〉| 〉| 〉

→ | 〉| 〉| 〉

 | 〉| 〉| 〉
The same state can be obtained using a more efficient circuit:

eiαI2 e-iαI2

≡ S S †

With these last simplifications, the desired circuit is:

- 43 -

C B

S

B †

S †

B A

S

4.4. Quantum implementation of universal reversible classical

gates

4.4.1. Implementing Toffoli gate

Toffoli gate is a reversible gate which is universal for classical computation. It can be

implemented using only the following types of gates: Hadamard, phase, CNOT and T. The

circuit is:

H T † T

T †

H

T † S

T † T

T c1⟩

 c2⟩

 d ⟩

 c1⟩

 c2⟩

 d c1c2⟩

4.4.2. Implementing the Fredkin gate by using Toffoli gates

The Fredkin gate, also called controlled swap gate, has a special signification in the classical

theory of reversible computing. It is defined as a gate on 3 qubits that satisfies the following

conditions:

- the control bit remains always unchanged

- the data bits are swapped iff the control bit is set

The Fredkin gate has two significant properties:

- reversible: applying the gate twice all the bits are switched to their original states.

- conservative: the number of set bits is conserved when they go through the gate.

In quantum computing, the Fredkin operator is unitary, his matrix for the computational basis

state is:

- 44 -

[

]

The Fredkin gate is represented as:

Fredkin

 a⟩
 b⟩
 0⟩

 a⟩
 b⟩
 0⟩

Fredkin

 a⟩
 b⟩
 1⟩

 b⟩
 a⟩
 1⟩

From its definition, one can deduct its algebraic description, where are binary numbers

each on 1 bit:

| 〉

→ | 〉| 〉| 〉

The Fredkin gate can be implemented using 3 Toffoli gates:

 a⟩

 b⟩

 c⟩

 a ca cb⟩

 c⟩

 b ca cb⟩

It can be noticed that the first and the last Toffoli gates can be replaced by CNOT gates, the

new circuit having exactly the same effect:

 a⟩

 b⟩

 c⟩ c⟩

 b ca cb⟩

 a ca cb⟩

Because the Fredkin operator is symmetric in , the following gate is also equivalent to the

precedent one:

- 45 -

 a⟩

 b⟩

 c⟩ c⟩

 b ca cb⟩

 a ca cb⟩

Next, replacing the Toffoli gate with the circuit from 4.3.1. that implements the Toffoli gate,

one finds a circuit that implements the Fredkin operator using only 2 qubit gates:

V V † V

 c⟩

 b ca cb⟩

 a ca cb⟩ a⟩

 b⟩

 c⟩

where ≡

 . The first two gates can be grouped together into a single 2 qubit

gate:

V a⟩

 b⟩ a b⟩

Va a⟩

Thus it results an implementation of the Fredkin gate using only 6 gates on 2 qubits.

- 46 -

5. Controlled operators implementation

5.1. The linear implementation of the controlled operators

A simple circuit for implementing the controlled operators
 in the generic case is

presented below. The circuit is logically split in three steps and uses working qubits,

set initially to the computational basis state| 〉.

U

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 c1⟩

 c2⟩

 c3⟩

 c4⟩

 c5⟩

 cn⟩

 l1⟩

 l2⟩

 l3⟩

 l4⟩

 ln-2⟩

 ln-1⟩

 d2⟩
 d1⟩

 dk⟩

Considering the control qubits in the computational basis state | 〉, the circuit

implements in the first step the logical product between all the control bits: . For

this, the circuit uses Toffoli gates and the working qubits. The first Toffoli gate

implements the logical product between the first two control qubits, using as result the first

working qubit. The second Toffoli gate adds the third control qubit to the previous product,

using as result the second working qubit. And so on, until the last working qubit contains the

logical product of all the control qubits.

During the second step, the circuit implements the desired operator
 using a controlled

gate with just one control qubit
 . In the third step, the circuit implements the reverse

operation that corresponds to the transformation from the first step in order to reset all the

working qubits to their initial computational basis state | 〉.

- 47 -

So, in the end, all the control qubits remain unchanged, while the operator is applied to the

data qubits | 〉 iff the all the control qubits are set to their computational basis state
| 〉.

5.2. Exponential implementation of the controlled operators

5.2.1. Implementing controlled operators on 3 qubits

The implementation of the controlled operators
 can be realized using only operators

 , without using any working qubit. The method for implementing the controlled

operator with 2 control qubits
 , described above, can be generalized starting from the

logical operations performed with
 :

- iff

- iff

- iff

Because , this sequence of operations is equivalent to

applying to the third qubit.

In a similar mode, for implementing
 the operator is required, such that . The

sequence of operations on the fourth qubit is:

- (100) iff

- (110) iff

- (010) iff

- (011) iff

- (111) iff

- (101) iff

- (001) iff

For each of the above operations, the sets of bits on the left column indicate on which qubits

it is required to check the set condition (). The parity of each triplet of bits indicates the

type of the operator to be applied: for triplets with odd number of set bits is applied, while

for the triplets with an even number of set bits is applied.

By comparing this sequence of operations with the terms in the equation:

It can be verified that the sequence of operations above is equivalent to applying the operator

 on the fourth qubit iff ; that is the very definition of the controlled

operator
 .

The circuit that implements the sequence of operations above is presented below. For an

efficient implementation, the triplets above have to form a Gray sequence of codes.

V V V† VV†V†V

- 48 -

5.2.2. Implementing controlled operators. Generalization

In a similar way to the construction of the above circuit, by using induction, the following

generalization can be applied:

Theorem: For any , and any unitary operator on qubits, the controlled gate

can be implemented by a circuit on qubits composed of gates
 and

 , together with CNOT gates, where

 is a unitary.

The circuit can be obtained by using the following equation:

∑

 ∑ ()

 ∑ ()

It should be observed that this methodology of implementing generic controlled operators has

the advantage that doesn’t require any working qubits. But the main disadvantage is that the

number of required gates is rising exponentially with the number of control qubits. In

contrast, when implementing by using the working qubits, the number of gates raises only

linearly with the number of control qubits.

Here is again the old and well known compromise between the processing speed (i.e. number

of gates connected sequentially) and the size of the working memory (i.e. the number of

working qubits).

5.3. Quadratic implementation of controlled operators

5.3.1. Implementing the generic CNOT by using Toffoli

As a compromise between the exponential number of gates and the necessity of working

qubits, it is possible to design a circuit that implements
 using a single working qubit.

Lemma: For , can be implemented using Toffoli gates and

working qubits that doesn’t require any special initial state. By adding another

Toffoli gates, the circuit leaves the working qubits in the same state as it found them.

Demonstration: induction after . For , the circuit below satisfies the requirements:

| 〉| 〉| 〉

→ | 〉| 〉| 〉

 c1⟩

 c2⟩

 ⟩

 c3⟩

 l1⟩

Assuming the statement is true for , then it is also true for :

| 〉| 〉| 〉

→ | 〉| 〉| 〉

⇒

| 〉| 〉| 〉

→ | 〉| 〉| 〉

- 49 -

 c1⟩

 c2⟩

 ⟩

 cn⟩

 l1⟩

L

 cn-1⟩

 l2⟩

 ln-3⟩

 ln-2⟩

L=L†

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

| 〉| 〉| 〉

→ | 〉| 〉| 〉

→ | 〉| 〉| 〉 | 〉| 〉

→ | 〉| 〉| 〉 | 〉|

 〉
 | 〉| 〉| 〉 | 〉| 〉

→ | 〉| 〉| 〉 |

 〉| 〉
 | 〉| 〉| 〉

So, the total number of the Toffoli gates is:

The circuit for the generic case is:

- 50 -

 c1⟩

 c2⟩

 ⟩

 cn⟩

 l1⟩

 cn-1⟩

 l2⟩

 ln-3⟩

 ln-2⟩

 c3⟩ .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lemma: For any and the operator can be implemented using a

circuit having only two gates, two gates and a single working qubit.

Demonstration: is made by construction, see the following circuit. The qubits evolution is:

| 〉| 〉| 〉

→ | 〉| 〉| 〉

→ | 〉| 〉| 〉

→ | 〉| 〉| 〉

 | 〉| 〉| 〉

→ | 〉| 〉| 〉

 | 〉| 〉| 〉

- 51 -

 c1⟩

 c2⟩

 c3⟩

 cm⟩

 cm+1⟩

 cm-1⟩

 cn⟩

 l ⟩

 cn-1⟩

 d ⟩

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Corollary: For any , operator can be implemented using a circuit containing

 Toffoli gates and a single working qubit. So, the temporal complexity is linear and

the spatial complexity is constant.

Demonstration: Let ⌈

⌉ and according the previous Lemma, the desired operator can be

implemented using two ⌈

⌉ gates, two ⌈

⌉ gates and a single working qubit.

According to the lemma above operator ⌈

⌉ applied to the working qubit | 〉 can be

implemented using ⌈

⌉ Toffoli gates and, as working qubits: |

⌈

⌉

⌈

⌉

 〉, i.e.

 ⌈

⌉ working qubits. The respective lemma hypothesis is satisfied because ⌈

⌉ ⌈

⌉

 ⌈

⌉ .

According to the same lemma, operator ⌈

⌉ applied to the data qubit | 〉 can be

implemented using (⌈

⌉) (⌈

⌉) Toffoli gates and, as working

qubits: |
⌈

⌉
〉, i.e. ⌈

⌉ working qubits. The respective lemma hypothesis is satisfied

because ⌈

⌉ ⌈

⌉ ⌈

⌉

 ⌈

⌉

In conclusion, the total number of the required Toffoli gates is:

(⌈

⌉) (⌈

⌉) (⌈

⌉) (⌈

⌉)

5.3.2. Implementing controlled operators without working qubits

Lemma: For any operator , the controlled operator
 can be implemented with the

quantum circuit below, where .

- 52 -

 c1⟩

 c2⟩

 cn⟩

 cn-1⟩

.

.

.

.

.

.

.

.

.

 d2⟩
 d1⟩

 dk⟩

V V †
.

.

.

.

.

.

V

.

.

.

.

.

.

.

.

.

The

 definition is verified:

| 〉| 〉

→ | 〉

 | 〉

→ | 〉| 〉

 | 〉

 ()
→ | 〉| 〉

 | 〉

→ | 〉| 〉

 | 〉

 | 〉| 〉
 | 〉

→ | 〉
 | 〉

 ,
| 〉

 | 〉

| 〉
 | 〉

 {
| 〉| 〉
| 〉 | 〉

Theorem: Any operator can be implemented using elementary gates: one qubit

gates together with Toffoli and CNOT.

Demonstration: by applying the previous lemma for and defining as the

number of necessary gates for implementing operator U:

 () () () () ()

 ()

According to the previous corollary, considering that the data qubit | 〉 is temporarily used as

a working qubit, the number of necessary Toffoli gates for implementing operator
is:

 ()

According to a previous theorem, the two gates and coupled like the circuit in

the corollary above, require together 6 gates on one qubit and 4 CNOT gates:

 () ()

So: () () ()

And from this recursive relation it follows that: () .

- 53 -

6. Universal quantum gates

6.1. Gates controlled by | 〉 qubits

In the previous circuits, the unitary operators from controlled gates are activated when the

control qubits are set to | 〉, and they are deactivated when at least one control qubit is reset

to | 〉. It is possible to build the controlled gates the other way around: the respective unitary

operators are activated when all the control qubits are reset to | 〉. It is also possible to build

gates that require for activation a mixed type of the control qubits, some set to | 〉, the others

reset to | 〉.
For example, similarly to the CNOT gate, it is considered the simplest such circuit on two

qubits – one control qubit and one data qubit, where the data qubit is flipped iff the control

qubit is reset to | 〉. The general transformation for such a gate is: | 〉| 〉

→ | 〉|

 〉 | 〉| 〉. This circuit can be implemented using a regular CNOT gate:

X X

=

In the generic case, consider a circuit on any number of qubits, which is controlled by a

mixture of | 〉 and | 〉 control qubits. This type of circuit can be implemented using one

qubit gates and one regular controlled-U gate. The gates act on the control qubits that

activate the gate by their | 〉 state.

=

U
.

.

.

.

.

.

U
.

.

.

.

.

.

X

X X

X

| 〉| 〉

→ | 〉| 〉

→

→ | 〉| 〉

→ | 〉| 〉

6.2. Infinite sets of universal quantum gates

In classical computing, the set of following gates is universal, that is any operation can be

implemented by using only these gates: { }. Other such universal sets for

- 54 -

classical computing are the one gate set { } and the one gate set { } [23]. This

means that, because the Toffoli operator can be implemented by using a finite set of quantum

gates, the set of all classical circuits is a sub-set in the set of all possible quantum circuits.

The same conclusion can be reached by using the Fredkin operator.

A set of quantum gates is considered to be exactly universal for quantum computing iff any

unitary operator acting on a finite number of qubits can be exactly implemented by a

quantum circuit containing only gates from the given set [4]. For this type of universality

only infinite sets have been discovered [5].

If using a probabilistic paradigm, a set of quantum gates is said to be approximately universal

for quantum computing iff any unitary operator acting on a finite number of qubits can be

approximated with an arbitrary big accuracy by a circuit containing only the gates from a

given set. For this type of universality, finite and discrete sets have been discovered.

6.2.1. Level matrices

Let a square unitary matrix of dimension , acting on a -dimensional Hilbert space. By

definition, a matrix of order that acts on any vector having components, is called a

level 2 matrix iff the matrix modifies two components from , leaving all the other

components unchanged.

For example the matrix below is unitary and of level 2:

[

]

[

]

[

]

→

 and

→

 and { } ⇒

→ .

This is because the only non-trivial elements in the matrix are: . The rest of the

elements on the principal diagonal are , and the others elements in the matrix are all .

Furthermore, because the matrix has to be unitary, the non-trivial elements have to satisfy:

{

 | |

 | |

| |

 | |

Note that the inverse of such a unitary, level 2 matrix is also unitary and of level 2.

6.2.2. Decomposing matrices using level factors

Theorem: Any unitary matrix of order can be decomposed in a finite product of unitary

matrices, each of them of dimension and level 2.

Demonstration: Explicitly construct a set of level 2 matrices

 where { }
{ } such that:

* ∏ (∏

)

+

Then, by multiplying to the left by level 2 matrices:

, the desired decomposition results:

- 55 -

 ∏(∏

)

The requested unitary, level 2 matrices are chosen in the following way:

 is chosen such

that it acts only on lines 1 and 2: *

+ *

+ *

+. Then by multiplying

 one gets

a matrix that has . So,

[

]

This implies resolving the system:

{

⇒

{

√

√

So, for the general case, the first matrix in the factorization is:

[

√

√

√

√

]

And:

[

]

In a similar way, all the elements { } from the first column can be turned into 0,

by using the unitary level 2 matrices

, acting on lines şi . So, after such steps,

the product of unitary matrices gives:

- 56 -

[

]

[

]

Next, the same procedure is applied for the sub-matrix obtained from by eliminating the

first row and the first column. Using the unitary level 2 matrices

, acting on lines

 and , { }, all elements { } are turned into 0. It must be noted that by

multiplying by the matrices

, first column remains unchanged because neither

 acts

on the first row. Therefore the 0 values obtained at the previous step are preserved:

→ and

→

After multiplying to the left with the second set of matrices, the product gives:

[

]

This procedure is repeated in a similar way, at each step the set of matrices required for

annulling the respective column is smaller and smaller, and the already annulled columns

remain unchanged.

So, the total number of unitary matrices of order and level required for factoring a unitary

matrix of order is therefore at most:

Hence, because the matrix associated to an operator of a quantum circuit on qubits has

order , this matrix will be decomposed using an exponential number of unitary level 2

matrices: . But, for some special matrices it is possible to find more efficient

decompositions.

Yet, it is very important to prove that there are unitary matrices of order that cannot be

decomposed into a product of unitary level 2 matrices containing less than terms.

Therefore, by using this type of level 2 decomposition, some circuits can be implemented

efficiently, by using a polynomial number of gates corresponding to those level 2 matrices,

but there are also are circuits which require an exponential number of gates.

This observation can be proved by contradiction. Suppose such that any unitary

matrix of order can be decomposed in , where are unitary matrices of

level 2. But there is at least one unitary matrix of order that doesn’t contain any

0 element on at least one of its columns. If for this matrix, there was a level 2 decomposition,

then it would result that, considering only the column that doesn’t have any 0 element,

 { }:

- 57 -

[

]

[

]

In order for a unitary, level 2 matrix to have any effect in the above product, it must

necessarily act on at least one line that was modified before by one of the matrices where

 . So, the number of affected lines by the product is at most . But

because the initial column (on which acts) contains elements which are 0, it

means that the resulted column contains at least a 0 element, which is in contradiction with a

supposition above.

6.2.3. Implementing unitary matrices of level

Considering a unitary matrix of order and level , the problem is to implement this

matrix using a quantum circuit on qubits.

Considering the computational basis states | 〉, with { }, any vector can be

decomposed as: | 〉 ∑ ⟨ | ⟩| 〉
 . If the matrix acts only on the components and ,

it will affect only the vectors from the sub-space generated by the two vectors| 〉

|

 〉 and | 〉 |

 〉, where
 { } { } and

 { }

{ } So, the effect of the sub-circuit implementing has to be:

(| 〉

→ |

 〉) (| 〉

→ |

 〉) ({ } { } ⇒ | 〉

→ | 〉)

The required circuit is built in 4 major steps:

Step 1. Build the set of Grey codes that connects

 and

: { },

where { } are binary numbers on bits such that

 and and { } { } ⇒ .

This means the binary numbers and differ only by exactly one bit. So,

| 〉 |

 〉 ⇒ | 〉 |

 ̅̅ ̅̅

 〉

Step 2. For each { }, build a controlled circuit on qubits that swaps only

the computational basis states | 〉

↔ | 〉, preserving all the others unchanged.

The effect of this circuit is:

| 〉 | 〉

→ | 〉

→

→ | 〉

→ | 〉

| 〉

→ | 〉

| 〉

→ | 〉

| 〉

→ | 〉

Step 3. From the original matrix of order and level , build the matrix ̃ , of order 2.

[

]

 ̃ *

+

- 58 -

Serially add to the end of the circuit obtained above, another circuit composed of a controlled

gate (̃)
. Gate ̃ acts on the qubit , which corresponds to the bit that

differentiates and , and it is controlled by the other qubits, which are the same

in and . Note that:

| 〉 | 〉 |

 〉

| 〉 |

 〉

So, the effect of the circuit is therefore:

| 〉
 (̃)

→ |
 〉|

 〉 |
 〉 ̃ |

 〉 |
 〉 |

 〉|
 〉 |

 〉

| 〉 | 〉
 (̃)

→ |
 〉|

 〉 |
 〉 ̃ |

 〉|
 〉 |

 〉|
 〉 |

 〉

Step 4. To the circuit obtained in the previous steps, add the reverse of the sub-circuit built at

Step 2, which is composed of the same gates in the reverse order (because it contains only

 gates). The only effect of this circuit is:

| 〉

→ | 〉

→

→ | 〉

→ | 〉 | 〉

| 〉

→ | 〉

| 〉

→ | 〉

| 〉 | 〉

→ | 〉

In the end, the final circuit, after the four steps above has the desired effect:

| 〉 | 〉

→ | 〉

→ |

 〉

→ |

 〉

| 〉

→ | 〉

→ | 〉

→ | 〉

| 〉

→ | 〉

→ | 〉

→ | 〉

| 〉

→ | 〉

→ | 〉

→ | 〉

| 〉 | 〉

→ | 〉

→ |

 〉

→ |

 〉

6.2.4. Complexity evaluation

The maximum number of gates required for implementing a unitary matrix of and level

is:

 () () ((̃)) ()

As shown before, can be implemented using only one qubit gates and CNOT gates,

the required number of gates being () . Therefore, can be also

implemented using only one qubit gates and CNOT gates, the number of required gates

being:

 ()

Next, because a generic operator on qubits can be decomposed in a product of level 2

matrices, with at most factors, it follows that can be implemented using only

one qubit gates and CNOT gates, the total number of gates being:

- 59 -

It is obvious that this construction is not the most efficient one in all the cases, as it contains

an exponential number of gates. For this reason, finding efficient quantum algorithms for

specific problems requires a different kind of construction for the implementing circuit.

6.3. Discrete sets of universal quantum gates

In order to use the quantum computing model in practice, a few problems must be solved

first. Most important, especially because the processes at quantum level are extremely

susceptible to noisy interferences, the model must provide for fault-tolerant implementations.

Therefore, it is mandatory that the unitary operators (which are used for modeling quantum

computations) are proved to have implementations that are based only on fault tolerant

quantum gates. There are several well-established results on the universality of quantum

bases, which rest primarily on using a non-elementary gate, i.e. a gate that performs a single

qubit rotation by an irrational multiple of 2π. However, a direct, fault tolerant realization of

such gate is not really possible, therefore they can’t be easily used in noisy quantum

environments.

There are quantum codes that can be used to show that a small sub-set of elementary quantum

gates: Hadamard, phase, CNOT, called the normalizer group, can be implemented in a fault-

tolerant manner. But this set of gates it is not enough for universality as it doesn’t spawn the

whole set of unitary operators. This fact led to the suggestion of adding of a new elementary

gate to the normalizer group: Toffoli, a gate which can be also implemented fault-tolerantly.

But a direct proof of the universality of the new set was not provided.

There are some indirect proofs which follow an indirect approach by demonstrating the direct

equivalence between the Shor’s basis and other universal bases. That is, these bases provide

simple and accurate circuits that implement the operators in Shor’s basis. There are also other

categories of bases which were proved to not be directly equivalent to Shor’s basis; that is,

they can only be approximated by gates in the Shor’s basis, and not implemented exactly.

6.3.1. Basic circuit for the non-elementary rotation

The quantum circuit below implements a basic rotation operator, around the z axis, with a

specific angle: , where ⁄ . This angle θ was chosen so that it is an irrational

multiple of . To prove the circuit, we use the definitions of the gates involved: Hadamard,

phase and Toffoli.

| 〉

→

 | 〉 | 〉 | 〉 | 〉 | 〉

→

[| 〉 | 〉 | 〉 | 〉 | 〉 | 〉]

→

[| 〉 | 〉 | 〉 | 〉 | 〉 | 〉]

→

[| 〉 | 〉 | 〉 | 〉 | 〉 | 〉]

→

[| 〉 | 〉 | 〉 | 〉 | 〉 | 〉]

Considering the following identities for quantum gates:

 √

 , where

- 60 -

The circuit state just before the measurements are performed becomes then:

→

√

 | 〉

 | 〉 | 〉 | 〉 | 〉

|ψ⟩

|0⟩

|0⟩

H

H

|ψ⟩ S

H

H

S2

M1

M2

OR

Rz(cos-1(3/5))|ψ⟩

The above circuit implements the elementary rotation operator with probability P00 = 5/8.

6.3.2. Circuit for the elementary rotation, with unitary probability

The quantum circuit above applies the operation to the target qubit if the measurement

outcomes on the control qubits are both 0. Otherwise, if at least one measurement returns 1,

the target qubit will be left unchanged, in the same state. This decision is implemented by the

classic OR gate at the end, which takes as input the classic bits from the measurement and

then controls the application of the final quantum gate . The probabilities of these four

different outcomes, given by the two control qubits, can be easily calculated as following:

 |
√

 |

 ≡ ≡ |

|

As the above equations indicate, the probability of the circuit to actually apply the desired

rotation operator is much higher than the probability of performing a no-op. Still, it is

possible to improve this probability, in order to make it approach 1, by successively applying

the very same quantum circuit “C” until the rotation operation is performed. This process is

schematically presented in the next figure.

|0⟩

|0⟩

|ψ⟩

C

M 00

|0⟩

|0⟩

M 00

|0⟩

|0⟩

M 00

Rz(cos-1(3/5))|ψ⟩

C C

The above circuit implements the elementary rotation operator with a probability that

approaches 1. The process runs as follows: if, at the current step, the measurement outcome

on at least one control qubit is 1, then apply the circuit again, by using two new control qubits

set to | 〉 and the same target qubit as returned by the circuit. Else, if at any step n the

measurement outcomes on the control qubits are both 0, then the target qubit has been

- 61 -

transformed with Rz(θ), and the process stops. The probability for the process to stop at step

n is therefore:

 [∑

]

∑ (

)

This is because in all the previous steps (1..n-1) the measurement outcome was either | 〉 or
| 〉 or | 〉, and at the current step (n) the measurement outcome was | 〉. And it can be

easily observed that the sum above is the sum of a geometrical series, therefore as n raises,

the probability P(n) approaches 1:

()

6.3.3. Approximating unitary operators

Since the set of unitary operations is continuous, it is clear that a discrete set of gates is not

sufficient to implement an arbitrary unitary operation. Rather, a discrete set can be used to

only approximate any unitary operation. Considering U and V are two unitary operators on

the same state space, U being the required target operator and V being the operator that is

actually implemented, the error in approximation is defined by:

 ≡
| 〉

‖ | 〉‖

This definition guarantees that if the respective error is small, then a measurement performed

on the actually implemented operator, using any initial state and any measurement operator,

gives similar statistics as if the same measurement were to be performed on the required

target operator. Furthermore, if a sequence of gates is used to approximate another sequence

of gates, the errors add up at most linearly:

 ∑ ()

6.3.4. Approximating the rotation operator

With respect to the two above relations, if the operators involved are rotation operators, the

error can be expressed in terms of the rotation angles. In the equalities below, z axis can be

replaced by any arbitrary axis.

 ()
| 〉

‖()| 〉‖

| 〉

(⟨ |()()| ⟩)

| 〉

(⟨ |()| ⟩)
| 〉

(⟨ | (

) | ⟩)

 (

)

| 〉
 ⟨ | | ⟩ (

)

This relation can be generalized to approximations by successive identical rotations:

 (

()

)

The pigeonhole principle implies that if is an irrational multiple of , then, for any and

any desired accuracy it is possible to find , such that () . But, as

the angle () tends to approach , in the same time
()

 tends to

approach . And as a consequence,
 in the equation above tends to

- 62 -

approach . In conclusion, for any and any desired accuracy , there is a number

depending on both and the desired accuracy, such as:

Now, it can be shown that the discrete set of quantum gates formed by the normalizer group,

plus the Toffoli gate is universal for quantum computation; that is an arbitrary unitary

operation on d qubits can be approximated to an arbitrary accuracy using a circuit composed

only from these gates. The circuit obtained will most likely have to be applied several times,

the number of applications being direct proportional with the desired accuracy in the

approximation. Firstly, because Pauli operators satisfy , any single qubit unitary

operation can be factored into a product of rotations around axis and Hadamard operators:

Then, from the last two equations, it follows that the circuit above, together with two more

Hadamard gates, can be used to successfully approximate any single qubit unitary operation:

Furthermore, because any unitary operator on d qubits can be factored into a product of two-

level unitary operators on d qubits, and because these two-level unitary operators on d qubits

can in turn be exactly (i.e. no approximation needed) implemented using only single qubit

gates and CNOT gates, this implies that any unitary operator on d qubits can be

approximately implemented, with arbitrary accuracy , using only Hadamard, phase, CNOT

and Toffoli gates, i.e. the gates from Shor’s basis.

Performance considerations

The direct proof provided for the universality of the Shor basis raises a few questions

regarding the efficiency of the quantum circuit models and the amount of computing

resources required to approximate unitary operations. Unfortunately it is not possible to

approximate generic unitary operators on d qubits using a circuit of size polynomial in d. Yet,

the search for universal fault-tolerant bases must always consider the efficiency aspect.

Although most of the unitary transformations can only be implemented by approximation

very inefficiently, that is the number of fault-tolerant gates is exponential in the number of

qubits of the operator, it may be possible that some universal bases are more efficient than

others to approximate some specific set of unitary operators.

- 63 -

7. The Fourier Transform

A quantum computer can factor natural numbers in polynomial time, more precisely by

performing only operations, with any desired accuracy. This represents

an exponential gain compared to the known classical algorithms. The question that comes

naturally next is: what kinds of other algorithms could be exponentially improved by the

quantum computing paradigm?

One of the key ingredients suggesting an answer to this question is the quantum Fourier

transform, which is used also in natural numbers factorization, but also in many other

interesting problems. The quantum Fourier transformation is a quantum algorithm that

computes the Fourier transform on the set of amplitudes describing quantum mechanics

states. By itself, this algorithm doesn’t bring any worthy efficiency improvement with respect

to computing the Fourier transform on classical data sets. But this algorithm provides an

efficient phase estimation that is a more efficient way of approximating the singular values of

a unitary operator in given specific circumstances.

The phase estimation algorithm can be used in solving other problems:

 - factoring natural numbers

 - finding the order of an element in a finite group

 - counting the solutions of a search problem; this is achieved by combining it with the

quantum search algorithm

Additionally, QFT can be used for solving other problems, which are considered to be

intractable on classical computers:

 - hidden subgroups

 - discrete logarithm

7.1. Quantum Fourier Transform (QFT)

One of the most used ways of solving a hard computing problem is to transform it into

another problem that can be easier solved, or that already has been solved. So, this kind of

transformations became a field of study by themselves. A very important discovery for

quantum computing was that one of such transformations can be more efficiently

implemented, compared with the classical implementation. This opened the door for finding

efficient solutions to a whole class of problems that are based on the respective

transformation.

This transformation was the Fourier transformation, together with its more relevant variant

for digital computing – discrete Fourier transformation (DFT) [35]. Using usual mathematical

notations, DFT transforms a vector of complex numbers into another vector of

complex numbers , with the same dimension:

 ≡

√
∑

QFT is similar with the definition above, but its data and significance is a bit different [32].

QFT is by definition a unitary linear operator on a vector space of dimension that

transforms the set of orthonormal vectors in the computational basis state | 〉 | 〉 | 〉
according to the relation:

| 〉

→

√
∑

 | 〉

The set of obtained vectors is still orthonormal.

- 64 -

‖| 〉‖ ‖

√
∑

 | 〉

‖ √(

√
∑

 〈 |

)(

√
∑

 | 〉

)

 √(

∑⟨ | ⟩

)

 ⟨ | ⟩ (

√
∑

 〈 |

)(

√
∑

 | 〉

)

∑

 ⟨ | ⟩

∑

Any vector | 〉 from the respective space can be also transformed by QFT as:

| 〉 ∑ | 〉

→ | 〉 ∑ | 〉

where the set of complex numbers is the DFT of the set .

| 〉 ∑ | 〉

→

∑ (

√
∑

 | 〉

)

√
∑ ∑

 | 〉

 ∑ (

√
∑

) | 〉

 ∑ | 〉

 | 〉

Because QFT is a unitary operator [38], it can be implemented by a quantum circuit. In order

to achieve this, a more refined version of the transformation formula is needed. For this

assume:

- , where is a natural number

- the set of orthonormal vectors | 〉 | 〉 | 〉 that constitute a basis in the vector

space where QFT is defined, is also the computational basis state for a quantum circuit

on qubits.

For each vector | 〉 in computational basis state, represent it in binary format ,

 { }:

 ∑

Then QFT becomes:

| 〉

→

∑
| 〉

∑ ∑

∑ (∑ (
)

 | 〉)

- 65 -

∑ ∑

∑ (∏

| 〉

)

∏(∑

| 〉

)

∏(| 〉
| 〉)

(| 〉
| 〉)(| 〉

| 〉) (| 〉
| 〉)

Where by writing in the binary format and because { }:

 (

)

 (

)

So, for each vector | 〉 | 〉 from the computational basis state, QFT on each qubit

now becomes:

| 〉

→

√
(| 〉

| 〉)

| 〉

→

√
(| 〉 (

)| 〉)

...

| 〉

→

√
(| 〉 (

)| 〉)

| 〉

→

√
(| 〉 (

)| 〉)

7.2. Implementing the quantum Fourier transform

Starting from the equations above, the circuit for implementation QFT is built using

Hadamard gates and controlled gates on one qubit , where this unitary operator of phase

transformation is defined as:

 ≡ [

]

The effect of the operator on one qubit is:

| 〉 | 〉 | 〉

→ | 〉

| 〉
Whereas the controlled operator , with the control qubit in the computational basis

state | 〉, acts as:

| 〉| 〉 | 〉 | 〉 | 〉

→ | 〉 (| 〉

| 〉)

The Hadamard acts according to:

{

 | 〉

→

√
 | 〉 | 〉

| 〉

→

√
 | 〉 | 〉

≡ | 〉

→

√
(| 〉

| 〉)

The circuit for implementing QFT is:

- 66 -

 j1⟩

 j2⟩

H S2 Sn-1 Sn

H S2 Sn-2

 jn-1⟩

 jn⟩

.

.

.

Sn-1

H S2

H

Adding the swapping gates at the circuit exit is actually optional because reading the result

could be done in the reverse order.

For verifying the circuit above, the gates are applied in sequential order. In reality, the gates

act in parallel where possible.

| 〉

→

√
(| 〉

| 〉)| 〉

→

√
(| 〉 (

)| 〉)| 〉

...

→

√
(| 〉 (

)| 〉)| 〉

→

√
(| 〉 (

)| 〉)| 〉 | 〉 | 〉

→ | 〉

√
(| 〉

| 〉)| 〉

→ | 〉

√
(| 〉 (

)| 〉)| 〉

...

→ | 〉

√
(| 〉 (

)| 〉)| 〉

 | 〉 | 〉 | 〉
...

 | 〉 | 〉 | 〉 | 〉

→ | 〉 | 〉 | 〉

√
(| 〉

| 〉)| 〉

→ | 〉 | 〉 | 〉

√
(| 〉 (

)| 〉)| 〉

 | 〉 | 〉 | 〉 | 〉 | 〉

→ | 〉 | 〉 | 〉 | 〉

√
(| 〉

| 〉)

 | 〉 | 〉 | 〉 | 〉 | 〉

→ | 〉 | 〉 | 〉 | 〉 | 〉

→ | 〉 | 〉 | 〉 | 〉 | 〉 | 〉
...

⌊

⌋

⌈

⌉

→ | 〉 | 〉 | 〉 | 〉 | 〉

- 67 -

7.3. Complexity evaluation

For computing the number of gates used, start from the first qubit: one Hadamard gate

followed by controlled gates ; so in total gates. Acting on the second qubit,

there were one Hadamard gate and controlled gates ; in total gates.

The counting progresses in a similar way until the end, on the last qubit acting just 1

Hadamard gate. Then, the circuit contains ⌊

⌋ swapping gates. The number of used gates is

therefore:

 () ⌊

⌋

 ⌊

⌋

 .

The complexity of the QFT implementation is therefore (

). This is an exponential

improvement compared to the classical algorithm for Fast Fourier Transform, which has

complexity: .
At a first glance, it would look as a bunch of applications that use FFT, like signal

processing, speech recognition, etc., could also benefit from an exponential improvement.

Unfortunately there is no known way to make these applications use of QFT, the main

problem being that the amplitudes of the signals can’t be directly accessed via measurements

in the quantum computer. So, applying the Fourier transform on the amplitudes cannot be

determined as efficiently. To make things worse, there is no known efficient way of

preparing the original quantum state. So, finding ways of practically using the QFT

improvements is more subtle than it looks [52].

The good news is that the construction of the quantum circuit that implements QFT doesn’t

require exponential precision on the implementation of the gates contained within. For

example, considering as the ideal QFT on qubits and as the real one that results if the

controlled gates are built with limited polynomial precision

, then, the total

error, defined as ≡ | 〉‖ | 〉‖ is a function (

). Such polynomial

precision in implementation of each gate is sufficient for guarantying a polynomial accuracy

of the entire circuit [17].

- 68 -

8. Phase estimation

8.1. Quantum procedure for phase estimation

Considering a unitary operator that has a singular vector | 〉 with the corresponding

singular value :

 | 〉 | 〉
The problem is to estimate the unknown phase, a sub-unitary real number [53].

For the estimation consider two types black boxes (oracles):

- ones capable to prepare the state represented by singular vector | 〉

- ones that are capable of implementing controlled operations (
), for any

The implementation uses two quantum registers. The first one is a control register with

qubits initially in the computational basis state | 〉. Number is chosen depending on:

- number of decimals required to approximate phase , i.e. the number of bits used for

reading the result

- the probability with which the algorithm returns the correct result, i.e. the number

The second register, the data register, has a number of qubits determined by the dimension of

the vector space and initially is in the singular state | 〉.

8.2. Quantum circuit for phase estimation

The algorithm comprises four principal phases [54]:

- apply Hadamard operators on the control qubits

- apply the black boxes on the data qubits

- apply inverse QFT on the control qubits

- read the result by performing a measurement in the computational basis state on the

control qubits.

QFT †H

U j

 0⟩
 j ⟩

 u ⟩ u ⟩

φ

The circuit for the first two phases is presented below, where ≡
:

- 69 -

 0⟩

.

.

.

.

.

.

.

.

.

 u2⟩
 u1⟩

 un⟩

U 0 U 1

.

.

.

.

.

.

.

.

.

.

.

.

 0⟩

 0⟩

 0⟩

H

H

H

H

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
U t-2 U t-1

 u2⟩
 u1⟩

 un⟩

.

.

.

.

.

.

Because | 〉 is a singular vector for operator , the state of the data register remains

practically unchanged. For the control register, the qubit with order { } is

transformed as:

| 〉 | 〉

→

√
 | 〉 | 〉 | 〉

 (
)

→

√
(| 〉 | 〉) | 〉

So, the state of the control register is:

(| 〉 | 〉)(| 〉 | 〉) (| 〉 | 〉)(| 〉 | 〉)

∑ | 〉

Intuitively, it is assumed the desired phase is represented exactly by a binary fraction

∑

 , with { }, the equation above becomes QFT:

(| 〉

| 〉)(| 〉 (

)| 〉) (| 〉 (

)| 〉)

Therefore, by applying the reverse QFT, one gets exactly the computational basis state

corresponding to the desired phase: | 〉. And performing a measurement in the

computational basis state will return exactly (i.e. with probability 1) the value .

In reality, if is a real number, the algorithm returns an approximation:

(∑ | 〉

) | 〉

→ | ̃〉| 〉

where | ̃〉 is a state that by measurement gives a good estimation of the phase .

8.3. Performance evaluation

In the ideal case considered above, it was considered that the desired phase can be

represented exactly on bits. In the generic case, a real number can only be represented on a

number of fixed bits by using an error margin. And the algorithm for phase estimation

produces a good approximation, with high probability, of the real value in this generic case.

- 70 -

Define as the best maximal integer approximation of on bits. So, is an integer such

that is the best approximation of :

By defining the error in approximation as ≡ , it satisfies:

It is proved that the algorithm for phase estimation produces a small with high probability.

For obtaining aproximatted on bits with a probability of success of at least , the

circuit needs a number of qubits equal to:

 ⌈ (

)⌉

8.4. Quantum algorithm for phase estimation

Algorithm: Quantum phase estimation

Input:

1. A black box that implements , for any integer

2. A quantum register on ⌈ (

)⌉ qubits initialized to | 〉

3. A quantum register prepared in state | 〉, a singular state of , with corresponding

singular value

Output:

1. Integer on bits ̃ , an approximation on bits of

Running time:

1. unitary operations and one call to each black box.

2. The probability of obtaining the correct answer is at least .

Procedure:

 | 〉| 〉 initial state

→

∑| 〉| 〉

 building superposition

→

∑| 〉 | 〉

 application of black boxes

→

∑ | 〉| 〉

 result after applying black boxes

→ | ̃ 〉| 〉 applying QFT

→ ̃ measurement of the control register

- 71 -

9. Applications for quantum algorithms

9.1. Order finding and factorization

The procedure for phase estimation can be used for solving two concrete problems: order

finding and numbers factorization. Actually these two problems are algorithmically

equivalent. These algorithms are important for at least three reasons:

1. The most important, they represent the uncontestable proof that quantum computers

are intrinsically more efficient in solving some problems, and therefore they are used

to challenge the strong variant of the Church-Turing conjecture.

2. They are both theoretically and practically valuable. This encourages the search for

other algorithms that could bring the same benefits.

3. Purely from a practical perspective, they could be used, as soon as they are physically

implemented, to challenge some cryptographic systems based on public keys.

9.2. Order finding

The problem is formulated in the numbers theory as: for positive integer numbers that

are co-prime, i.e. gcd , the order of modulo is defined as the smallest positive

integer , such that . In number theory, this number is proved to exist and

 . The problem can be more generically expressed in the language of cyclic finite

groups.

This problem is believed to be difficult to resolve on classical computers, i.e. there is no

known classical algorithm for solving this using polynomial resources , where is the

number of bits necessary to store the input, ≡ ⌈ ⌉.
At an abstract layer, the quantum algorithm for solving this problem is actually the algorithm

for phase estimation, applied to operator that replaces the black box:

{
 | 〉 ≡ | 〉 { }

 | 〉 ≡ | 〉 { }

Because and are co-prime it follows that:

And therefore the operator defined above is unitary, with its adjoint operator being:

,
 | 〉 ≡ | 〉 { }

 | 〉 ≡ | 〉 { }

The algorithm for phase estimation also requires a singular state for the respective operator.

The s singular states for the operator defined above are:

| 〉 ≡

√
∑ [

 | 〉]

because:

 | 〉

√
∑ [

 | 〉]

√
∑[

 | 〉]

√
∑[

 | 〉]

- 72 -

√
{∑ [

 | 〉]

 | 〉

 | 〉}

√
∑[

 | 〉]

 | 〉

So, to each singular state | 〉, its singular value is

 .

For applying the quantum phase estimation algorithm, it is also needed to:

1. find an efficient procedure for implementing
 , for any integer .

2. find an efficient way of preparing singular state | 〉, with non-trivial singular value,

or a superposition of such singular states.

If these conditions are satisfied, the order can be computed as

 ̃
.

The first condition can be satisfied by considering a procedure known as modular

exponentiation, which can implement the entire sequence of controlled operators

called in the procedure for quantum phase estimation, by using gates.

The first part from the algorithm for phase estimation computes the transformation:

| 〉| 〉

→ | 〉

| 〉

 | 〉|

 〉

 | 〉| 〉
For achieving this, three major steps are required:

1.1. reversible compute function into a third register

1.2. reversible multiply modulo this third register with the second register

1.3. to keep the entire step reversible, bring the third register to its initial state

The first step can be further divided in smaller steps:

1.1.1. sequentially compute values ,
 ,...

 ,...

 , by successively squaring

1.1.2. apply successive multiplications according to the binary representation of :

 (

)(

) (

)

For evaluating the complexity of modular exponentiation, note that the third step is the

reverse of the first one. Considering the multiplication modulo is done with the classical

algorithm of complexity , there is a total polynomial complexity [18]:

For satisfying the second condition, note that the definition of | 〉 can’t be used for

computing it, because this would require knowing . But it is possible to use a superposition

of singular states:

- 73 -

√
∑| 〉

√

√
∑(∑[

 | 〉]

)

∑(∑[

 | 〉]

)

∑((∑

) | 〉)

The interior sum is a geometrical progression with rate

 :

∑

 {

So, the superposition becomes, which is very easy to prepare into the data register:

√
∑| 〉

 | 〉

In the control register, it is necessary to use ⌈ (

)⌉ qubits. With this

data, the algorithm for phase estimation is applied for each , obtaining an

approximation ̃

 with an accuracy of bits and the probability of at least

.

Schematically, the entire quantum circuit is represented as.

QFT †H ⊗t

 0⟩
 j ⟩

 1 ⟩ u ⟩

ρ

x j mod N

9.2.1. Result interpretation from the quantum phase estimation algorithm

The reduction of the order finding problem to the problem of the phase estimation is

complete only if it is possible to efficiently obtain the desired result , from the result

returned by the algorithm of quantum phase estimation:

. This result is returned as a

number on bits. It is very important to note that it is a priori known that this is a

rational number. So, if it is possible to compute this fraction, the closest to , it would be

then possible to find the desired result .

Remarkably, such a polynomial algorithm for computing the closest fraction is known:

continued fractions algorithm. Its base idea uses the representation of real numbers as

continued fractions:

[] ≡

where are all positive integers, with being allowed to be 0 so that sub-unitary

numbers are also represented. The complexity of this algorithm is polynomial: if are

represented on bits, the algorithm performs divisions each division with

operations. So, it totals operations.

- 74 -

Formally, the continued fractions algorithm is defined by the following theorem which can be

proved by induction:

Theorem: Let a sequence of positive numbers. Then []

, where and

 are positive integers defined recursively as:

{

Corollary: for and gcd .

For being able to apply the continued fractions algorithm, it is important to note the following

theorem:

Theorem: If

 and are rational numbers where |

 |

 , then

 is a convergent from

 ’s continued fraction.

Because, according to the phase estimation algorithm, the result after the final measurement

 is an approximation of number

, with an accuracy of bits, it results that

|

 |

Therefore,

 is a convergent from ’s continued fraction. So,

 can be computed in

operations, by using the continued fractions algorithm.

9.2.2. The performance of the order finding algorithm

This is a probabilistic algorithm which could return a wrong result for two reasons:

1. The procedure for phase estimation could produce an erroneous approximation of

.

This is mitigated by increasing the probability through the increase of the control

register.

2. It is possible that and are not co-prime. In this case, , the integer returned by the

continued fractions algorithm is only a factor of the desired , instead of being

itself.

Fortunately, there are three ways for avoiding or mitigating the second cause:

2.1. If define the number of prime numbers less than : ‖{

 }‖, then

 . And from this, if is a random number, the

probability of being prime is:

So, by repeating the algorithm time, there is a high chance to get

prime, and hence and to be co-prime.

2.2. If the desired number is not returned, and the algorithm returns instead, then is

a factor of , if . But has the probability

. So, this case can be

mitigated by repeatedly running the algorithm a few times. So, if factor of was

- 75 -

returned, one can substitute ← ≡
 and the order of the new is

because

This procedure may be necessary to be repeated at most steps.

2.3. The third modality is more efficient as it requires only a constant time. The idea is to

repeat twice both the procedure of phase estimation and the procedure for continued

fractions. So, the first run returns
 and

 , and the second returns
 and

 . If
 and

 are co-prime, can be computed in using formula:

The probability of
 and

 being co-prime:

 ≡ ∑ |
 |

So, the probability of returning the desired order is at least

.

The time complexity is evaluated by considering each step in the algorithm. Hadamard

transformations require gates; QFT requires gates. The biggest cost comes from

the modular exponentiation step: gates. The continued fractions algorithm adds other

 gates. So, the total complexity is for obtaining . Using the third method (see

2.3 above) it may be required to run the whole procedure a few times to obtain from .

Algorithm: Quantum order finding

Input:

(1) Black box that implements transformation | 〉| 〉

→ | 〉| 〉

where is co-prime co-prim to , and is on L bits.

(2) ⌈ (

)⌉ qubits initialized to | 〉

(3) qubits initialized to | 〉.

Output:

The smallest integer such that

Execution time:

 operations. Succeeds with probability .
Procedure:

 | 〉| 〉 Initial state

→

∑| 〉| 〉

 Create superposition

- 76 -

→

∑| 〉| 〉

√

∑ ∑

 | 〉| 〉

Apply operator

→

√
∑|

̃
〉 | 〉

 Apply inverse QFT on control register

→

̃
 Measurement on the control register

→ Apply the continued fractions algorithm

9.3. Applications: factoring natural numbers

Problem: given a positive number , find its prime factors. This problem is actually

equivalent to the order finding problem, i.e. the algorithm for order finding can be efficiently

transformed into a factorization algorithm.

9.3.1. Steps for factorization

For reducing this to the order finding algorithm, there are two main steps:

1. A factor of can be determined by finding a non-trivial solution to

the equation

2. Prove that a random number , co-prime with is very likely to have an order

which is an even number that satisfies

 .

Then combine these steps by considering ≡

 . These two steps are based on the

following two theorems.

Theorem: Let integer. If is an integer, a non-trivial solution of
 , then either or is a non-trivial factor of .

So, if is on bits, knowing , one can obtain a non-trivial factor of by performing the

 steps from the Euclid’s algorithm.

Lemma: Consider prime. Let the biggest power of that divides . If is a

random number in group
 { }, let be its order. Then

divides with probability of exactly

.

Theorem: Let

 be the factoring of an odd number. If is a random number in

 , using a uniform distribution, and if is the order of modulo ; then the probability

 (

)

- 77 -

9.3.2. The quantum factoring algorithm

Almost all the steps can be efficiently implemented also on a classical computer. The only

exception is the subroutine of order finding. By calling the algorithm repeatedly, all the

factors can be found.

Algorithm: Reducing factorization to order finding

Input:

Integer

Output:

A non-trivial factor of

Execution time:

 . Succeeds with probability .
Procedure:

1. if even, return

2. for each ⌈ ⌉

2.1. if , return

3. choose random

4. if then return

5. call finding order of , modulo

6. if even and

 then compute

7. if return

8. if return

9. return error

The first two steps return a factor or make sure has at least two factors. They require
steps. The next two steps return a factor or a random number in

 , with complexity .

The last three steps apply the two theorems above to find a factor. They succeed with

probability at least

.

These are the main applications with great practical applicability. But by using the quantum

Fourier transform a much larger set of problems can be addressed. The most general problem

that includes, as particular cases, all the applications exponentially efficient of the quantum

Fourier transform, is the hidden subgroup problem. Intuitively, this problem can be thought

of as a generalization of the problem of finding the period of a periodical function, when its

source and the target domains are very complicated. Using the algebraic language from the

groups’ theory, this problem can be expressed in a general way as [41]:

Let a function defined on a group finitely generated, taking values from a finite set

such that is constant on any coset defined by an unknown subgroup , those constant

values being different. If there is a quantum black box that implements the unitary

transformation | 〉| 〉 | 〉| 〉, where , and is a binary operation

in , carefully chosen; find a set that generates .

9.4. Languages for quantum programming

Experimenting with known quantum algorithms and, even more, designing new ones is a

difficult enterprise if the proper programming languages and development tools are not in

place. Quantum circuits presented above are a great first step in presenting detailed aspects of

quantum algorithms. Furthermore, they can be easily mapped onto specific quantum

- 78 -

computing hardware, after they are reduced to the respective set of elementary quantum

gates. But in order to implement more advanced quantum programs, a higher level of

abstraction is required.

9.4.1. Quantum programs

Lately, great progress has been made in abstracting away the quantum hardware by following

a path that resembles in many aspects the approach taken for classical computing, decades

ago. In classical terms, programming a computer basically means telling it the actions to

perform and the data to be used as input for those actions, in a language that the computer

understands. Therefore, leaving aside all the complexities related to specific computer

architectures and different flavors of paradigms for programming languages, a classical

computer program can be summarized as:

PROGRAM = DATA + INSTRUCTIONS

Here, data means all kinds of information that can be physically stored on the computer, or

communicated to another computer, and that can be manipulated by the instructions

statements. Usually, in its most basic form, data is represented by bits. The instructions are

composed of a basic set (for example, logical and arithmetic instructions) and a set of control

structures (such as conditionals, loops, jumps, etc.).

Things start to get more complicated as we consider a specific programming paradigm or

specific computer hardware architecture. For example, if one assumes the existence of an

instruction pointer, instructions become nothing more than a specific set of data.

This same basic scheme was extended to quantum programming world, by supplementing it

with the elements specific to quantum aspects:

QUANTUM PROGRAM = QUANTUM DATA +

 QUANTUM OPERATIONS +

 INSTRUCTIONS

In the conceptual relation above, a quantum computer running such quantum program is

assumed to be comprised of a quantum device, able to manipulate the quantum data –

represented as qubits which can be addressed, by performing a predefined set of quantum

operations, which come in two types:

- unitary operations, which transform quantum data by maintaining its quantum properties

- measurements, which inspect the quantum data and turns it into classical data

For practical implementations, the set of predefined unitary operations has to have the

following properties:

- be finite set, so that it can be implemented by physical hardware

- be an universal set, so that all the possible quantum programs can be created

- each operator acts on a finite Hilbert space

One example of such predefined set of unitary operators can be formed from the quantum

gates composing the Shor basis: Hadamard, phase, CNOT, Toffoli. Note that this predefined

set doesn’t necessarily need to be a minimal set, but their number will most likely be kept

low because of economical and practical considerations.

Then, this basic predefined set of unitary operators can be used to define increasingly

complicated unitary operators, in the same way quantum gates are composed together into

quantum circuits. Since for the time being all the known sets of operators which are both

- 79 -

finite and universal can only approximate some more complicated quantum operators, it

follows that some operators won’t have a precise implementation, but only an approximate

one.

Measurements are usually considered to be performed using projection operators built

around the computational basis states. The outcomes of the measurements are expressed

therefore as classic bits, which can be read out from the quantum device.

9.4.2. Quantum programming languages

As in the classical case, the first level of abstraction used in programming is the assembler

language. And as for the classical case, the quantum computation model will also have to be

built around a specific architecture of the respective quantum machine. Yet, it is not

necessary to specify the underlying quantum hardware.

In the same way the classical assembler (and even higher level languages) are built around

abstract concepts such as stacks, heaps, etc., the quantum assembler must consider a set of

abstract concepts.

Quantum circuits

Quantum circuits were the first quantum computation model introduced. This model assumes

the following ingredients used in computation:

- an input device that can prepare initial set of qubits, to start the computation

- a finite set of quantum gates, acting on a finite number of qubits, that are connected in

serial or in parallel, forming an directed acyclic graph – a quantum circuit

- a measurement device that outputs a sequence of classical bits that can be read off. These

measurements can be always performed at the exit of the quantum circuit, after all the

gates finished processing the quantum state.

Quantum Turing machine

This model, which adds the quantum elements to the standard probabilistic Turing machine

model, is particularly useful for discussing complexity classes, but it is difficult to use it to

build quantum algorithms or bigger quantum programs. This model assumes the well-known

Turing hardware architecture based on an infinite, one dimensional band that contains

characters from a finite set and that can be moved left or right, and a device that can read or

write the current character.

The main differences between the probabilistic and the quantum machines are:

- the transition function for probabilistic machine gives probabilities, whilst the transition

function for the quantum machines gives complex numbers, whose module squared

represent probabilities.

- at each step, the probabilistic machine picks randomly one transition, whilst the quantum

machine carries out all the possible transitions in parallel.

Quantum Random Access Memory Model

This is the quantum computing model that is most suited to programmers, because it offers a

programming paradigm closer to the classical one and allows easy specification of quantum

algorithms and even higher level quantum computing languages. This model assumes a

hardware architecture that is basically a quantum extension of the classical one. The

hardware is composed of:

- a classical device that:

o passes classical bits to the quantum device

o performs classical computations

o reads measurement results (i.e. classical bits) from the quantum device

- 80 -

- a quantum device that:

o takes a set of bits and initializes a set of qubits with the corresponding

computational basis state

o performs the specified basic unitary transformation on the current quantum state,

or on a subset of it

o performs the measurement using projection operators on the specified qubits

o returns measurement results as a set of classical bits to the classical device

This model is closely related to a typical programmer’s approach to solving a problem:

implement the problem classically, as much as possible, and each time the quantum power is

needed, delegate the task to the quantum device, and read the results of the final

measurements. Then, as necessary continue in classical mode, or delegate again to the

quantum device.

The communication between the two devices, the classical one and the quantum one, has to

be implemented very carefully, by the means of a quantum hardware interface. This interface

would have to ensure that the processing happening inside the quantum device is not affected

in an unwanted way by the classical device, causing the quantum states to collapse when they

shouldn’t or become entangled with the environment.

As before, these basic unitary transformations have to be only from a predefined finite set,

which is universal for quantum computation. Usually this set is chosen so that it matches the

underlying quantum hardware capabilities.

So, there are a few types of quantum instructions that this model has to provide:

- initialize a quantum register with a given computational basis state. There is no need to

provide a more complicated initialization instruction, which would initialize the quantum

register with a superposition of computational basis states. This is because such

superpositions can be obtained by applying unitary transformations.

- select a subset of qubits from a quantum register in order to use them for further

processing, either unitary transformations or measurements

- apply a unitary transformation on a quantum register (or a subset of its qubits)

- compose two unitary transformations, i.e. execute them sequentially

- tensor two unitary transformation, i.e. execute them in parallel

- measure a quantum register (or a subset of its qubits) and put the results in classical

register

For example, the following set of instructions builds an EPR pair and measures its first qubit,

obtaining either 0 or 1, with equal probability:

qbit q[2] = {0, 0}; // initialization
let U1 = tensor(H, I2); // tensor product
let Epr = concat(U1, CNOT); // operators composition
Epr(q); // applying operators
bit r[1] = measure(q[0]); // measurement

It has to be noted that copying qubits it is not permitted, so there is no point to provide an

instruction for assigning one set of qubits to another.

Also, there is no need to provide a special set of quantum instructions for controlling the flow

of execution in the quantum device, such as for example a quantum if-then-else type of

statement. This is because of two reasons:

- 81 -

- any such conditional statements can be implemented in the quantum world by using

conditional operators

- conditional statements can be implemented by using only classical bits obtained by

performing measurements whenever required

Assembly language based on strings manipulation

This low level language is a good compromise between the Turing machine and QRAM. It is

easy to use with most real world algorithms, and it abstracts the hardware internals well

enough to make it useful in theoretical analysis of complexity classes. In this model, define a

fixed, finite character set . Let there be an (possible infinite) number of storage locations,

each labeled by some string over . Initially, all the locations are set to empty strings. If s is

a string over , the usual C++ notation *s is used to represent the string stored at address s.

The string *s is also composed only from characters in .

For the quantum part, define the following fixed objects [40]:

- a finite-dimensional Hilbert space .

- a unit vector | 〉 in

- the Hilbert space can be tensored with itself for any finite number of times, each

instance in this tensor product is labeled by strings over . So, such a tensor product will

be represented as    .

- a finite set of unitary operators, each of which acts on some finite tensor product

  

- a finite set of projection operators, each of which acts on some finite tensor product

  

Each operator from the sets above (either unitary or projection) are labeled by a string over

 . So, the unitary operators will be represented as and the project operators will be

represented as . At any point of the program execution, the state of the quantum system is

represented by a state | 〉 in   .

A quantum assembly language can then be composed from the following commands.

- Commands for classical operations:

o InputTo *s: allows the user to enter any string over , which is then placed in the

memory location pointed to by s

o OutputFrom *s: returns to the user the string from memory location s

o AppendTo x, *s: appends character x to the string stored in location s

o DeleteLast *s: deletes last character (if any) from the string stored in location s

o ConditionalJump x, *s, n: if the last character (if any) of the string stored in

location s is equal to x, then skip forward n program lines, if n is positive, or skip

backward -n program lines, if n is negative. Otherwise, do nothing and continue

as usual. If the line indicated to by n doesn’t exist, then do nothing and continue

as usual.

- Commands for quantum operations:

o Apply s, s1, s2, … sk: this command actually performs several steps:

 make sure the current state space contains all the factors labelled by the

strings in the command    . If it doesn’t, then:

 expand the current state space with the missing factors

- 82 -

 tensor to the current state | 〉 the corresponding number of | 〉,

obtaining a new | 〉.

 if the current state space contains tensor factors that are not among the

specified s1, s2, … sk, those subspaces will remain unchanged. That is,

 is tensored with the corresponding number of identity operators over

 , obtaining a new .

 apply unitary operator to the current state | 〉, obtaining a new state

| 〉

o Observe s, s1, s2, … sk, *s’: this command too actually performs several steps:

 make sure the current state space contains all the factors labelled by the

strings in the command    . If it doesn’t, then:

 expand the current state space with the missing factors

 tensor to the current state | 〉 the corresponding number of | 〉,

obtaining a new | 〉.

 if the current state space contains tensor factors that are not among the

specified s1, s2, … sk, those subspaces will remain unchanged. That is,

 is tensored with the corresponding number of identity operators over

 , obtaining a new .

 apply projection operator to the current state | 〉, obtaining a string of

length k, containing only 0 or 1 characters.

 store the resulted string at the location pointed by string s’.

This language is closely related to the QRAM model as it also offers both classical and

quantum commands. In this model, it is considered that a program computes a problem if,

for any input string s, the program run on that string and the probability of obtaining the

correct string is greater than any of the probabilities of obtaining a different string.

Furthermore, the probability that the program running never halts must be 0.

9.4.3. High level quantum programming languages

The models of quantum computation described above represent a first level of abstraction

that can be used to develop quantum algorithms or to simulate them on classical machines.

However, these languages are quite limited in their capabilities. For example, the QRAM

model operates only with arrays of qubits, whilst the model based on strings manipulation

operates only with strings. As with classical computing, there is an obvious need to provide

built in data types offering a higher level of abstraction: structures, classes, functions, etc.

The vast majority of current classical programs require these kinds of types, and there is no

reason to believe the quantum programs wouldn’t.

When defining quantum programming languages at a higher level, there are a few design

decisions that have to be made:

- choosing between one of two options:

o a language that builds on top of a classical language, probably an existent one.

This classical language would be augmented with the requirements for quantum

programming. The programmer developing in this language will use the classical features of

the language to implement the classical aspects of the program, and delegate only parts of the

implementation to quantum specific language features.

- 83 -

This approach will usually imply that the program flow control (if, while, jump, etc.) will be

realized using only classical language features, eventually using measurements when

necessary.

o a self-contained quantum language, a language that contains only quantum

programming feature. In such a program, programs must be implemented based on the

reversible computing approach, using the quantum scratch pad when necessary to

accommodate irreversible classical functions. Such language is possible because any classical

Turing machine can be simulated by a quantum Turing machine, but is more difficult to use

by programmers who are not use to approaching problems from this perspective.

- choosing the programming paradigm: imperative, functional, pattern matching.

Several such high level programming languages for quantum computing have been defined.

Some of them are using the imperative paradigm, like QCL [55] – which is also self-

contained, or Q [14] – which was built as an extension to C++. Other approaches were based

on functional programming paradigm, like for example QFC [61] – which uses classical flow

control, or QML – where both data and control are quantum.

Yet, in classical programming languages the programming paradigms are starting to merge

together. A very good example of this is offered by the recent evolutions of the languages in

the .Net space. C# started as an imperative language but then, from version 3.0 onwards, by

the addition of the LINQ extension it started providing features specific to functional

programming, such as function closers, meta-programming patterns (i.e. programs that

manipulate other programs), etc. On top of this, a standalone functional programming

language was added to .Net: F#. In this way, by using the easy interoperability between C#

and F# provided by the .Net framework, both imperative and functional paradigms can be

merged in the same program.

Considering these aspects, a promising approach for quantum programming would be to

define a language (Q#) based on top of C#. This language:

- would use all the current C# language features for classical computing (both functional

and imperative)

- provides an extra layer of features for quantum programming. Since these features are

based around applying operators, the most obvious approach would be to use a sort of

functional programming syntax.

Another advantage of taking this approach would be provided by the way .Net languages are

compiled. They are compiled in two steps: the first step takes the managed program and

translates it into MSIL (Microsoft independent language) code. Then, the second step, which

sometimes can even happen at runtime by the means of JIT (just-in-time) compiler, is the

conversion to native, executable machine code. A C# based quantum programming language

extension would work very well in this framework. The quantum programming aspects of a

program will become quantum specific MSIL code – for example, a variant based on the

QRAM model. Then, the JIT compiler would need to convert these MSIL instructions to the

quantum hardware specific machine code, further optimizing it in the process.

The compilation process is schematically depicted below, where [69]:

- QRAM is the intermediate, low level quantum language, like the one described above

- QASM (Quantum Assembly Language) represents a low level quantum circuits

representation, an optimized quantum circuit composed only of gates from the chosen

universal set of elementary quantum gates; for example, CNOT, Hadamard, phase,

Toffoli.

- 84 -

- QPOL (Quantum Physical Operations Language) represents a physical-language

representation with technology specific parameters.

JIT compiler

Q#
program

MSIL

compiler
QRAM QASMQuantum

optimizer
QPOL

Quantum

optimizer

There is also another advantage of using a .Net based quantum programming language:

integration with cloud computing provided by the Azure programming framework. When

using quantum programs to perform simulations on classical computers or when using

quantum programs to run them on quantum devices, in both these cases the required

computing machines will need a very high spec set of requirements. Quantum computers are

currently in prototype phase, they run only in specific, very closely controlled laboratory

environments and for the foreseeable future, they will probably stay like this. On the other

hand, classical computers intended to perform quantum simulations also require a huge

amount of processing power as the quantum state spaces increases exponentially with the

dimension of the input, so they are most likely super-computers.

Therefore, it makes very much sense that these machines to be exposed to the outside world

of quantum programmers via cloud computing architectures (which can be based either on

.Net or on Java).

Virtual machine running on cloud

Local desktop computer

JIT compiler

Q#
program

MSIL

compiler
QRAM QASMQuantum

optimizer
QPOL

Quantum

optimizer

Using the Azure cloud computing architecture with .Net framework, the compilation and the

running process is represented above.

Considering the same EPR pair generation example as above, such a Q# program would look

very similar to a C# program, with LINQ extension:

qbit q[2] = {0, 0}; // initialization
QApply(q => CNOT(H(q[0]), q[1])) // define and apply unitary operators
bit r[1] = QObserve(q[0]); // apply measurement operator

- 85 -

10. Contributions and further research

10.1. Contributions

In chapter 2. the author conceived a few demonstrations for some known examples that prove

the power of quantum computing and quantum information processing, explaining how they

are deeply linked to physical processes.

The author analyzed Deutsch-Jozsa problem and its generalization to Boolean functions

extended to – dimensional finite spaces, and conceived a classical probabilistic algorithm

for solving this problem. The performances of quantum algorithm and the classical

probabilistic ones were analyzed and compared, proving the increased time efficiency of the

quantum algorithm.

The author also provided a proof that the super-dense coding protocol is secure, meaning that

a third party intercepting the qubit being sent can infer nothing about the classical

information to be transmitted.

In chapter 3. a set of theorems together with their formal demonstrations, designed by the

author, were analyzed in order to justify the graphical representations of qubits using three

dimensional unit spheres and to provide for the quantum operations modeling through three

dimensional rotations, only around the coordinate axes. The respective demonstrations are

constructive, and therefore the provided formulae can be used to simulate some specific

quantum computing operators by using a graphical processing integrated circuit or graphical

modeling software. Graphical representations based on geometrical transformations are a

very expressive method of simulating the operations performed on quantum information

processing systems.

Therefore it was proved there is an interesting conceptual relationship between the spherical

rotations on one hand, and the one qubit unitary operations on the other.

Considering a single qubit system, the proofs given in this paper justify the correspondence

between a class of operations that modify the qubit state and some geometrical

transformations on the Bloch sphere. The single qubit operations are expressed by the

exponentiation of Pauli operators, whereas the corresponding geometrical transformations are

rotations on the Bloch sphere around the coordinate axes.

Chapters 4. and 5. present in detail the theory of quantum circuits together with a few

quantum circuits designed by the author:

- a circuit that offers a minimal implementation of the generic controlled operator on two

qubits, this implementation using only one qubit gates and CNOT gates

- a circuit that implements the Fredkin gate using only one Toffoli gate and two CNOT

gates

- a circuit that implements the Fredkin gate using only six gates, each on two qubits

- a circuit that implements the generalized Toffoli gate, without using working qubits. This

circuit has a polynomial complexity of the second grade

- a circuit that implements a generic controlled operator on an arbitrary number of qubits,

without using working qubits. This circuit too has a polynomial complexity of the

second grade

Chapter 6. presents a rigorous analysis on the universality of quantum gates. The author

analyzes the exact universality of infinite sets of gates on one qubit, and how complicated

circuits can be decomposed into simpler ones. This chapter also includes the complexity

evaluations, as conceived by the author.

- 86 -

Then, the author provides a proof for an approximate universality, with arbitrary small error,

using a discrete set of quantum gates: Hadamard, phase, CNOT and Toffoli. Such a set of

elementary quantum gates (named Shor’s basis) is necessary for the approximation of the

generic unitary operators, on any number of qubits. Since the proof is made by construction, a

couple of circuits necessary for implementing some elementary unitary operators on one

qubit are also provided.

In the last three chapters, a few known algorithms [16] are analyzed, under some new light;

these algorithms are a proof for the increased efficiency of the quantum computers, with

respect to the temporal complexity, as compared to the corresponding known algorithms from

classical computing.

In the last chapter, the author provides an analysis of the current languages for quantum

computing, both at low and high level. The author also proposes a new language, built around

.Net framework architecture, which extends from the C# language and uses both imperative

and functional programming paradigms. The architecture for the compiler of this new

language is described in both local environments and on an architecture based on cloud

computing.

10.2. Further research

Quantum computing and information processing is a relatively new domain [1], if we are to

compare it to the previous computing methods, such as analogic one or the one based on the

generalized Turing machine. Although there still are many unknowns in this new computer

science area, and surprises may appear when they are least expected, there already are

numerous research centers around the world that are trying to address this kind of problems.

The current most difficult problems in this area are due to both the physical nature of the

processes involved which are hard to control and investigate, and also to the technological

limitations of building the necessary hardware. The relatively few, but fast increasing

numbers of experimental implementations of physical computing machines based on the

principles derived from quantum mechanics have to deal with hard problems raised by the

necessity of manipulating matter at quantum scales. Although quite many experiments did

successfully manage to achieve important results, by physically implementing some quantum

algorithms, the respective machines require some very restrictive operational environments,

available only in very sophisticated research labs. Furthermore, the size of the input data used

is very small compared with the quantity of data processed by even ordinary personal

computers.

There also are other kinds of limitations – due mainly to weakly software resources currently

available to quantum computing [39]. Designing algorithms in quantum computing paradigm

is still solely based on the inspiration of the people involved in the respective problem [55].

Yet, the tools aimed at supporting software development, compilers, interpreters or high level

programming languages for such quantum machines, are already in research [51] [57]. To

aggravate things, but also to make this subject even more interesting, because of the profound

change in the theoretical computing paradigm, most of these software resources will have to

be reviewed and most likely radically changed. If they will be based on one of the current

software programming paradigms (procedural, functional, pattern matching, object oriented,

etc.) is still open for debate. But, first steps in this direction have already been made, by using

both procedural [45] and functional programming paradigms [49]. It would seem though that

the functional programing paradigm, based on the lambda calculus, to offer a better

perspective. This is because the quantum bit transformations that are applied to qubits as they

pass through the quantum circuits, are expressed using operators, which conceptually

speaking, are functions on state space.

- 87 -

Also, there already are software frameworks for simulating quantum computing machines on

classic, Turing machines [39]; and this means that for investigating theoretical aspects of

those algorithms designed for quantum computers, from a technical perspective, a personal

computer is basically enough.

And last but not least, probably because we still miss a formal demonstration that this

quantum approach will have profound and useful implications upon the way the information

technology affects and influences other domains more close to day to day existence; all these

make that the investments in such research to be quite small compared to somewhat similar

domains, such us nano-technology, bio-technology and molecular computing.

It has been already demonstrated that such a quantum computer, built to a similar scale to a

present, classical personal computer, will be capable to break any encryption code that relies

on public key cryptography based on factorization of integers. But, obviously, there are not

many people really wanting, or hoping for this to happen very soon. But there is also hope; in

the area of data base unstructured searches [36], the quantum computing algorithms also offer

a performance improvement [60]. Furthermore, in the area of scientific computing

applications, where modeling and simulating physical processes that happen at a quantum

scale, the quantum computing paradigm also offers an obvious advantage.

The computing model based on quantum circuits is equivalent to many other computing

models, proposed previously, in the sense that these models require the same essential

resources for the same kind of problems. For example, to illustrate this, one could question if

by using a computing model based on quantum systems triplets (qutrits), instead of binary

quantum systems (qubits), it is possible to gain some kind of computational advantage.

Although from a practical point of view, such small advantages may exist, strictly theoretical

speaking, the difference between these two models is practically negligible. This is because

the computing model inspired by the quantum Turing machines, a generalization of the model

based on the classical universal Turing machines, has been proved to be equivalent with the

model derived from quantum circuits.

It is not yet obvious at all if the assumptions made within the theory of quantum circuits are

totally justified by real-world physical laws. For example, the assumption related to the states

space and to the way the initial states are designed, is just a matter of choice. In this model,

the states space is considered to have a finite dimension. And one could rightfully ask if by

switching to vector spaces having an infinite number of dimensions isn’t possible to gain

some kind of advantage.

Furthermore, the initial states of the qubits passing through the circuit are considered to be

computational basis states. And it is a well-known fact that in nature, many physical quantum

systems exist in highly entangled states. So, a second question that can be raised is if this

kind of states could be used to benefit from some kind of computational advantage. Hence,

because all these questions, the completeness of the computing model based on quantum

circuits, and implicitly the completeness of the corresponding classical model is still

debatable.

The area of quantum cryptography, whereas the quantum communication channels are used

for the distribution of private keys used in the public key cryptography protocols, is probably

the first one already open towards commercial applications.

Another area of promising research which is being pursued on multiple levels is related to the

graphical computations and representations. Because of the strong, profound relationship

between the qubit transformations and graphical rotations there are indications that graphical

processing algorithms, and in general multimedia applications, may be good candidates for

being ported to the quantum computing paradigm. But for this to happen in reality, the

correspondence between single qubit operators and spherical rotations in tridimensional space

will probably need to be extended to transformations on multiple qubits, perhaps by

- 88 -

considering rotations in multiple dimensions. The main issue with this extension is the fact

that the simulation would have to properly handle entangled states.

- 89 -

11. Selective Bibliography

[1] Aaronson S., Gottesman D.: „Improved Simulation of Stabilizer Circuits”, Physical Rev.

A, vol. 70, no. 5, 2004

[2] Adleman L., Demarrais J., Huang M. A.: „Quantum Computability”, SIAM J. Comp.,

26(5), 1997

[3] Aharonov D., Kitaev A., Nisan N.: „Quantum Circuits with Mixed States”, STOC, arXive

e-print quant-ph/9806029, 1998

[4] Aharonov Y., Rohrlich D.: „Quantum Paradoxes: Quantum Theory for the Perplexed”,

Wiley-VCH, Weinheim, 2005

[5] Ambainis A.: „Quantum walk algorithm for element distinctness”, SIAM J. Comput.

37/210, 2007

[6] Ambainis A., Kempe J., Rivosh A.: „Coins make quantum walks faster uantum walk

algorithm for element distinctness”, in Proceedings of the 16th Annual ACM SIAM

Symposium on Discrete Algorithms, 2005

[7] Aspuru-Guzik A., Dutoi A., Love P.J., Head-Gordon M.: „Simulated quantum

computation of molecular energies”, Science 309/5741, 2005

[8] Bacon D., Dam W.V.: „Recent Progress in Quantum Algorithms”, Communications of

the ACM, Vol. 53, No. 02, 2010

[9] Barenco A.: „A Universal Two-Bit Gate for Quantum Computation”, Proc. R. Soc. Lond.

A, 1995

[10] Barenco A., Bennet C. H., Cleve R., DiVincenzo D. P., Margolus N., Shor P., Sleator T.,

Smolin J., Weinfurter H.: „Elementary Gates for Quantum Computation”, Physical

Review Letters 52, 1995

[11] Bennett C. H., DiVincenzo D. P.: „Quantum Information and Computation”, Nature,

404, 2000

[12] Bennett C. H., Shor P. W.: „Quantum Information Theory”, IEEE Trans. Inf. Theory,

44(6), 1998

[13] Bernstein E., Vazirani U.: „Quantum Complexity Theory”, SIAM Journal on Computing,

26(5), 1997

- 90 -

[14] Bettelli S., Calarco T., Serafini L.: „Toward an Architecture for Quantum

Programming”, The European Physics J. D, vol. 25, no. 2, pp. 181-200, 2003

[15] Bhatia R.: „Matrix Analysis”, Springer-Verlag, 1997

[16] Bransden B. H., Joachain C. J.: „Introducere în Mecanica Cuantică”, Editura Tehnică,

1995

[17] Braunstein S. L., Kimble H. J.: „Teleportation of Continuous Quantum Variables”,

Physical Review Letters, 80, 1998

[18] Brînzănescu V., Stănăşilă O.: „Matematici Speciale”, Editura All, 1994

[19] Buhrman H., Špalek R.: „Quantum verification of matrix products”, in Proceedings of

the 17th Annual ACMSIAM Symposium on Discrete Algorithms, 2006

[20] Chester M.: „Primer on Quantum Mechanics”, Dover Publications, 2003

[21] Childs A.M., Cleve R., Deotto E., Farhi E., Gutmann S., Spielman D.A.: „Exponential

algorithmic speedup by quantum walk”, in Proceedings of the 35th ACM Symposium on

Theory of Computing, 59–68, 2003

[22] Chuang I. L., Modha D.: „Reversible Arithmetic Coding for Quantum Data

Compression”, IEEE Trans. Inf. Theory, 46(3):1104, 2000

[23] Cleve R., Ekert A., Macchiavello C., Mosca M.: „Quantum Algorithms Revisited”, Proc.

R. Soc. London A, 454, 1998

[24] Cormen T. H.: „Introduction to Algorithms”, Second Edition, MIT Press, 2001

[25] Dasgupta S., Papadimitriou C. H., Vazirani U.: „Algorithms”, McGraw-Hill, 2006

[26] Deutsch D.: „Quantum computational networks”, Proc. R. Soc. Lond. A 425, 1989

[27] Deutsch D.: „Quantum theory, the Church-Turing Principle and the universal quantum

computer”, Proceedings of the Royal Society of London A 400:97, 1985

[28] Deutsch D., Barenco A., Ekert A.: „Universality in Quantum Computation”, Proc. R.

Soc. Lond. A, 1995

[29] DiVincenzo D. P.: „Quantum Computation”, Science, 270, 1995

- 91 -

[30] DiVincenzo D. P.: „Two-bit Gates Are Universal for Quantum Computation”, Physical

Review Letters A, 51(2), 1995

[31] Dragne L., Moldoveanu F., Soceanu A.: „An Object Oriented Framework For Network

Management”, 13th International Conference On Control Systems And Computer

Science, Bucharest – Romania, 2001

[32] Dragne L.: „A Component Based Hardware Abstraction Layer For Multimedia Home

Platforms”, 14th International Conference On Control Systems And Computer Science,

Bucharest – Romania, 2003

[33] Dragne L.: „Modelling the Controlled Swap Gate with Quantum Circuits”, Annals of

DAAAM for 2009 & Proceedings of the 20th International DAAAM Symposium, 2009

[34] Dragne L.: „Geometrical Representation of Quantum Bit Operations”, U.P.B. Scientific

Bulletin, Bucharest – Romania, 2010

[35] Dragne L.: „Elementary Gates for Fault-Tolerant Quantum Computing”, Annals of

DAAAM for 2010 & Proceedings of the 21th International DAAAM Symposium, 2010

[36] Ekert A., Jozsa R.: „Quantum Algorithms: Entanglement Enhanced Information

Processing”, Proc. R. Soc. Lond. A, 356(1743), 1998

[37] Fortnow L.: „One Complexity Theorist’s View of Quantum Computing”, Theoretical

Computer Science, 292(3), 2003

[38] Farhi E., Goldstone J., Gutmann S.: „A quantum algorithm for the hamiltonian NAND

tree quantum verification of matrix products”, Eprint arXiv:quant-ph/0702144, 2007

[39] Gay S. J.: „Quantum Programming Languages: Survey and bibliography”, Bulletin of

the EATCS, 86, 2005

[40] Geroch R.: „Perspectives in Computation”, The University of Chicago Press, 2009

[41] Gilbert J., Gilbert L.: „Linear Algebra and Matrix Theory”, Thomson, Brooks/Cole, 2004

[42] Gottesman D., Chuang I. L.: „Quantum Teleportation Is a Universal Computational

Primitive”, Nature, 402, 1999

[43] Grimaldi R. P.: „Discrete and Combinatorial Mathematics: An Applied Introduction”,

Addison-Wesley, 2003

- 92 -

[44] Grover L.: „A Fast Quantum-Mechanical Algorithm for Database Search”, ACM

Symposium on Theory of Computing, ACM, 1996

[45] Hallgren S.: „Polynomial-time quantum algorithms for Pell’s equation and the principal

ideal problem”, in Proceedings of the 34th Annual ACM Symposium on the Theory of

Computation, New York, 2002

[46] Hirvensalo M.: „Quantum Computing”, Springer, 2001

[47] Jozsa R.: „Quantum Algorithms and the Fourier transform”, arXive e-print quant-ph,

1997

[48] Kitaev A. Yu., Shen A. H., Vyalyi M. N.: „Classical and Quantum Computation

(Graduate Studies in Mathematics)”, American Mathematical Society, 2002

[49] Lee C. F., Johnson N. F.: „Let the quantum games begin”, Physics World, 2002

[50] Magniez F., Santha M., Szegedy M.: „Quantum algorithms for the triangle problem”, in

Proceedings of the 16th Annual ACM SIAM Symposium on Discrete Algorithms, 2005

[51] Mosca M.: „Quantum Computer Algorithms”, Ph.D. Thesis, University of Oxford, 1999

[52] Nielsen M. A., Chuang I. L.: „Quantum Computation and Quantum Information”,

Cambridge University Press, 2004

[53] Shannon C. E., Weaver W.: „The Mathematical Theory of Communication”, University

of Illinois Press, 1998

[54] Pittenger A. O.: „An introduction to Quantum Computing Algorithms”, Progress in

Computer Science and Applied Logic, Vol. 19, Birkhauser, Boston, 2001

[55] Ömer B.: „A Procedural Formalism for Quantum Computing”, doctoral dissertation,

Dept. Theoretical Physics, Technical Univ. of Vienna, 1998

[56] Preskill J.: „Advanced Mathematical Methods of Physics – Quantum Computation and

Information”, California Institute of Technology, 1998

[57] Raussendorf R., Briegel H. J.: „A One Way Quantum Computer”, Physical Review

Letters, 86, 2001

[58] Rieffel E.: „An Introduction to Quantum Computing for Non-Psysicists”, ACM

Computing Surveys, Vol. 32., 2000

- 93 -

[59] Ruediger R.: „Quantum Programming Languages: An Introductory Overview”, The

Computer Journal, 50(2), 2007

[60] Rosen K. H.: „Discrete Mathematics and Its Applications”, McGraw-Hill, 2003

[61] Selinger P.: „Towards a Quantum Programming Language”, Mathematical Structures in

Computer Science, 2004

[62] Shende V.V., Markov I.L., Bullock S.S.: „Syntesis of Quantum Logic Circuits”, IEEE

Trans. Computer-Aided Design of Integrated circuits, 2006

[63] Shende V.V., Markov I.L., Bullock S.S.: „Finding Small Two-Qubit Circuits”, Proc.

SPIE, vol. 5436, 2004

[64] Shor P. W.: „Algorithms for Quantum Computation: Discrete Logarithms and

Factoring”, IEEE Press, 1994

[65] Shor P. W.: „Polynomial-time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer”, SIAM, 26(5), 1997

[66] Shor P. W.: „Introduction to Quantum Algorithms”, Proceedings of the Symposium in

Applied Mathematics, 58, 2002

[67] Shor P. W.: „Why Haven’t More Quantum Algorithms Been Found?”, Journal of the

ACM, 50(1), 2003

[68] Sipser M.: „Introduction to the Theory of Computation”, Thomson Course Technology,

2005

[69] Svore K. M., Aho A. V., Cross A. W., Chuang I., Markov I. L.: „A Layered Software

Architecture for Quantum Computing Design Tools”, Computer, January 2006

[70] Svore K.M., Terhal B.M., DiVincenzo D.P.: „Local Fault-Tolerant Quantum

Computation”, Physical Rev. A, vol. 72, no. 5, http://arxiv.org/abs/quant-ph/0410047,

2005

[71] Unruh W. G.: „Maintaining Coherence in Quantum Computers”, Physical Review A 51,

992, 2001

[72] Viamontes G.F., Markov I.L., Hayes J.P.: „Graph-Based Simulation of Quantum

Computation in the State-Vector and Density-Matrix Representation”, Quantum

Information and Computation, vol. 5, no. 2, 2005

http://arxiv.org/abs/quant-ph/0410047

- 94 -

[73] Yanofsky N. S., Mannucci M. A.: „Quantum Computing for Computer Scientists”,

Cambridge University Press, 2008

[74] Zalka C.: „Grover’s Quantum Searching Algorithm Is Optimal”, Physical Review Letters

A 60(4), 1999

[75] Zhou X., Leung D. W., Chuang I. L.: „Quantum Logic Gate Constructions with one-bit

Teleportation”, arXive e-print quant-ph/0002039, 2000

[76] http://www.qubit.org

[77] http://www.theory.caltech.edu/people/preskill/ph229/#lecture

[78] http://www.eskimo.com/~knill/qip/prhtml/node2.html

http://www.qubit.org/
http://www.theory.caltech.edu/people/preskill/ph229/#lecture
http://www.eskimo.com/~knill/qip/prhtml/node2.html

	Summary
	1. Basic concepts
	1.1. Church – Turing postulate
	1.2. Church – Turing – Deutsch postulate
	1.3. Quantum information theory
	1.4. Quantum cryptography
	1.5. Quantum information representation
	1.6. Practical implementations of quantum computing systems
	1.7. Quantum computing – quantum gates
	1.8. The impossibility of copying a qubit

	2. Quantum computing efficiency
	2.1. Quantum parallelism
	2.2. Deutsch’s algorithm
	2.3. Deutsch-Jozsa algorithm
	2.3.1. Deutsch-Jozsa problem
	2.3.2. Probabilistic Deutsch-Jozsa problem
	2.3.3. Deutsch-Jozsa quantum circuit

	2.4. Super-dense coding
	2.5. Quantum teleportation

	3. Graphical representations
	3.1. Trace of an operator
	3.2. The operators’ vector space
	3.3. Pauli matrices
	3.4. Graphical representation of qubits
	3.4.1. Qubits in pure state – Bloch sphere
	3.4.2. Qubits in mixed states – Bloch ball

	3.5. Rotation operators
	3.5.1. Rotation operator
	3.5.2. Rotation operator
	3.5.3. Rotation operator
	3.5.4. Generic rotation operator

	3.6. Decomposing unitary operators on one qubit
	3.6.1. Z-Y decomposition of one qubit unitary operators
	3.6.2. X-Y decomposition of unitary operators on one qubit

	4. Controlled quantum circuits
	4.1. Controlled-U operator on one qubit
	4.1.1. Definition and notations
	4.1.2. Implementing the Controlled-U operator on one qubit

	4.2. The Controlled-U operator on multiple qubits
	4.3. The Controlled-U operator with two control qubits
	4.3.1. Implementation using controlled gates on 1 qubit
	4.3.2. Implementation using only CNOT gates and one qubit gates

	4.4. Quantum implementation of universal reversible classical gates
	4.4.1. Implementing Toffoli gate
	4.4.2. Implementing the Fredkin gate by using Toffoli gates

	5. Controlled operators implementation
	5.1. The linear implementation of the controlled operators
	5.2. Exponential implementation of the controlled operators
	5.2.1. Implementing controlled operators on 3 qubits
	5.2.2. Implementing controlled operators. Generalization

	5.3. Quadratic implementation of controlled operators
	5.3.1. Implementing the generic CNOT by using Toffoli
	5.3.2. Implementing controlled operators without working qubits

	6. Universal quantum gates
	6.1. Gates controlled by ,,𝟎.. qubits
	6.2. Infinite sets of universal quantum gates
	6.2.1. Level 𝟐 matrices
	6.2.2. Decomposing matrices using level 𝟐 factors
	6.2.3. Implementing unitary matrices of level 𝟐
	6.2.4. Complexity evaluation

	6.3. Discrete sets of universal quantum gates
	6.3.1. Basic circuit for the non-elementary rotation
	6.3.2. Circuit for the elementary rotation, with unitary probability
	6.3.3. Approximating unitary operators
	6.3.4. Approximating the rotation operator
	Performance considerations

	7. The Fourier Transform
	7.1. Quantum Fourier Transform (QFT)
	7.2. Implementing the quantum Fourier transform
	7.3. Complexity evaluation

	8. Phase estimation
	8.1. Quantum procedure for phase estimation
	8.2. Quantum circuit for phase estimation
	8.3. Performance evaluation
	8.4. Quantum algorithm for phase estimation

	9. Applications for quantum algorithms
	9.1. Order finding and factorization
	9.2. Order finding
	9.2.1. Result interpretation from the quantum phase estimation algorithm
	9.2.2. The performance of the order finding algorithm

	9.3. Applications: factoring natural numbers
	9.3.1. Steps for factorization
	9.3.2. The quantum factoring algorithm

	9.4. Languages for quantum programming
	9.4.1. Quantum programs
	9.4.2. Quantum programming languages
	9.4.3. High level quantum programming languages

	10. Contributions and further research
	10.1. Contributions
	10.2. Further research

	11. Selective Bibliography

